Spaces:
Running
Running
James McCool
commited on
Commit
·
92d6486
1
Parent(s):
19c2796
Refactor app.py to enhance data handling and user input. Updated seed frame initialization to accept a dynamic lineup limit, improved data export functionality, and streamlined session state management for contest simulations. Removed unnecessary imports and optimized data retrieval processes.
Browse files
app.py
CHANGED
@@ -2,9 +2,7 @@ import streamlit as st
|
|
2 |
st.set_page_config(layout="wide")
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
5 |
-
import gspread
|
6 |
import pymongo
|
7 |
-
import time
|
8 |
|
9 |
@st.cache_resource
|
10 |
def init_conn():
|
@@ -23,10 +21,10 @@ dk_columns = ['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'FLEX', 'G', 'salary', '
|
|
23 |
fd_columns = ['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
24 |
|
25 |
@st.cache_data(ttl = 600)
|
26 |
-
def init_DK_seed_frames():
|
27 |
|
28 |
collection = db["DK_NHL_seed_frame"]
|
29 |
-
cursor = collection.find()
|
30 |
|
31 |
raw_display = pd.DataFrame(list(cursor))
|
32 |
raw_display = raw_display[['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'FLEX', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
@@ -35,10 +33,10 @@ def init_DK_seed_frames():
|
|
35 |
return DK_seed
|
36 |
|
37 |
@st.cache_data(ttl = 599)
|
38 |
-
def init_FD_seed_frames():
|
39 |
|
40 |
collection = db["FD_NHL_seed_frame"]
|
41 |
-
cursor = collection.find()
|
42 |
|
43 |
raw_display = pd.DataFrame(list(cursor))
|
44 |
raw_display = raw_display[['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
@@ -87,11 +85,10 @@ def calculate_FD_value_frequencies(np_array):
|
|
87 |
return combined_array
|
88 |
|
89 |
@st.cache_data
|
90 |
-
def sim_contest(Sim_size, seed_frame, maps_dict,
|
91 |
SimVar = 1
|
92 |
Sim_Winners = []
|
93 |
-
fp_array = seed_frame
|
94 |
-
|
95 |
# Pre-vectorize functions
|
96 |
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
97 |
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
|
@@ -118,9 +115,9 @@ def sim_contest(Sim_size, seed_frame, maps_dict, sharp_split, Contest_Size):
|
|
118 |
|
119 |
return Sim_Winners
|
120 |
|
121 |
-
DK_seed = init_DK_seed_frames()
|
122 |
-
FD_seed = init_FD_seed_frames()
|
123 |
dk_raw, fd_raw = init_baselines()
|
|
|
|
|
124 |
|
125 |
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
|
126 |
with tab2:
|
@@ -130,15 +127,17 @@ with tab2:
|
|
130 |
st.cache_data.clear()
|
131 |
for key in st.session_state.keys():
|
132 |
del st.session_state[key]
|
133 |
-
DK_seed = init_DK_seed_frames()
|
134 |
-
FD_seed = init_FD_seed_frames()
|
135 |
dk_raw, fd_raw = init_baselines()
|
|
|
|
|
136 |
|
137 |
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'))
|
138 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
|
|
|
|
139 |
if site_var1 == 'Draftkings':
|
140 |
-
raw_baselines = dk_raw
|
141 |
-
column_names = dk_columns
|
142 |
|
143 |
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
144 |
if team_var1 == 'Specific Teams':
|
@@ -153,8 +152,6 @@ with tab2:
|
|
153 |
stack_var2 = [5, 4, 3, 2, 1, 0]
|
154 |
|
155 |
elif site_var1 == 'Fanduel':
|
156 |
-
raw_baselines = fd_raw
|
157 |
-
column_names = fd_columns
|
158 |
|
159 |
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
160 |
if team_var1 == 'Specific Teams':
|
@@ -170,7 +167,30 @@ with tab2:
|
|
170 |
|
171 |
|
172 |
if st.button("Prepare data export", key='data_export'):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
data_export = st.session_state.working_seed.copy()
|
|
|
|
|
174 |
st.download_button(
|
175 |
label="Export optimals set",
|
176 |
data=convert_df(data_export),
|
@@ -186,7 +206,13 @@ with tab2:
|
|
186 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
187 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
188 |
elif 'working_seed' not in st.session_state:
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
191 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
192 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
@@ -197,7 +223,12 @@ with tab2:
|
|
197 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
198 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
199 |
elif 'working_seed' not in st.session_state:
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
201 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
202 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
203 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
@@ -213,17 +244,14 @@ with tab1:
|
|
213 |
st.cache_data.clear()
|
214 |
for key in st.session_state.keys():
|
215 |
del st.session_state[key]
|
216 |
-
DK_seed = init_DK_seed_frames()
|
217 |
-
FD_seed = init_FD_seed_frames()
|
218 |
dk_raw, fd_raw = init_baselines()
|
|
|
|
|
|
|
219 |
sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'), key='sim_slate_var1')
|
220 |
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
|
221 |
-
if sim_site_var1 == 'Draftkings':
|
222 |
-
raw_baselines = dk_raw
|
223 |
-
column_names = dk_columns
|
224 |
-
elif sim_site_var1 == 'Fanduel':
|
225 |
-
raw_baselines = fd_raw
|
226 |
-
column_names = fd_columns
|
227 |
|
228 |
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
|
229 |
if contest_var1 == 'Small':
|
@@ -258,7 +286,7 @@ with tab1:
|
|
258 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
259 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
260 |
}
|
261 |
-
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict,
|
262 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
263 |
|
264 |
#st.table(Sim_Winner_Frame)
|
@@ -285,10 +313,18 @@ with tab1:
|
|
285 |
|
286 |
else:
|
287 |
if sim_site_var1 == 'Draftkings':
|
288 |
-
|
|
|
|
|
|
|
|
|
289 |
elif sim_site_var1 == 'Fanduel':
|
290 |
-
|
291 |
-
|
|
|
|
|
|
|
|
|
292 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
293 |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
294 |
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
@@ -296,7 +332,7 @@ with tab1:
|
|
296 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
297 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
298 |
}
|
299 |
-
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict,
|
300 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
301 |
|
302 |
#st.table(Sim_Winner_Frame)
|
@@ -317,6 +353,8 @@ with tab1:
|
|
317 |
|
318 |
# Data Copying
|
319 |
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
|
|
|
|
320 |
|
321 |
# Data Copying
|
322 |
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
|
|
2 |
st.set_page_config(layout="wide")
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
|
|
5 |
import pymongo
|
|
|
6 |
|
7 |
@st.cache_resource
|
8 |
def init_conn():
|
|
|
21 |
fd_columns = ['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
22 |
|
23 |
@st.cache_data(ttl = 600)
|
24 |
+
def init_DK_seed_frames(sharp_split):
|
25 |
|
26 |
collection = db["DK_NHL_seed_frame"]
|
27 |
+
cursor = collection.find().limit(sharp_split)
|
28 |
|
29 |
raw_display = pd.DataFrame(list(cursor))
|
30 |
raw_display = raw_display[['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'FLEX', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
33 |
return DK_seed
|
34 |
|
35 |
@st.cache_data(ttl = 599)
|
36 |
+
def init_FD_seed_frames(sharp_split):
|
37 |
|
38 |
collection = db["FD_NHL_seed_frame"]
|
39 |
+
cursor = collection.find().limit(sharp_split)
|
40 |
|
41 |
raw_display = pd.DataFrame(list(cursor))
|
42 |
raw_display = raw_display[['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
85 |
return combined_array
|
86 |
|
87 |
@st.cache_data
|
88 |
+
def sim_contest(Sim_size, seed_frame, maps_dict, Contest_Size):
|
89 |
SimVar = 1
|
90 |
Sim_Winners = []
|
91 |
+
fp_array = seed_frame.copy()
|
|
|
92 |
# Pre-vectorize functions
|
93 |
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
94 |
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
|
|
|
115 |
|
116 |
return Sim_Winners
|
117 |
|
|
|
|
|
118 |
dk_raw, fd_raw = init_baselines()
|
119 |
+
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
120 |
+
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
121 |
|
122 |
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
|
123 |
with tab2:
|
|
|
127 |
st.cache_data.clear()
|
128 |
for key in st.session_state.keys():
|
129 |
del st.session_state[key]
|
130 |
+
DK_seed = init_DK_seed_frames(10000)
|
131 |
+
FD_seed = init_FD_seed_frames(10000)
|
132 |
dk_raw, fd_raw = init_baselines()
|
133 |
+
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
134 |
+
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
135 |
|
136 |
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'))
|
137 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
138 |
+
sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000)
|
139 |
+
|
140 |
if site_var1 == 'Draftkings':
|
|
|
|
|
141 |
|
142 |
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
143 |
if team_var1 == 'Specific Teams':
|
|
|
152 |
stack_var2 = [5, 4, 3, 2, 1, 0]
|
153 |
|
154 |
elif site_var1 == 'Fanduel':
|
|
|
|
|
155 |
|
156 |
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
157 |
if team_var1 == 'Specific Teams':
|
|
|
167 |
|
168 |
|
169 |
if st.button("Prepare data export", key='data_export'):
|
170 |
+
if 'working_seed' in st.session_state:
|
171 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
172 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
173 |
+
elif 'working_seed' not in st.session_state:
|
174 |
+
if site_var1 == 'Draftkings':
|
175 |
+
if slate_var1 == 'Main Slate':
|
176 |
+
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
|
177 |
+
dk_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
|
178 |
+
|
179 |
+
raw_baselines = dk_raw
|
180 |
+
column_names = dk_columns
|
181 |
+
|
182 |
+
elif site_var1 == 'Fanduel':
|
183 |
+
if slate_var1 == 'Main Slate':
|
184 |
+
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
|
185 |
+
fd_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
|
186 |
+
|
187 |
+
raw_baselines = fd_raw
|
188 |
+
column_names = fd_columns
|
189 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
190 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
191 |
data_export = st.session_state.working_seed.copy()
|
192 |
+
for col in range(9):
|
193 |
+
data_export[:, col] = np.array([dk_id_dict.get(x, x) for x in data_export[:, col]])
|
194 |
st.download_button(
|
195 |
label="Export optimals set",
|
196 |
data=convert_df(data_export),
|
|
|
206 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
207 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
208 |
elif 'working_seed' not in st.session_state:
|
209 |
+
if slate_var1 == 'Main Slate':
|
210 |
+
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
|
211 |
+
dk_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
|
212 |
+
|
213 |
+
raw_baselines = dk_raw
|
214 |
+
column_names = dk_columns
|
215 |
+
|
216 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
217 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
218 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
|
|
223 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
224 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
225 |
elif 'working_seed' not in st.session_state:
|
226 |
+
if slate_var1 == 'Main Slate':
|
227 |
+
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
|
228 |
+
fd_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
|
229 |
+
|
230 |
+
raw_baselines = fd_raw
|
231 |
+
column_names = fd_columns
|
232 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
233 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
234 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
|
|
244 |
st.cache_data.clear()
|
245 |
for key in st.session_state.keys():
|
246 |
del st.session_state[key]
|
247 |
+
DK_seed = init_DK_seed_frames(10000)
|
248 |
+
FD_seed = init_FD_seed_frames(10000)
|
249 |
dk_raw, fd_raw = init_baselines()
|
250 |
+
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
251 |
+
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
252 |
+
|
253 |
sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'), key='sim_slate_var1')
|
254 |
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
|
256 |
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
|
257 |
if contest_var1 == 'Small':
|
|
|
286 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
287 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
288 |
}
|
289 |
+
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size)
|
290 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
291 |
|
292 |
#st.table(Sim_Winner_Frame)
|
|
|
313 |
|
314 |
else:
|
315 |
if sim_site_var1 == 'Draftkings':
|
316 |
+
if sim_slate_var1 == 'Main Slate':
|
317 |
+
st.session_state.working_seed = init_DK_seed_frames(sharp_split)
|
318 |
+
|
319 |
+
raw_baselines = dk_raw
|
320 |
+
column_names = dk_columns
|
321 |
elif sim_site_var1 == 'Fanduel':
|
322 |
+
if sim_slate_var1 == 'Main Slate':
|
323 |
+
st.session_state.working_seed = init_FD_seed_frames(sharp_split)
|
324 |
+
|
325 |
+
raw_baselines = fd_raw
|
326 |
+
column_names = fd_columns
|
327 |
+
st.session_state.maps_dict = {
|
328 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
329 |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
330 |
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
|
|
332 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
333 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
334 |
}
|
335 |
+
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size)
|
336 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
337 |
|
338 |
#st.table(Sim_Winner_Frame)
|
|
|
353 |
|
354 |
# Data Copying
|
355 |
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
356 |
+
for col in st.session_state.Sim_Winner_Export.iloc[:, 0:9].columns:
|
357 |
+
st.session_state.Sim_Winner_Export[col] = st.session_state.Sim_Winner_Export[col].map(dk_id_dict)
|
358 |
|
359 |
# Data Copying
|
360 |
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|