Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,52 +2,18 @@ import streamlit as st
|
|
2 |
st.set_page_config(layout="wide")
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
5 |
-
import gspread
|
6 |
import pymongo
|
7 |
-
import time
|
8 |
|
9 |
@st.cache_resource
|
10 |
def init_conn():
|
11 |
-
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
12 |
-
|
13 |
-
credentials = {
|
14 |
-
"type": "service_account",
|
15 |
-
"project_id": "model-sheets-connect",
|
16 |
-
"private_key_id": st.secrets['model_sheets_connect_pk'],
|
17 |
-
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
|
18 |
-
"client_email": "[email protected]",
|
19 |
-
"client_id": "100369174533302798535",
|
20 |
-
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
21 |
-
"token_uri": "https://oauth2.googleapis.com/token",
|
22 |
-
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
23 |
-
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
|
24 |
-
}
|
25 |
-
|
26 |
-
credentials2 = {
|
27 |
-
"type": "service_account",
|
28 |
-
"project_id": "sheets-api-connect-378620",
|
29 |
-
"private_key_id": st.secrets['sheets_api_connect_pk'],
|
30 |
-
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
|
31 |
-
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
|
32 |
-
"client_id": "106625872877651920064",
|
33 |
-
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
34 |
-
"token_uri": "https://oauth2.googleapis.com/token",
|
35 |
-
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
36 |
-
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
|
37 |
-
}
|
38 |
|
39 |
uri = st.secrets['mongo_uri']
|
40 |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
41 |
-
db = client["
|
42 |
-
|
43 |
-
NHL_Data = st.secrets['NHL_Data']
|
44 |
-
|
45 |
-
gc = gspread.service_account_from_dict(credentials)
|
46 |
-
gc2 = gspread.service_account_from_dict(credentials2)
|
47 |
|
48 |
-
return
|
49 |
|
50 |
-
|
51 |
|
52 |
percentages_format = {'Exposure': '{:.2%}'}
|
53 |
freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
|
@@ -55,10 +21,10 @@ dk_columns = ['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'FLEX', 'G', 'salary', '
|
|
55 |
fd_columns = ['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
56 |
|
57 |
@st.cache_data(ttl = 600)
|
58 |
-
def init_DK_seed_frames():
|
59 |
|
60 |
collection = db["DK_NHL_seed_frame"]
|
61 |
-
cursor = collection.find()
|
62 |
|
63 |
raw_display = pd.DataFrame(list(cursor))
|
64 |
raw_display = raw_display[['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'FLEX', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
@@ -67,10 +33,10 @@ def init_DK_seed_frames():
|
|
67 |
return DK_seed
|
68 |
|
69 |
@st.cache_data(ttl = 599)
|
70 |
-
def init_FD_seed_frames():
|
71 |
|
72 |
collection = db["FD_NHL_seed_frame"]
|
73 |
-
cursor = collection.find()
|
74 |
|
75 |
raw_display = pd.DataFrame(list(cursor))
|
76 |
raw_display = raw_display[['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
@@ -80,26 +46,28 @@ def init_FD_seed_frames():
|
|
80 |
|
81 |
@st.cache_data(ttl = 599)
|
82 |
def init_baselines():
|
83 |
-
|
84 |
-
|
85 |
-
except:
|
86 |
-
sh = gcservice_account2.open_by_url(NHL_Data)
|
87 |
|
88 |
-
|
89 |
-
load_display =
|
90 |
-
|
91 |
load_display['STDev'] = load_display['Median'] / 3
|
92 |
DK_load_display = load_display[load_display['Site'] == 'Draftkings']
|
93 |
DK_load_display = DK_load_display.drop_duplicates(subset=['Player'], keep='first')
|
94 |
|
95 |
dk_raw = DK_load_display.dropna(subset=['Median'])
|
|
|
96 |
|
97 |
FD_load_display = load_display[load_display['Site'] == 'Fanduel']
|
98 |
FD_load_display = FD_load_display.drop_duplicates(subset=['Player'], keep='first')
|
99 |
|
100 |
fd_raw = FD_load_display.dropna(subset=['Median'])
|
|
|
101 |
|
102 |
-
|
|
|
|
|
103 |
|
104 |
@st.cache_data
|
105 |
def convert_df(array):
|
@@ -121,11 +89,10 @@ def calculate_FD_value_frequencies(np_array):
|
|
121 |
return combined_array
|
122 |
|
123 |
@st.cache_data
|
124 |
-
def sim_contest(Sim_size, seed_frame, maps_dict,
|
125 |
SimVar = 1
|
126 |
Sim_Winners = []
|
127 |
-
fp_array = seed_frame
|
128 |
-
|
129 |
# Pre-vectorize functions
|
130 |
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
131 |
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
|
@@ -135,15 +102,20 @@ def sim_contest(Sim_size, seed_frame, maps_dict, sharp_split, Contest_Size):
|
|
135 |
while SimVar <= Sim_size:
|
136 |
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
-
sample_arrays =
|
147 |
|
148 |
final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
|
149 |
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
|
@@ -152,9 +124,9 @@ def sim_contest(Sim_size, seed_frame, maps_dict, sharp_split, Contest_Size):
|
|
152 |
|
153 |
return Sim_Winners
|
154 |
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
|
159 |
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
|
160 |
with tab2:
|
@@ -164,15 +136,17 @@ with tab2:
|
|
164 |
st.cache_data.clear()
|
165 |
for key in st.session_state.keys():
|
166 |
del st.session_state[key]
|
167 |
-
DK_seed = init_DK_seed_frames()
|
168 |
-
FD_seed = init_FD_seed_frames()
|
169 |
-
dk_raw, fd_raw = init_baselines()
|
|
|
|
|
170 |
|
171 |
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'))
|
172 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
|
|
|
|
173 |
if site_var1 == 'Draftkings':
|
174 |
-
raw_baselines = dk_raw
|
175 |
-
column_names = dk_columns
|
176 |
|
177 |
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
178 |
if team_var1 == 'Specific Teams':
|
@@ -187,8 +161,6 @@ with tab2:
|
|
187 |
stack_var2 = [5, 4, 3, 2, 1, 0]
|
188 |
|
189 |
elif site_var1 == 'Fanduel':
|
190 |
-
raw_baselines = fd_raw
|
191 |
-
column_names = fd_columns
|
192 |
|
193 |
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
194 |
if team_var1 == 'Specific Teams':
|
@@ -204,6 +176,25 @@ with tab2:
|
|
204 |
|
205 |
|
206 |
if st.button("Prepare data export", key='data_export'):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
data_export = st.session_state.working_seed.copy()
|
208 |
st.download_button(
|
209 |
label="Export optimals set",
|
@@ -211,6 +202,8 @@ with tab2:
|
|
211 |
file_name='NHL_optimals_export.csv',
|
212 |
mime='text/csv',
|
213 |
)
|
|
|
|
|
214 |
|
215 |
with col2:
|
216 |
if st.button("Load Data", key='load_data'):
|
@@ -220,7 +213,12 @@ with tab2:
|
|
220 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
221 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
222 |
elif 'working_seed' not in st.session_state:
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
224 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
225 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
226 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
@@ -231,7 +229,11 @@ with tab2:
|
|
231 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
232 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
233 |
elif 'working_seed' not in st.session_state:
|
234 |
-
|
|
|
|
|
|
|
|
|
235 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
236 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
237 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
@@ -247,17 +249,14 @@ with tab1:
|
|
247 |
st.cache_data.clear()
|
248 |
for key in st.session_state.keys():
|
249 |
del st.session_state[key]
|
250 |
-
DK_seed = init_DK_seed_frames()
|
251 |
-
FD_seed = init_FD_seed_frames()
|
252 |
-
dk_raw, fd_raw = init_baselines()
|
|
|
|
|
|
|
253 |
sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'), key='sim_slate_var1')
|
254 |
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
|
255 |
-
if sim_site_var1 == 'Draftkings':
|
256 |
-
raw_baselines = dk_raw
|
257 |
-
column_names = dk_columns
|
258 |
-
elif sim_site_var1 == 'Fanduel':
|
259 |
-
raw_baselines = fd_raw
|
260 |
-
column_names = fd_columns
|
261 |
|
262 |
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
|
263 |
if contest_var1 == 'Small':
|
@@ -272,19 +271,19 @@ with tab1:
|
|
272 |
if strength_var1 == 'Not Very':
|
273 |
sharp_split = 500000
|
274 |
elif strength_var1 == 'Below Average':
|
275 |
-
sharp_split =
|
276 |
elif strength_var1 == 'Average':
|
277 |
-
sharp_split =
|
278 |
elif strength_var1 == 'Above Average':
|
279 |
-
sharp_split =
|
280 |
elif strength_var1 == 'Very':
|
281 |
-
sharp_split =
|
282 |
|
283 |
|
284 |
with col2:
|
285 |
if st.button("Run Contest Sim"):
|
286 |
if 'working_seed' in st.session_state:
|
287 |
-
maps_dict = {
|
288 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
289 |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
290 |
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
@@ -292,7 +291,7 @@ with tab1:
|
|
292 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
293 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
294 |
}
|
295 |
-
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict,
|
296 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
297 |
|
298 |
#st.table(Sim_Winner_Frame)
|
@@ -313,16 +312,27 @@ with tab1:
|
|
313 |
|
314 |
# Data Copying
|
315 |
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
|
|
|
|
|
|
316 |
|
317 |
# Data Copying
|
318 |
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
319 |
|
320 |
else:
|
321 |
if sim_site_var1 == 'Draftkings':
|
322 |
-
|
|
|
|
|
|
|
|
|
323 |
elif sim_site_var1 == 'Fanduel':
|
324 |
-
|
325 |
-
|
|
|
|
|
|
|
|
|
326 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
327 |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
328 |
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
@@ -330,7 +340,7 @@ with tab1:
|
|
330 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
331 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
332 |
}
|
333 |
-
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict,
|
334 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
335 |
|
336 |
#st.table(Sim_Winner_Frame)
|
@@ -351,6 +361,9 @@ with tab1:
|
|
351 |
|
352 |
# Data Copying
|
353 |
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
|
|
|
|
|
|
354 |
|
355 |
# Data Copying
|
356 |
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
@@ -363,12 +376,12 @@ with tab1:
|
|
363 |
freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
|
364 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
365 |
freq_working['Freq'] = freq_working['Freq'].astype(int)
|
366 |
-
freq_working['Position'] = freq_working['Player'].map(maps_dict['Pos_map'])
|
367 |
-
freq_working['Salary'] = freq_working['Player'].map(maps_dict['Salary_map'])
|
368 |
-
freq_working['Proj Own'] = freq_working['Player'].map(maps_dict['Own_map']) / 100
|
369 |
freq_working['Exposure'] = freq_working['Freq']/(1000)
|
370 |
freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
|
371 |
-
freq_working['Team'] = freq_working['Player'].map(maps_dict['Team_map'])
|
372 |
st.session_state.player_freq = freq_working.copy()
|
373 |
|
374 |
if sim_site_var1 == 'Draftkings':
|
@@ -378,12 +391,12 @@ with tab1:
|
|
378 |
center_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:2].values, return_counts=True)),
|
379 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
380 |
center_working['Freq'] = center_working['Freq'].astype(int)
|
381 |
-
center_working['Position'] = center_working['Player'].map(maps_dict['Pos_map'])
|
382 |
-
center_working['Salary'] = center_working['Player'].map(maps_dict['Salary_map'])
|
383 |
-
center_working['Proj Own'] = center_working['Player'].map(maps_dict['Own_map']) / 100
|
384 |
center_working['Exposure'] = center_working['Freq']/(1000)
|
385 |
center_working['Edge'] = center_working['Exposure'] - center_working['Proj Own']
|
386 |
-
center_working['Team'] = center_working['Player'].map(maps_dict['Team_map'])
|
387 |
st.session_state.center_freq = center_working.copy()
|
388 |
|
389 |
if sim_site_var1 == 'Draftkings':
|
@@ -393,12 +406,12 @@ with tab1:
|
|
393 |
wing_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:4].values, return_counts=True)),
|
394 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
395 |
wing_working['Freq'] = wing_working['Freq'].astype(int)
|
396 |
-
wing_working['Position'] = wing_working['Player'].map(maps_dict['Pos_map'])
|
397 |
-
wing_working['Salary'] = wing_working['Player'].map(maps_dict['Salary_map'])
|
398 |
-
wing_working['Proj Own'] = wing_working['Player'].map(maps_dict['Own_map']) / 100
|
399 |
wing_working['Exposure'] = wing_working['Freq']/(1000)
|
400 |
wing_working['Edge'] = wing_working['Exposure'] - wing_working['Proj Own']
|
401 |
-
wing_working['Team'] = wing_working['Player'].map(maps_dict['Team_map'])
|
402 |
st.session_state.wing_freq = wing_working.copy()
|
403 |
|
404 |
if sim_site_var1 == 'Draftkings':
|
@@ -408,12 +421,12 @@ with tab1:
|
|
408 |
dmen_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:6].values, return_counts=True)),
|
409 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
410 |
dmen_working['Freq'] = dmen_working['Freq'].astype(int)
|
411 |
-
dmen_working['Position'] = dmen_working['Player'].map(maps_dict['Pos_map'])
|
412 |
-
dmen_working['Salary'] = dmen_working['Player'].map(maps_dict['Salary_map'])
|
413 |
-
dmen_working['Proj Own'] = dmen_working['Player'].map(maps_dict['Own_map']) / 100
|
414 |
dmen_working['Exposure'] = dmen_working['Freq']/(1000)
|
415 |
dmen_working['Edge'] = dmen_working['Exposure'] - dmen_working['Proj Own']
|
416 |
-
dmen_working['Team'] = dmen_working['Player'].map(maps_dict['Team_map'])
|
417 |
st.session_state.dmen_freq = dmen_working.copy()
|
418 |
|
419 |
if sim_site_var1 == 'Draftkings':
|
@@ -423,12 +436,12 @@ with tab1:
|
|
423 |
flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:8].values, return_counts=True)),
|
424 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
425 |
flex_working['Freq'] = flex_working['Freq'].astype(int)
|
426 |
-
flex_working['Position'] = flex_working['Player'].map(maps_dict['Pos_map'])
|
427 |
-
flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map'])
|
428 |
-
flex_working['Proj Own'] = flex_working['Player'].map(maps_dict['Own_map']) / 100
|
429 |
flex_working['Exposure'] = flex_working['Freq']/(1000)
|
430 |
flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
|
431 |
-
flex_working['Team'] = flex_working['Player'].map(maps_dict['Team_map'])
|
432 |
st.session_state.flex_freq = flex_working.copy()
|
433 |
|
434 |
if sim_site_var1 == 'Draftkings':
|
@@ -438,12 +451,12 @@ with tab1:
|
|
438 |
goalie_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,8:9].values, return_counts=True)),
|
439 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
440 |
goalie_working['Freq'] = goalie_working['Freq'].astype(int)
|
441 |
-
goalie_working['Position'] = goalie_working['Player'].map(maps_dict['Pos_map'])
|
442 |
-
goalie_working['Salary'] = goalie_working['Player'].map(maps_dict['Salary_map'])
|
443 |
-
goalie_working['Proj Own'] = goalie_working['Player'].map(maps_dict['Own_map']) / 100
|
444 |
goalie_working['Exposure'] = goalie_working['Freq']/(1000)
|
445 |
goalie_working['Edge'] = goalie_working['Exposure'] - goalie_working['Proj Own']
|
446 |
-
goalie_working['Team'] = goalie_working['Player'].map(maps_dict['Team_map'])
|
447 |
st.session_state.goalie_freq = goalie_working.copy()
|
448 |
|
449 |
if sim_site_var1 == 'Draftkings':
|
@@ -475,12 +488,13 @@ with tab1:
|
|
475 |
st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
476 |
if 'Sim_Winner_Export' in st.session_state:
|
477 |
st.download_button(
|
|
|
478 |
label="Export Full Frame",
|
479 |
data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
|
480 |
file_name='MLB_consim_export.csv',
|
481 |
mime='text/csv',
|
482 |
)
|
483 |
-
tab1, tab2 = st.tabs(['Winning Frame Statistics', 'Flex Exposure Statistics'])
|
484 |
|
485 |
with tab1:
|
486 |
if 'Sim_Winner_Display' in st.session_state:
|
@@ -527,6 +541,7 @@ with tab1:
|
|
527 |
st.dataframe(summary_df.style.format({
|
528 |
'Salary': '{:.2f}',
|
529 |
'Proj': '{:.2f}',
|
|
|
530 |
'Fantasy': '{:.2f}',
|
531 |
'GPP_Proj': '{:.2f}'
|
532 |
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own', 'Fantasy', 'GPP_Proj']), use_container_width=True)
|
@@ -534,7 +549,7 @@ with tab1:
|
|
534 |
with tab2:
|
535 |
if 'Sim_Winner_Display' in st.session_state:
|
536 |
# Apply position mapping to FLEX column
|
537 |
-
flex_positions = st.session_state.freq_copy['FLEX'].map(maps_dict['Pos_map'])
|
538 |
|
539 |
# Count occurrences of each position in FLEX
|
540 |
flex_counts = flex_positions.value_counts()
|
@@ -558,12 +573,45 @@ with tab1:
|
|
558 |
st.dataframe(flex_summary.style.format({
|
559 |
'Count': '{:.0f}',
|
560 |
'Avg Proj': '{:.2f}',
|
|
|
561 |
'Avg Fantasy': '{:.2f}',
|
562 |
'Avg GPP_Proj': '{:.2f}'
|
563 |
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']), use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
564 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
565 |
else:
|
566 |
st.write("Simulation data or position mapping not available.")
|
|
|
|
|
567 |
with st.container():
|
568 |
tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(['Overall Exposures', 'Center Exposures', 'Wing Exposures', 'Defense Exposures', 'Flex Exposures', 'Goalie Exposures', 'Team Exposures'])
|
569 |
with tab1:
|
|
|
2 |
st.set_page_config(layout="wide")
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
|
|
5 |
import pymongo
|
|
|
6 |
|
7 |
@st.cache_resource
|
8 |
def init_conn():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
uri = st.secrets['mongo_uri']
|
11 |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
12 |
+
db = client["NHL_Database"]
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
return db
|
15 |
|
16 |
+
db = init_conn()
|
17 |
|
18 |
percentages_format = {'Exposure': '{:.2%}'}
|
19 |
freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
|
|
|
21 |
fd_columns = ['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
22 |
|
23 |
@st.cache_data(ttl = 600)
|
24 |
+
def init_DK_seed_frames(sharp_split):
|
25 |
|
26 |
collection = db["DK_NHL_seed_frame"]
|
27 |
+
cursor = collection.find().limit(sharp_split)
|
28 |
|
29 |
raw_display = pd.DataFrame(list(cursor))
|
30 |
raw_display = raw_display[['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'FLEX', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
33 |
return DK_seed
|
34 |
|
35 |
@st.cache_data(ttl = 599)
|
36 |
+
def init_FD_seed_frames(sharp_split):
|
37 |
|
38 |
collection = db["FD_NHL_seed_frame"]
|
39 |
+
cursor = collection.find().limit(sharp_split)
|
40 |
|
41 |
raw_display = pd.DataFrame(list(cursor))
|
42 |
raw_display = raw_display[['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
46 |
|
47 |
@st.cache_data(ttl = 599)
|
48 |
def init_baselines():
|
49 |
+
collection = db["Player_Level_ROO"]
|
50 |
+
cursor = collection.find()
|
|
|
|
|
51 |
|
52 |
+
raw_display = pd.DataFrame(list(cursor))
|
53 |
+
load_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own',
|
54 |
+
'Small Field Own%', 'Large Field Own%', 'Cash Own%', 'CPT_Own', 'Site', 'Type', 'Slate', 'player_id', 'timestamp']]
|
55 |
load_display['STDev'] = load_display['Median'] / 3
|
56 |
DK_load_display = load_display[load_display['Site'] == 'Draftkings']
|
57 |
DK_load_display = DK_load_display.drop_duplicates(subset=['Player'], keep='first')
|
58 |
|
59 |
dk_raw = DK_load_display.dropna(subset=['Median'])
|
60 |
+
dk_raw['Team'] = dk_raw['Team'].replace(['TB', 'SJ', 'LA'], ['TBL', 'SJS', 'LAK'])
|
61 |
|
62 |
FD_load_display = load_display[load_display['Site'] == 'Fanduel']
|
63 |
FD_load_display = FD_load_display.drop_duplicates(subset=['Player'], keep='first')
|
64 |
|
65 |
fd_raw = FD_load_display.dropna(subset=['Median'])
|
66 |
+
fd_raw['Team'] = fd_raw['Team'].replace(['TB', 'SJ', 'LA'], ['TBL', 'SJS', 'LAK'])
|
67 |
|
68 |
+
teams_playing_count = len(dk_raw.Team.unique())
|
69 |
+
|
70 |
+
return dk_raw, fd_raw, teams_playing_count
|
71 |
|
72 |
@st.cache_data
|
73 |
def convert_df(array):
|
|
|
89 |
return combined_array
|
90 |
|
91 |
@st.cache_data
|
92 |
+
def sim_contest(Sim_size, seed_frame, maps_dict, Contest_Size, teams_playing_count):
|
93 |
SimVar = 1
|
94 |
Sim_Winners = []
|
95 |
+
fp_array = seed_frame.copy()
|
|
|
96 |
# Pre-vectorize functions
|
97 |
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
98 |
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
|
|
|
102 |
while SimVar <= Sim_size:
|
103 |
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
|
104 |
|
105 |
+
# Calculate stack multipliers first
|
106 |
+
stack_multiplier = np.ones(fp_random.shape[0]) # Start with no bonus
|
107 |
+
stack_multiplier += np.where(fp_random[:, 12] == 4, 0.025 * (teams_playing_count - 8), 0)
|
108 |
+
stack_multiplier += np.where(fp_random[:, 12] >= 5, 0.025 * (teams_playing_count - 12), 0)
|
109 |
+
|
110 |
+
# Apply multipliers to both loc and scale in the normal distribution
|
111 |
+
base_projections = np.sum(np.random.normal(
|
112 |
+
loc=vec_projection_map(fp_random[:, :-7]) * stack_multiplier[:, np.newaxis],
|
113 |
+
scale=vec_stdev_map(fp_random[:, :-7]) * stack_multiplier[:, np.newaxis]),
|
114 |
+
axis=1)
|
115 |
+
|
116 |
+
final_projections = base_projections
|
117 |
|
118 |
+
sample_arrays = np.c_[fp_random, final_projections]
|
119 |
|
120 |
final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
|
121 |
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
|
|
|
124 |
|
125 |
return Sim_Winners
|
126 |
|
127 |
+
dk_raw, fd_raw, teams_playing_count = init_baselines()
|
128 |
+
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
129 |
+
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
130 |
|
131 |
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
|
132 |
with tab2:
|
|
|
136 |
st.cache_data.clear()
|
137 |
for key in st.session_state.keys():
|
138 |
del st.session_state[key]
|
139 |
+
DK_seed = init_DK_seed_frames(10000)
|
140 |
+
FD_seed = init_FD_seed_frames(10000)
|
141 |
+
dk_raw, fd_raw, teams_playing_count = init_baselines()
|
142 |
+
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
143 |
+
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
144 |
|
145 |
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'))
|
146 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
147 |
+
sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000)
|
148 |
+
|
149 |
if site_var1 == 'Draftkings':
|
|
|
|
|
150 |
|
151 |
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
152 |
if team_var1 == 'Specific Teams':
|
|
|
161 |
stack_var2 = [5, 4, 3, 2, 1, 0]
|
162 |
|
163 |
elif site_var1 == 'Fanduel':
|
|
|
|
|
164 |
|
165 |
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
166 |
if team_var1 == 'Specific Teams':
|
|
|
176 |
|
177 |
|
178 |
if st.button("Prepare data export", key='data_export'):
|
179 |
+
if 'working_seed' in st.session_state:
|
180 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
181 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
182 |
+
elif 'working_seed' not in st.session_state:
|
183 |
+
if site_var1 == 'Draftkings':
|
184 |
+
if slate_var1 == 'Main Slate':
|
185 |
+
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
|
186 |
+
|
187 |
+
raw_baselines = dk_raw
|
188 |
+
column_names = dk_columns
|
189 |
+
|
190 |
+
elif site_var1 == 'Fanduel':
|
191 |
+
if slate_var1 == 'Main Slate':
|
192 |
+
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
|
193 |
+
|
194 |
+
raw_baselines = fd_raw
|
195 |
+
column_names = fd_columns
|
196 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
197 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
198 |
data_export = st.session_state.working_seed.copy()
|
199 |
st.download_button(
|
200 |
label="Export optimals set",
|
|
|
202 |
file_name='NHL_optimals_export.csv',
|
203 |
mime='text/csv',
|
204 |
)
|
205 |
+
for key in st.session_state.keys():
|
206 |
+
del st.session_state[key]
|
207 |
|
208 |
with col2:
|
209 |
if st.button("Load Data", key='load_data'):
|
|
|
213 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
214 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
215 |
elif 'working_seed' not in st.session_state:
|
216 |
+
if slate_var1 == 'Main Slate':
|
217 |
+
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
|
218 |
+
|
219 |
+
raw_baselines = dk_raw
|
220 |
+
column_names = dk_columns
|
221 |
+
|
222 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
223 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
224 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
|
|
229 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
230 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
231 |
elif 'working_seed' not in st.session_state:
|
232 |
+
if slate_var1 == 'Main Slate':
|
233 |
+
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
|
234 |
+
|
235 |
+
raw_baselines = fd_raw
|
236 |
+
column_names = fd_columns
|
237 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
238 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
239 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
|
|
249 |
st.cache_data.clear()
|
250 |
for key in st.session_state.keys():
|
251 |
del st.session_state[key]
|
252 |
+
DK_seed = init_DK_seed_frames(10000)
|
253 |
+
FD_seed = init_FD_seed_frames(10000)
|
254 |
+
dk_raw, fd_raw, teams_playing_count = init_baselines()
|
255 |
+
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
256 |
+
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
257 |
+
|
258 |
sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'), key='sim_slate_var1')
|
259 |
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
261 |
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
|
262 |
if contest_var1 == 'Small':
|
|
|
271 |
if strength_var1 == 'Not Very':
|
272 |
sharp_split = 500000
|
273 |
elif strength_var1 == 'Below Average':
|
274 |
+
sharp_split = 250000
|
275 |
elif strength_var1 == 'Average':
|
276 |
+
sharp_split = 100000
|
277 |
elif strength_var1 == 'Above Average':
|
278 |
+
sharp_split = 50000
|
279 |
elif strength_var1 == 'Very':
|
280 |
+
sharp_split = 10000
|
281 |
|
282 |
|
283 |
with col2:
|
284 |
if st.button("Run Contest Sim"):
|
285 |
if 'working_seed' in st.session_state:
|
286 |
+
st.session_state.maps_dict = {
|
287 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
288 |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
289 |
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
|
|
291 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
292 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
293 |
}
|
294 |
+
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size, teams_playing_count)
|
295 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
296 |
|
297 |
#st.table(Sim_Winner_Frame)
|
|
|
312 |
|
313 |
# Data Copying
|
314 |
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
315 |
+
for col in st.session_state.Sim_Winner_Export.iloc[:, 0:9].columns:
|
316 |
+
st.session_state.Sim_Winner_Export[col] = st.session_state.Sim_Winner_Export[col].map(dk_id_dict)
|
317 |
+
st.session_state.Sim_Winner_Export = st.session_state.Sim_Winner_Export.drop_duplicates(subset=['Team', 'Secondary', 'salary', 'unique_id'])
|
318 |
|
319 |
# Data Copying
|
320 |
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
321 |
|
322 |
else:
|
323 |
if sim_site_var1 == 'Draftkings':
|
324 |
+
if sim_slate_var1 == 'Main Slate':
|
325 |
+
st.session_state.working_seed = init_DK_seed_frames(sharp_split)
|
326 |
+
|
327 |
+
raw_baselines = dk_raw
|
328 |
+
column_names = dk_columns
|
329 |
elif sim_site_var1 == 'Fanduel':
|
330 |
+
if sim_slate_var1 == 'Main Slate':
|
331 |
+
st.session_state.working_seed = init_FD_seed_frames(sharp_split)
|
332 |
+
|
333 |
+
raw_baselines = fd_raw
|
334 |
+
column_names = fd_columns
|
335 |
+
st.session_state.maps_dict = {
|
336 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
337 |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
338 |
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
|
|
340 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
341 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
342 |
}
|
343 |
+
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size, teams_playing_count)
|
344 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
345 |
|
346 |
#st.table(Sim_Winner_Frame)
|
|
|
361 |
|
362 |
# Data Copying
|
363 |
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
364 |
+
for col in st.session_state.Sim_Winner_Export.iloc[:, 0:9].columns:
|
365 |
+
st.session_state.Sim_Winner_Export[col] = st.session_state.Sim_Winner_Export[col].map(dk_id_dict)
|
366 |
+
st.session_state.Sim_Winner_Export = st.session_state.Sim_Winner_Export.drop_duplicates(subset=['Team', 'Secondary', 'salary', 'unique_id'])
|
367 |
|
368 |
# Data Copying
|
369 |
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
|
|
376 |
freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
|
377 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
378 |
freq_working['Freq'] = freq_working['Freq'].astype(int)
|
379 |
+
freq_working['Position'] = freq_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
380 |
+
freq_working['Salary'] = freq_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
381 |
+
freq_working['Proj Own'] = freq_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
382 |
freq_working['Exposure'] = freq_working['Freq']/(1000)
|
383 |
freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
|
384 |
+
freq_working['Team'] = freq_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
385 |
st.session_state.player_freq = freq_working.copy()
|
386 |
|
387 |
if sim_site_var1 == 'Draftkings':
|
|
|
391 |
center_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:2].values, return_counts=True)),
|
392 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
393 |
center_working['Freq'] = center_working['Freq'].astype(int)
|
394 |
+
center_working['Position'] = center_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
395 |
+
center_working['Salary'] = center_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
396 |
+
center_working['Proj Own'] = center_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
397 |
center_working['Exposure'] = center_working['Freq']/(1000)
|
398 |
center_working['Edge'] = center_working['Exposure'] - center_working['Proj Own']
|
399 |
+
center_working['Team'] = center_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
400 |
st.session_state.center_freq = center_working.copy()
|
401 |
|
402 |
if sim_site_var1 == 'Draftkings':
|
|
|
406 |
wing_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:4].values, return_counts=True)),
|
407 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
408 |
wing_working['Freq'] = wing_working['Freq'].astype(int)
|
409 |
+
wing_working['Position'] = wing_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
410 |
+
wing_working['Salary'] = wing_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
411 |
+
wing_working['Proj Own'] = wing_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
412 |
wing_working['Exposure'] = wing_working['Freq']/(1000)
|
413 |
wing_working['Edge'] = wing_working['Exposure'] - wing_working['Proj Own']
|
414 |
+
wing_working['Team'] = wing_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
415 |
st.session_state.wing_freq = wing_working.copy()
|
416 |
|
417 |
if sim_site_var1 == 'Draftkings':
|
|
|
421 |
dmen_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:6].values, return_counts=True)),
|
422 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
423 |
dmen_working['Freq'] = dmen_working['Freq'].astype(int)
|
424 |
+
dmen_working['Position'] = dmen_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
425 |
+
dmen_working['Salary'] = dmen_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
426 |
+
dmen_working['Proj Own'] = dmen_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
427 |
dmen_working['Exposure'] = dmen_working['Freq']/(1000)
|
428 |
dmen_working['Edge'] = dmen_working['Exposure'] - dmen_working['Proj Own']
|
429 |
+
dmen_working['Team'] = dmen_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
430 |
st.session_state.dmen_freq = dmen_working.copy()
|
431 |
|
432 |
if sim_site_var1 == 'Draftkings':
|
|
|
436 |
flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:8].values, return_counts=True)),
|
437 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
438 |
flex_working['Freq'] = flex_working['Freq'].astype(int)
|
439 |
+
flex_working['Position'] = flex_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
440 |
+
flex_working['Salary'] = flex_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
441 |
+
flex_working['Proj Own'] = flex_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
442 |
flex_working['Exposure'] = flex_working['Freq']/(1000)
|
443 |
flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
|
444 |
+
flex_working['Team'] = flex_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
445 |
st.session_state.flex_freq = flex_working.copy()
|
446 |
|
447 |
if sim_site_var1 == 'Draftkings':
|
|
|
451 |
goalie_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,8:9].values, return_counts=True)),
|
452 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
453 |
goalie_working['Freq'] = goalie_working['Freq'].astype(int)
|
454 |
+
goalie_working['Position'] = goalie_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
455 |
+
goalie_working['Salary'] = goalie_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
456 |
+
goalie_working['Proj Own'] = goalie_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
457 |
goalie_working['Exposure'] = goalie_working['Freq']/(1000)
|
458 |
goalie_working['Edge'] = goalie_working['Exposure'] - goalie_working['Proj Own']
|
459 |
+
goalie_working['Team'] = goalie_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
460 |
st.session_state.goalie_freq = goalie_working.copy()
|
461 |
|
462 |
if sim_site_var1 == 'Draftkings':
|
|
|
488 |
st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
489 |
if 'Sim_Winner_Export' in st.session_state:
|
490 |
st.download_button(
|
491 |
+
|
492 |
label="Export Full Frame",
|
493 |
data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
|
494 |
file_name='MLB_consim_export.csv',
|
495 |
mime='text/csv',
|
496 |
)
|
497 |
+
tab1, tab2, tab3 = st.tabs(['Winning Frame Statistics', 'Flex Exposure Statistics', 'Stack Type Statistics'])
|
498 |
|
499 |
with tab1:
|
500 |
if 'Sim_Winner_Display' in st.session_state:
|
|
|
541 |
st.dataframe(summary_df.style.format({
|
542 |
'Salary': '{:.2f}',
|
543 |
'Proj': '{:.2f}',
|
544 |
+
'Own': '{:.2f}',
|
545 |
'Fantasy': '{:.2f}',
|
546 |
'GPP_Proj': '{:.2f}'
|
547 |
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own', 'Fantasy', 'GPP_Proj']), use_container_width=True)
|
|
|
549 |
with tab2:
|
550 |
if 'Sim_Winner_Display' in st.session_state:
|
551 |
# Apply position mapping to FLEX column
|
552 |
+
flex_positions = st.session_state.freq_copy['FLEX'].map(st.session_state.maps_dict['Pos_map'])
|
553 |
|
554 |
# Count occurrences of each position in FLEX
|
555 |
flex_counts = flex_positions.value_counts()
|
|
|
573 |
st.dataframe(flex_summary.style.format({
|
574 |
'Count': '{:.0f}',
|
575 |
'Avg Proj': '{:.2f}',
|
576 |
+
'Avg Own': '{:.2f}',
|
577 |
'Avg Fantasy': '{:.2f}',
|
578 |
'Avg GPP_Proj': '{:.2f}'
|
579 |
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']), use_container_width=True)
|
580 |
+
else:
|
581 |
+
st.write("Simulation data or position mapping not available.")
|
582 |
+
|
583 |
+
with tab3:
|
584 |
+
if 'Sim_Winner_Display' in st.session_state:
|
585 |
+
# Apply position mapping to FLEX column
|
586 |
+
stack_counts = st.session_state.freq_copy['Team_count'].value_counts()
|
587 |
+
|
588 |
+
# Calculate average statistics for each stack size
|
589 |
+
stack_stats = st.session_state.freq_copy.groupby('Team_count').agg({
|
590 |
+
'proj': 'mean',
|
591 |
+
'Own': 'mean',
|
592 |
+
'Fantasy': 'mean',
|
593 |
+
'GPP_Proj': 'mean'
|
594 |
+
})
|
595 |
+
|
596 |
+
# Combine counts and average statistics
|
597 |
+
stack_summary = pd.concat([stack_counts, stack_stats], axis=1)
|
598 |
+
stack_summary.columns = ['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']
|
599 |
+
stack_summary = stack_summary.reset_index()
|
600 |
+
stack_summary.columns = ['Position', 'Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']
|
601 |
|
602 |
+
# Display the summary dataframe
|
603 |
+
st.subheader("Stack Type Statistics")
|
604 |
+
st.dataframe(stack_summary.style.format({
|
605 |
+
'Count': '{:.0f}',
|
606 |
+
'Avg Proj': '{:.2f}',
|
607 |
+
'Avg Own': '{:.2f}',
|
608 |
+
'Avg Fantasy': '{:.2f}',
|
609 |
+
'Avg GPP_Proj': '{:.2f}'
|
610 |
+
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']), use_container_width=True)
|
611 |
else:
|
612 |
st.write("Simulation data or position mapping not available.")
|
613 |
+
|
614 |
+
|
615 |
with st.container():
|
616 |
tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(['Overall Exposures', 'Center Exposures', 'Wing Exposures', 'Defense Exposures', 'Flex Exposures', 'Goalie Exposures', 'Team Exposures'])
|
617 |
with tab1:
|