Multichem commited on
Commit
579cb0f
·
1 Parent(s): 9d3aa81

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +93 -81
app.py CHANGED
@@ -407,61 +407,56 @@ with tab2:
407
  lineup_final = lineup_final.drop(columns=['Names'])
408
  lineup_final.rename(columns={"sorted": "Names"}, inplace = True)
409
 
410
- # elif site_var1 == 'Fanduel':
411
- # line_hold = lineup_final[['Names']]
412
- # line_hold['pos'] = line_hold['Names'].map(player_pos)
413
-
414
- # for pname in range(0,len(line_hold)):
415
- # if line_hold.iat[pname,1] == 'QB':
416
- # if line_hold.iat[pname,0] not in p_used:
417
- # sorted_lineup.append(line_hold.iat[pname,0])
418
- # p_used.extend(sorted_lineup)
419
- # rbvar = 0
420
- # for pname in range(0,len(line_hold)):
421
- # if rbvar == 2:
422
- # pname = len(line_hold)
423
- # elif rbvar < 2:
424
- # if line_hold.iat[pname,1] == 'RB':
425
- # if line_hold.iat[pname,0] not in p_used:
426
- # sorted_lineup.append(line_hold.iat[pname,0])
427
- # rbvar = rbvar + 1
428
- # p_used.extend(sorted_lineup)
429
- # wrvar = 0
430
- # for pname in range(0,len(line_hold)):
431
- # if wrvar == 3:
432
- # pname = len(line_hold)
433
- # elif wrvar < 3:
434
- # if line_hold.iat[pname,1] == 'WR':
435
- # if line_hold.iat[pname,0] not in p_used:
436
- # sorted_lineup.append(line_hold.iat[pname,0])
437
- # wrvar = wrvar + 1
438
- # p_used.extend(sorted_lineup)
439
- # tevar = 0
440
- # for pname in range(0,len(line_hold)):
441
- # if tevar == 1:
442
- # pname = len(line_hold)
443
- # elif tevar < 1:
444
- # if line_hold.iat[pname,1] == 'TE':
445
- # if line_hold.iat[pname,0] not in p_used:
446
- # sorted_lineup.append(line_hold.iat[pname,0])
447
- # tevar = tevar + 1
448
- # p_used.extend(sorted_lineup)
449
 
450
- # for pname in range(0,len(line_hold)):
451
- # if line_hold.iat[pname,1] != 'DST':
452
- # if line_hold.iat[pname,0] not in p_used:
453
- # sorted_lineup.append(line_hold.iat[pname,0])
454
- # p_used.extend(sorted_lineup)
455
 
456
- # for pname in range(0,len(line_hold)):
457
- # if line_hold.iat[pname,1] == 'DST':
458
- # if line_hold.iat[pname,0] not in p_used:
459
- # sorted_lineup.append(line_hold.iat[pname,0])
460
- # p_used.extend(sorted_lineup)
461
 
462
- # lineup_final['sorted'] = sorted_lineup
463
- # lineup_final = lineup_final.drop(columns=['Names'])
464
- # lineup_final.rename(columns={"sorted": "Names"}, inplace = True)
465
 
466
  lineup_test = lineup_final
467
  lineup_final = lineup_final.T
@@ -493,32 +488,33 @@ with tab2:
493
  x += 1
494
 
495
  if site_var1 == 'Draftkings':
496
- portfolio.rename(columns={0: "C1", 1: "C2", 2: "W1", 3: "W2", 4: "WW3", 5: "D1", 6: "D2", 7: "UTIL", 8: "G"}, inplace = True)
497
  elif site_var1 == 'Fanduel':
498
- portfolio.rename(columns={0: "QB", 1: "RB1", 2: "RB2", 3: "WR1", 4: "WR2", 5: "WR3", 6: "TE", 7: "UTIL", 8: "DST"}, inplace = True)
499
  portfolio = portfolio.dropna()
500
  portfolio = portfolio.reset_index()
501
  portfolio['Lineup_num'] = portfolio['index'] + 1
502
  portfolio.rename(columns={'Lineup_num': "Lineup"}, inplace = True)
503
  portfolio = portfolio.set_index('Lineup')
504
  portfolio = portfolio.drop(columns=['index'])
505
-
506
- final_outcomes = portfolio[['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'UTIL', 'G', 'Cost', 'Proj', 'Own']]
507
- final_outcomes = final_outcomes.set_axis(['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'UTIL', 'G', 'Cost', 'Proj', 'Own'], axis=1)
508
- final_outcomes_export = pd.DataFrame()
509
- final_outcomes_export['C1'] = final_outcomes['C1']
510
- final_outcomes_export['C2'] = final_outcomes['C2']
511
- final_outcomes_export['W1'] = final_outcomes['W1']
512
- final_outcomes_export['W2'] = final_outcomes['W2']
513
- final_outcomes_export['W3'] = final_outcomes['W3']
514
- final_outcomes_export['D1'] = final_outcomes['D1']
515
- final_outcomes_export['D2'] = final_outcomes['D2']
516
- final_outcomes_export['UTIL'] = final_outcomes['UTIL']
517
- final_outcomes_export['G'] = final_outcomes['G']
518
- final_outcomes_export['Salary'] = final_outcomes['Cost']
519
- final_outcomes_export['Own'] = final_outcomes['Own']
520
- final_outcomes_export['Proj'] = final_outcomes['Proj']
521
  if site_var1 == 'Draftkings':
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
522
  final_outcomes_export['C1'].replace(dkid_dict, inplace=True)
523
  final_outcomes_export['C2'].replace(dkid_dict, inplace=True)
524
  final_outcomes_export['W1'].replace(dkid_dict, inplace=True)
@@ -529,16 +525,32 @@ with tab2:
529
  final_outcomes_export['UTIL'].replace(dkid_dict, inplace=True)
530
  final_outcomes_export['G'].replace(dkid_dict, inplace=True)
531
  elif site_var1 == 'Fanduel':
532
- final_outcomes_export['QB'].replace(fdid_dict, inplace=True)
533
- final_outcomes_export['RB1'].replace(fdid_dict, inplace=True)
534
- final_outcomes_export['RB2'].replace(fdid_dict, inplace=True)
535
- final_outcomes_export['WR1'].replace(fdid_dict, inplace=True)
536
- final_outcomes_export['WR2'].replace(fdid_dict, inplace=True)
537
- final_outcomes_export['WR3'].replace(fdid_dict, inplace=True)
538
- final_outcomes_export['TE'].replace(fdid_dict, inplace=True)
539
- final_outcomes_export['UTIL'].replace(fdid_dict, inplace=True)
540
- final_outcomes_export['DST'].replace(fdid_dict, inplace=True)
541
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
542
  player_freq = pd.DataFrame(np.column_stack(np.unique(portfolio.iloc[:,0:8].values, return_counts=True)),
543
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
544
  player_freq['Freq'] = player_freq['Freq'].astype(int)
@@ -559,7 +571,7 @@ with tab2:
559
  st.download_button(
560
  label="Export Optimals",
561
  data=convert_df_to_csv(final_outcomes_export),
562
- file_name='NFL_optimals_export.csv',
563
  mime='text/csv',
564
  )
565
  with freq_container:
 
407
  lineup_final = lineup_final.drop(columns=['Names'])
408
  lineup_final.rename(columns={"sorted": "Names"}, inplace = True)
409
 
410
+ elif site_var1 == 'Fanduel':
411
+ line_hold = lineup_final[['Names']]
412
+ line_hold['pos'] = line_hold['Names'].map(player_pos)
413
+
414
+ cvar = 0
415
+ for pname in range(0,len(line_hold)):
416
+ if cvar == 2:
417
+ pname = len(line_hold)
418
+ elif cvar < 2:
419
+ if line_hold.iat[pname,1] == 'C':
420
+ if line_hold.iat[pname,0] not in p_used:
421
+ sorted_lineup.append(line_hold.iat[pname,0])
422
+ cvar = cvar + 1
423
+ p_used.extend(sorted_lineup)
424
+ wvar = 0
425
+ for pname in range(0,len(line_hold)):
426
+ if wvar == 2:
427
+ pname = len(line_hold)
428
+ elif wvar < 2:
429
+ if line_hold.iat[pname,1] == 'C':
430
+ if line_hold.iat[pname,0] not in p_used:
431
+ sorted_lineup.append(line_hold.iat[pname,0])
432
+ wvar = wvar + 1
433
+ p_used.extend(sorted_lineup)
434
+ dvar = 0
435
+ for pname in range(0,len(line_hold)):
436
+ if dvar == 2:
437
+ pname = len(line_hold)
438
+ elif dvar < 2:
439
+ if line_hold.iat[pname,1] == "D":
440
+ if line_hold.iat[pname,0] not in p_used:
441
+ sorted_lineup.append(line_hold.iat[pname,0])
442
+ dvar = dvar + 1
443
+ p_used.extend(sorted_lineup)
 
 
 
 
 
444
 
445
+ for pname in range(0,len(line_hold)):
446
+ if line_hold.iat[pname,1] != 'G':
447
+ if line_hold.iat[pname,0] not in p_used:
448
+ sorted_lineup.append(line_hold.iat[pname,0])
449
+ p_used.extend(sorted_lineup)
450
 
451
+ for pname in range(0,len(line_hold)):
452
+ if line_hold.iat[pname,1] == 'G':
453
+ if line_hold.iat[pname,0] not in p_used:
454
+ sorted_lineup.append(line_hold.iat[pname,0])
455
+ p_used.extend(sorted_lineup)
456
 
457
+ lineup_final['sorted'] = sorted_lineup
458
+ lineup_final = lineup_final.drop(columns=['Names'])
459
+ lineup_final.rename(columns={"sorted": "Names"}, inplace = True)
460
 
461
  lineup_test = lineup_final
462
  lineup_final = lineup_final.T
 
488
  x += 1
489
 
490
  if site_var1 == 'Draftkings':
491
+ portfolio.rename(columns={0: "C1", 1: "C2", 2: "W1", 3: "W2", 4: "W3", 5: "D1", 6: "D2", 7: "UTIL", 8: "G"}, inplace = True)
492
  elif site_var1 == 'Fanduel':
493
+ portfolio.rename(columns={0: "C1", 1: "C2", 2: "W1", 3: "W2", 4: "D1", 5: "D2", 6: "UTIL1", 7: "UTIL2", 8: "G"}, inplace = True)
494
  portfolio = portfolio.dropna()
495
  portfolio = portfolio.reset_index()
496
  portfolio['Lineup_num'] = portfolio['index'] + 1
497
  portfolio.rename(columns={'Lineup_num': "Lineup"}, inplace = True)
498
  portfolio = portfolio.set_index('Lineup')
499
  portfolio = portfolio.drop(columns=['index'])
500
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
501
  if site_var1 == 'Draftkings':
502
+ final_outcomes = portfolio[['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'UTIL', 'G', 'Cost', 'Proj', 'Own']]
503
+
504
+ final_outcomes_export = pd.DataFrame()
505
+ final_outcomes_export['C1'] = final_outcomes['C1']
506
+ final_outcomes_export['C2'] = final_outcomes['C2']
507
+ final_outcomes_export['W1'] = final_outcomes['W1']
508
+ final_outcomes_export['W2'] = final_outcomes['W2']
509
+ final_outcomes_export['W3'] = final_outcomes['W3']
510
+ final_outcomes_export['D1'] = final_outcomes['D1']
511
+ final_outcomes_export['D2'] = final_outcomes['D2']
512
+ final_outcomes_export['UTIL'] = final_outcomes['UTIL']
513
+ final_outcomes_export['G'] = final_outcomes['G']
514
+ final_outcomes_export['Salary'] = final_outcomes['Cost']
515
+ final_outcomes_export['Own'] = final_outcomes['Own']
516
+ final_outcomes_export['Proj'] = final_outcomes['Proj']
517
+
518
  final_outcomes_export['C1'].replace(dkid_dict, inplace=True)
519
  final_outcomes_export['C2'].replace(dkid_dict, inplace=True)
520
  final_outcomes_export['W1'].replace(dkid_dict, inplace=True)
 
525
  final_outcomes_export['UTIL'].replace(dkid_dict, inplace=True)
526
  final_outcomes_export['G'].replace(dkid_dict, inplace=True)
527
  elif site_var1 == 'Fanduel':
528
+ final_outcomes = portfolio[['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'UTIL1', 'UTIL2', 'G', 'Cost', 'Proj', 'Own']]
529
+
530
+ final_outcomes_export = pd.DataFrame()
531
+ final_outcomes_export['C1'] = final_outcomes['C1']
532
+ final_outcomes_export['C2'] = final_outcomes['C2']
533
+ final_outcomes_export['W1'] = final_outcomes['W1']
534
+ final_outcomes_export['W2'] = final_outcomes['W2']
535
+ final_outcomes_export['D1'] = final_outcomes['D1']
536
+ final_outcomes_export['D2'] = final_outcomes['D2']
537
+ final_outcomes_export['UTIL1'] = final_outcomes['UTIL1']
538
+ final_outcomes_export['UTIL2'] = final_outcomes['UTIL2']
539
+ final_outcomes_export['G'] = final_outcomes['G']
540
+ final_outcomes_export['Salary'] = final_outcomes['Cost']
541
+ final_outcomes_export['Own'] = final_outcomes['Own']
542
+ final_outcomes_export['Proj'] = final_outcomes['Proj']
543
+
544
+ final_outcomes_export['C1'].replace(dkid_dict, inplace=True)
545
+ final_outcomes_export['C2'].replace(dkid_dict, inplace=True)
546
+ final_outcomes_export['W1'].replace(dkid_dict, inplace=True)
547
+ final_outcomes_export['W2'].replace(dkid_dict, inplace=True)
548
+ final_outcomes_export['D1'].replace(dkid_dict, inplace=True)
549
+ final_outcomes_export['D2'].replace(dkid_dict, inplace=True)
550
+ final_outcomes_export['UTIL1'].replace(dkid_dict, inplace=True)
551
+ final_outcomes_export['UTIL2'].replace(dkid_dict, inplace=True)
552
+ final_outcomes_export['G'].replace(dkid_dict, inplace=True)
553
+
554
  player_freq = pd.DataFrame(np.column_stack(np.unique(portfolio.iloc[:,0:8].values, return_counts=True)),
555
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
556
  player_freq['Freq'] = player_freq['Freq'].astype(int)
 
571
  st.download_button(
572
  label="Export Optimals",
573
  data=convert_df_to_csv(final_outcomes_export),
574
+ file_name='NHL_optimals_export.csv',
575
  mime='text/csv',
576
  )
577
  with freq_container: