Multichem commited on
Commit
b22d44d
·
1 Parent(s): 9b5d7fb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -18
app.py CHANGED
@@ -43,6 +43,7 @@ def grab_baseline_stuff():
43
  sh = gcservice_account.open_by_url(all_dk_player_projections)
44
  worksheet = sh.worksheet('Player_Data_Master')
45
  raw_display = pd.DataFrame(worksheet.get_all_records())
 
46
  dk_raw_proj = raw_display[[' Clean Name ', 'Team', 'Opp', 'Line', 'PP Unit', ' Position ', ' DK Salary ', 'Final DK Projection', 'DK uploadID', 'DK_Own']]
47
  dk_raw_proj = dk_raw_proj.set_axis(['Player', 'Team', 'Opp', 'Line', 'PP Unit', 'Position', 'Salary', 'Median', 'player_id', 'Own'], axis=1)
48
  fd_raw_proj = raw_display[[' Clean Name ', 'Team', 'Opp', 'Line', 'PP Unit', ' FD Position ', 'FD Salary', 'Final FD Projection', 'FD uploadID', 'FD_Own']]
@@ -128,24 +129,24 @@ with tab2:
128
  with col2:
129
  raw_baselines = raw_baselines[raw_baselines['Team'].isin(team_var1)]
130
  raw_baselines = raw_baselines[~raw_baselines['Player'].isin(avoid_var1)]
131
- # ownframe = raw_baselines.copy()
132
- # if contest_var1 == 'Cash':
133
- # ownframe['Own%'] = np.where((ownframe['Position'] == 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean() >= 0), ownframe['Own'] * (10 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean(), ownframe['Own'])
134
- # ownframe['Own%'] = np.where((ownframe['Position'] != 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean() >= 0), ownframe['Own'] * (5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean(), ownframe['Own%'])
135
- # ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
136
- # ownframe['Own'] = ownframe['Own%'] * (800 / ownframe['Own%'].sum())
137
- # if contest_var1 == 'Small Field GPP':
138
- # ownframe['Own%'] = np.where((ownframe['Position'] == 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean() >= 0), ownframe['Own'] * (6 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean(), ownframe['Own'])
139
- # ownframe['Own%'] = np.where((ownframe['Position'] != 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean() >= 0), ownframe['Own'] * (3 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean(), ownframe['Own%'])
140
- # ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
141
- # ownframe['Own'] = ownframe['Own%'] * (800 / ownframe['Own%'].sum())
142
- # if contest_var1 == 'Large Field GPP':
143
- # ownframe['Own%'] = np.where((ownframe['Position'] == 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean() >= 0), ownframe['Own'] * (3 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean(), ownframe['Own'])
144
- # ownframe['Own%'] = np.where((ownframe['Position'] != 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean() >= 0), ownframe['Own'] * (1.5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean(), ownframe['Own%'])
145
- # ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
146
- # ownframe['Own'] = ownframe['Own%'] * (800 / ownframe['Own%'].sum())
147
- # raw_baselines = ownframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Line', 'PP Unit', 'Median', 'Own']]
148
- # raw_baselines = raw_baselines.sort_values(by='Median', ascending=False)
149
  raw_baselines['lock'] = np.where(raw_baselines['Player'].isin(lock_var1), 1, 0)
150
  st.dataframe(raw_baselines.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
151
  st.download_button(
 
43
  sh = gcservice_account.open_by_url(all_dk_player_projections)
44
  worksheet = sh.worksheet('Player_Data_Master')
45
  raw_display = pd.DataFrame(worksheet.get_all_records())
46
+ raw_display = raw_display[raw_display['Final DK Projection'] != ' - ']
47
  dk_raw_proj = raw_display[[' Clean Name ', 'Team', 'Opp', 'Line', 'PP Unit', ' Position ', ' DK Salary ', 'Final DK Projection', 'DK uploadID', 'DK_Own']]
48
  dk_raw_proj = dk_raw_proj.set_axis(['Player', 'Team', 'Opp', 'Line', 'PP Unit', 'Position', 'Salary', 'Median', 'player_id', 'Own'], axis=1)
49
  fd_raw_proj = raw_display[[' Clean Name ', 'Team', 'Opp', 'Line', 'PP Unit', ' FD Position ', 'FD Salary', 'Final FD Projection', 'FD uploadID', 'FD_Own']]
 
129
  with col2:
130
  raw_baselines = raw_baselines[raw_baselines['Team'].isin(team_var1)]
131
  raw_baselines = raw_baselines[~raw_baselines['Player'].isin(avoid_var1)]
132
+ ownframe = raw_baselines.copy()
133
+ if contest_var1 == 'Cash':
134
+ ownframe['Own%'] = np.where((ownframe['Position'] == 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean() >= 0), ownframe['Own'] * (10 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean(), ownframe['Own'])
135
+ ownframe['Own%'] = np.where((ownframe['Position'] != 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean() >= 0), ownframe['Own'] * (5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean(), ownframe['Own%'])
136
+ ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
137
+ ownframe['Own'] = ownframe['Own%'] * (800 / ownframe['Own%'].sum())
138
+ if contest_var1 == 'Small Field GPP':
139
+ ownframe['Own%'] = np.where((ownframe['Position'] == 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean() >= 0), ownframe['Own'] * (6 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean(), ownframe['Own'])
140
+ ownframe['Own%'] = np.where((ownframe['Position'] != 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean() >= 0), ownframe['Own'] * (3 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean(), ownframe['Own%'])
141
+ ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
142
+ ownframe['Own'] = ownframe['Own%'] * (800 / ownframe['Own%'].sum())
143
+ if contest_var1 == 'Large Field GPP':
144
+ ownframe['Own%'] = np.where((ownframe['Position'] == 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean() >= 0), ownframe['Own'] * (3 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean(), ownframe['Own'])
145
+ ownframe['Own%'] = np.where((ownframe['Position'] != 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean() >= 0), ownframe['Own'] * (1.5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean(), ownframe['Own%'])
146
+ ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
147
+ ownframe['Own'] = ownframe['Own%'] * (800 / ownframe['Own%'].sum())
148
+ raw_baselines = ownframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Line', 'PP Unit', 'Median', 'Own']]
149
+ raw_baselines = raw_baselines.sort_values(by='Median', ascending=False)
150
  raw_baselines['lock'] = np.where(raw_baselines['Player'].isin(lock_var1), 1, 0)
151
  st.dataframe(raw_baselines.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
152
  st.download_button(