Multichem commited on
Commit
e2d8b30
·
1 Parent(s): dc5be21

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -17
app.py CHANGED
@@ -128,23 +128,23 @@ with tab2:
128
  with col2:
129
  raw_baselines = raw_baselines[raw_baselines['Team'].isin(team_var1)]
130
  raw_baselines = raw_baselines[~raw_baselines['Player'].isin(avoid_var1)]
131
- ownframe = raw_baselines.copy()
132
- if contest_var1 == 'Cash':
133
- ownframe['Own%'] = np.where((ownframe['Position'] == 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean() >= 0), ownframe['Own'] * (10 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean(), ownframe['Own'])
134
- ownframe['Own%'] = np.where((ownframe['Position'] != 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean() >= 0), ownframe['Own'] * (5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean(), ownframe['Own%'])
135
- ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
136
- ownframe['Own'] = ownframe['Own%'] * (800 / ownframe['Own%'].sum())
137
- if contest_var1 == 'Small Field GPP':
138
- ownframe['Own%'] = np.where((ownframe['Position'] == 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean() >= 0), ownframe['Own'] * (6 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean(), ownframe['Own'])
139
- ownframe['Own%'] = np.where((ownframe['Position'] != 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean() >= 0), ownframe['Own'] * (3 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean(), ownframe['Own%'])
140
- ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
141
- ownframe['Own'] = ownframe['Own%'] * (800 / ownframe['Own%'].sum())
142
- if contest_var1 == 'Large Field GPP':
143
- ownframe['Own%'] = np.where((ownframe['Position'] == 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean() >= 0), ownframe['Own'] * (3 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean(), ownframe['Own'])
144
- ownframe['Own%'] = np.where((ownframe['Position'] != 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean() >= 0), ownframe['Own'] * (1.5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean(), ownframe['Own%'])
145
- ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
146
- ownframe['Own'] = ownframe['Own%'] * (800 / ownframe['Own%'].sum())
147
- raw_baselines = ownframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Line', 'PP Unit', 'Median', 'Own']]
148
  raw_baselines = raw_baselines.sort_values(by='Median', ascending=False)
149
  raw_baselines['lock'] = np.where(raw_baselines['Player'].isin(lock_var1), 1, 0)
150
  st.dataframe(raw_baselines.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
 
128
  with col2:
129
  raw_baselines = raw_baselines[raw_baselines['Team'].isin(team_var1)]
130
  raw_baselines = raw_baselines[~raw_baselines['Player'].isin(avoid_var1)]
131
+ # ownframe = raw_baselines.copy()
132
+ # if contest_var1 == 'Cash':
133
+ # ownframe['Own%'] = np.where((ownframe['Position'] == 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean() >= 0), ownframe['Own'] * (10 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean(), ownframe['Own'])
134
+ # ownframe['Own%'] = np.where((ownframe['Position'] != 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean() >= 0), ownframe['Own'] * (5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean(), ownframe['Own%'])
135
+ # ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
136
+ # ownframe['Own'] = ownframe['Own%'] * (800 / ownframe['Own%'].sum())
137
+ # if contest_var1 == 'Small Field GPP':
138
+ # ownframe['Own%'] = np.where((ownframe['Position'] == 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean() >= 0), ownframe['Own'] * (6 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean(), ownframe['Own'])
139
+ # ownframe['Own%'] = np.where((ownframe['Position'] != 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean() >= 0), ownframe['Own'] * (3 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean(), ownframe['Own%'])
140
+ # ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
141
+ # ownframe['Own'] = ownframe['Own%'] * (800 / ownframe['Own%'].sum())
142
+ # if contest_var1 == 'Large Field GPP':
143
+ # ownframe['Own%'] = np.where((ownframe['Position'] == 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean() >= 0), ownframe['Own'] * (3 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] == 'G', 'Own'].mean(), ownframe['Own'])
144
+ # ownframe['Own%'] = np.where((ownframe['Position'] != 'G') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean() >= 0), ownframe['Own'] * (1.5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'G', 'Own'].mean(), ownframe['Own%'])
145
+ # ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
146
+ # ownframe['Own'] = ownframe['Own%'] * (800 / ownframe['Own%'].sum())
147
+ # raw_baselines = ownframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Line', 'PP Unit', 'Median', 'Own']]
148
  raw_baselines = raw_baselines.sort_values(by='Median', ascending=False)
149
  raw_baselines['lock'] = np.where(raw_baselines['Player'].isin(lock_var1), 1, 0)
150
  st.dataframe(raw_baselines.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)