NHL_DFS_ROO / app.py
Multichem's picture
Rename app (4).py to app.py
49a9f64
raw
history blame
90.1 kB
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import pulp
import numpy as np
import pandas as pd
import streamlit as st
import gspread
from itertools import combinations
@st.cache_resource
def init_conn():
scope = ['https://www.googleapis.com/auth/spreadsheets',
"https://www.googleapis.com/auth/drive"]
credentials = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
gc = gspread.service_account_from_dict(credentials)
return gc
gc = init_conn()
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
'4x%': '{:.2%}','GPP%': '{:.2%}'}
all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348'
@st.cache_resource(ttl=3600)
def set_slate_teams():
sh = gc.open_by_url(all_dk_player_projections)
worksheet = sh.worksheet('Site_Info')
raw_display = pd.DataFrame(worksheet.get_all_records())
return raw_display
@st.cache_resource(ttl=600)
def player_stat_table():
sh = gc.open_by_url(all_dk_player_projections)
worksheet = sh.worksheet('Player_Projections')
raw_display = pd.DataFrame(worksheet.get_all_records())
return raw_display
@st.cache_resource(ttl=600)
def load_dk_player_projections():
sh = gc.open_by_url(all_dk_player_projections)
worksheet = sh.worksheet('DK_ROO')
load_display = pd.DataFrame(worksheet.get_all_records())
load_display.replace('', np.nan, inplace=True)
raw_display = load_display.dropna(subset=['Median'])
return raw_display
@st.cache_resource(ttl=600)
def load_fd_player_projections():
sh = gc.open_by_url(all_dk_player_projections)
worksheet = sh.worksheet('FD_ROO')
load_display = pd.DataFrame(worksheet.get_all_records())
load_display.replace('', np.nan, inplace=True)
raw_display = load_display.dropna(subset=['Median'])
return raw_display
@st.cache_resource(ttl=600)
def load_dk_stacks():
sh = gc.open_by_url(all_dk_player_projections)
worksheet = sh.worksheet('DK_Stacks')
load_display = pd.DataFrame(worksheet.get_all_records())
raw_display = load_display
return raw_display
@st.cache_resource(ttl=600)
def load_fd_stacks():
sh = gc.open_by_url(all_dk_player_projections)
worksheet = sh.worksheet('FD_Stacks')
load_display = pd.DataFrame(worksheet.get_all_records())
raw_display = load_display
return raw_display
@st.cache_data
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
player_stats = player_stat_table()
dk_stacks_raw = load_dk_stacks()
fd_stacks_raw = load_fd_stacks()
dk_roo_raw = load_dk_player_projections()
fd_roo_raw = load_fd_player_projections()
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
site_slates = set_slate_teams()
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["Team Stacks Range of Outcomes", "Overall Range of Outcomes", "QB Range of Outcomes", "RB Range of Outcomes", "WR Range of Outcomes", "TE Range of Outcomes"])
with tab1:
col1, col2 = st.columns([1, 5])
with col1:
st.info(t_stamp)
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
player_stats = player_stat_table()
dk_stacks_raw = load_dk_stacks()
fd_stacks_raw = load_fd_stacks()
dk_roo_raw = load_dk_player_projections()
fd_roo_raw = load_fd_player_projections()
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
site_slates = set_slate_teams()
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate'), key='slate_var1')
site_var1 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var1')
custom_var1 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var1')
if custom_var1 == 'No':
if site_var1 == 'Draftkings':
raw_baselines = dk_stacks_raw[dk_stacks_raw['slate'] == str(slate_var1)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
raw_baselines = raw_baselines.iloc[:,:-2]
elif site_var1 == 'Fanduel':
raw_baselines = fd_stacks_raw[fd_stacks_raw['slate'] == str(slate_var1)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
raw_baselines = raw_baselines.iloc[:,:-2]
split_var1 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
if split_var1 == 'Specific Games':
team_var1 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var1')
elif split_var1 == 'Full Slate Run':
team_var1 = raw_baselines.Team.values.tolist()
if custom_var1 == 'Yes':
contest_var1 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var1')
if site_var1 == 'Draftkings':
raw_baselines = dk_stacks_raw[dk_stacks_raw['slate'] == str(slate_var1)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
elif site_var1 == 'Fanduel':
raw_baselines = fd_stacks_raw[fd_stacks_raw['slate'] == str(slate_var1)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
split_var1 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
if split_var1 == 'Specific Games':
team_var1 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var1')
elif split_var1 == 'Full Slate Run':
team_var1 = raw_baselines.Team.values.tolist()
with col2:
if custom_var1 == 'No':
final_stacks = raw_baselines[raw_baselines['Team'].isin(team_var1)]
st.dataframe(final_stacks.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(final_stacks),
file_name='NFL_stacks_export.csv',
mime='text/csv',
)
elif custom_var1 == 'Yes':
hold_container = st.empty()
if st.button('Create Range of Outcomes for Slate'):
with hold_container:
if site_var1 == 'Draftkings':
working_roo = player_stats
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "PPR": "Fantasy"}, inplace = True)
working_roo.replace('', 0, inplace=True)
if site_var1 == 'Fanduel':
working_roo = player_stats
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True)
working_roo.replace('', 0, inplace=True)
working_roo = working_roo[working_roo['Team'].isin(team_var1)]
total_sims = 1000
salary_dict = dict(zip(working_roo.name, working_roo.Salary))
own_dict = dict(zip(working_roo.name, working_roo.Own))
fantasy_dict = dict(zip(working_roo.name, working_roo.Fantasy))
QB_group = working_roo.loc[working_roo['Position'] == 'QB']
stacks_df = pd.DataFrame(columns=['Team','QB', 'WR1', 'WR2_TE'])
for stack in range(0,len(QB_group)):
team_var = QB_group.iat[stack,1]
WR_group_1 = working_roo.loc[working_roo['Position'] == 'WR']
WR_group_2 = WR_group_1.loc[working_roo['Team'] == team_var]
TE_group_1 = working_roo.loc[working_roo['Position'] == 'TE']
TE_group_2 = TE_group_1.loc[working_roo['Team'] == team_var]
cur_list = []
qb_piece = QB_group.iat[stack,0]
wr_piece = WR_group_2.iat[0,0]
te_piece = TE_group_2.iat[0,0]
cur_list.append(team_var)
cur_list.append(qb_piece)
cur_list.append(wr_piece)
cur_list.append(te_piece)
stacks_df.loc[len(stacks_df)] = cur_list
cur_list = []
qb_piece = QB_group.iat[stack,0]
wr_piece = WR_group_2.iat[1,0]
te_piece = TE_group_2.iat[0,0]
cur_list.append(team_var)
cur_list.append(qb_piece)
cur_list.append(wr_piece)
cur_list.append(te_piece)
stacks_df.loc[len(stacks_df)] = cur_list
cur_list = []
qb_piece = QB_group.iat[stack,0]
wr_piece = WR_group_2.iat[0,0]
te_piece = WR_group_2.iat[1,0]
cur_list.append(team_var)
cur_list.append(qb_piece)
cur_list.append(wr_piece)
cur_list.append(te_piece)
stacks_df.loc[len(stacks_df)] = cur_list
stacks_df['Salary'] = sum([stacks_df['QB'].map(salary_dict),
stacks_df['WR1'].map(salary_dict),
stacks_df['WR2_TE'].map(salary_dict)])
stacks_df['Fantasy'] = sum([stacks_df['QB'].map(fantasy_dict),
stacks_df['WR1'].map(fantasy_dict),
stacks_df['WR2_TE'].map(fantasy_dict)])
stacks_df['Own'] = sum([stacks_df['QB'].map(own_dict),
stacks_df['WR1'].map(own_dict),
stacks_df['WR2_TE'].map(own_dict)])
stacks_df['team_combo'] = stacks_df['Team'] + " " + stacks_df['QB'] + " " + stacks_df['WR1'] + " " + stacks_df['WR2_TE']
own_dict = dict(zip(stacks_df.team_combo, stacks_df.Own))
qb_dict = dict(zip(stacks_df.team_combo, stacks_df.QB))
wr1_dict = dict(zip(stacks_df.team_combo, stacks_df.WR1))
wr2_dict = dict(zip(stacks_df.team_combo, stacks_df.WR2_TE))
team_dict = dict(zip(stacks_df.team_combo, stacks_df.Team))
flex_file = stacks_df[['team_combo', 'Salary', 'Fantasy']]
flex_file.rename(columns={"Fantasy": "Median"}, inplace = True)
flex_file['Floor'] = flex_file['Median']*.25
flex_file['Ceiling'] = flex_file['Median'] + flex_file['Floor']
flex_file['STD'] = flex_file['Median']/4
flex_file = flex_file[['team_combo', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file
overall_file = flex_file
salary_file = flex_file
overall_players = overall_file[['team_combo']]
for x in range(0,total_sims):
salary_file[x] = salary_file['Salary']
salary_file=salary_file.drop(['team_combo', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
salary_file.astype('int').dtypes
salary_file = salary_file.div(1000)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['team_combo', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
overall_file.astype('int').dtypes
players_only = hold_file[['team_combo']]
raw_lineups_file = players_only
for x in range(0,total_sims):
maps_dict = {'proj_map':dict(zip(hold_file.team_combo,hold_file[x]))}
raw_lineups_file[x] = sum([raw_lineups_file['team_combo'].map(maps_dict['proj_map'])])
players_only[x] = raw_lineups_file[x].rank(ascending=False)
players_only=players_only.drop(['team_combo'], axis=1)
players_only.astype('int').dtypes
salary_2x_check = (overall_file - (salary_file*2))
salary_3x_check = (overall_file - (salary_file*3))
salary_4x_check = (overall_file - (salary_file*4))
players_only['Average_Rank'] = players_only.mean(axis=1)
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
players_only['60+%'] = overall_file[overall_file >= 60].count(axis=1)/float(total_sims)
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
players_only['team_combo'] = hold_file[['team_combo']]
final_outcomes = players_only[['team_combo', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%']]
final_stacks = pd.merge(hold_file, final_outcomes, on="team_combo")
final_stacks = final_stacks[['team_combo', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%']]
final_stacks['Own'] = final_stacks['team_combo'].map(own_dict)
final_stacks = final_stacks[['team_combo', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own']]
final_stacks['Projection Rank'] = final_stacks.Median.rank(pct = True)
final_stacks['Own Rank'] = final_stacks.Own.rank(pct = True)
final_stacks['LevX'] = final_stacks['Projection Rank'] - final_stacks['Own Rank']
final_stacks['Team'] = final_stacks['team_combo'].map(team_dict)
final_stacks['QB'] = final_stacks['team_combo'].map(qb_dict)
final_stacks['WR1_TE'] = final_stacks['team_combo'].map(wr1_dict)
final_stacks['WR2_TE'] = final_stacks['team_combo'].map(wr2_dict)
final_stacks = final_stacks[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish',
'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own', 'LevX']]
final_stacks = final_stacks.sort_values(by='Median', ascending=False)
with hold_container:
hold_container = st.empty()
final_stacks = final_stacks
st.dataframe(final_stacks.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(final_stacks),
file_name='Custom_NFL_stacks_export.csv',
mime='text/csv',
)
with tab2:
col1, col2 = st.columns([1, 5])
with col1:
st.info(t_stamp)
if st.button("Load/Reset Data", key='reset2'):
st.cache_data.clear()
player_stats = player_stat_table()
dk_stacks_raw = load_dk_stacks()
fd_stacks_raw = load_fd_stacks()
dk_roo_raw = load_dk_player_projections()
fd_roo_raw = load_fd_player_projections()
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
site_slates = set_slate_teams()
slate_var2 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate'), key='slate_var2')
site_var2 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var2')
custom_var2 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var2')
if custom_var2 == 'No':
if site_var2 == 'Draftkings':
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var2)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
raw_baselines = raw_baselines.iloc[:,:-2]
elif site_var2 == 'Fanduel':
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var2)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
raw_baselines = raw_baselines.iloc[:,:-2]
split_var2 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var2')
if split_var2 == 'Specific Games':
team_var2 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var2')
elif split_var2 == 'Full Slate Run':
team_var2 = raw_baselines.Team.values.tolist()
pos_split2 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split2')
if pos_split2 == 'Specific Positions':
pos_var2 = st.multiselect('What Positions would you like to view?', options = ['QB', 'RB', 'WR', 'TE'])
elif pos_split2 == 'All Positions':
pos_var2 = 'All'
sal_var2 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var2')
if custom_var2 == 'Yes':
contest_var2 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var2')
if site_var2 == 'Draftkings':
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var2)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
elif site_var2 == 'Fanduel':
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var2)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
split_var2 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var2')
if split_var2 == 'Specific Games':
team_var2 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var2')
elif split_var2 == 'Full Slate Run':
team_var2 = raw_baselines.Team.values.tolist()
pos_split2 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split2')
if pos_split2 == 'Specific Positions':
pos_var2 = st.multiselect('What Positions would you like to view?', options = ['QB', 'RB', 'WR', 'TE'])
elif pos_split2 == 'All Positions':
pos_var2 = 'All'
sal_var2 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var2')
with col2:
if custom_var2 == 'No':
final_Proj = raw_baselines[raw_baselines['Team'].isin(team_var2)]
final_Proj = final_Proj[final_Proj['Salary'] >= sal_var2[0]]
final_Proj = final_Proj[final_Proj['Salary'] <= sal_var2[1]]
if pos_var2 != 'All':
final_Proj = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_var2))]
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
final_Proj = final_Proj.set_index('Player')
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(final_Proj),
file_name='NFL_overall_export.csv',
mime='text/csv',
)
elif custom_var2 == 'Yes':
hold_container = st.empty()
if st.button('Create Range of Outcomes for Slate'):
with hold_container:
if site_var2 == 'Draftkings':
working_roo = player_stats
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "PPR": "Fantasy"}, inplace = True)
working_roo.replace('', 0, inplace=True)
if site_var2 == 'Fanduel':
working_roo = player_stats
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True)
working_roo.replace('', 0, inplace=True)
working_roo = working_roo[working_roo['Team'].isin(team_var2)]
working_roo = working_roo[working_roo['Salary'] >= sal_var2[0]]
working_roo = working_roo[working_roo['Salary'] <= sal_var2[1]]
own_dict = dict(zip(working_roo.Player, working_roo.Own))
team_dict = dict(zip(working_roo.Player, working_roo.Team))
opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
total_sims = 1000
flex_file = working_roo[['Player', 'Position', 'Salary', 'Fantasy', 'Rush Yards', 'Receptions']]
flex_file.rename(columns={"Fantasy": "Median", "Pos": "Position"}, inplace = True)
flex_file['Floor'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median']*.25) + (flex_file['Rush Yards']*.01),flex_file['Median']*.25)
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median'] + flex_file['Floor']) + (flex_file['Rush Yards']*.01), flex_file['Median'] + flex_file['Floor'] + flex_file['Receptions'])
flex_file['STD'] = (flex_file['Median']/4) + flex_file['Receptions']
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file
overall_file = flex_file
salary_file = flex_file
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
salary_file[x] = salary_file['Salary']
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
salary_file.astype('int').dtypes
salary_file = salary_file.div(1000)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
overall_file.astype('int').dtypes
players_only = hold_file[['Player']]
raw_lineups_file = players_only
for x in range(0,total_sims):
maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
players_only[x] = raw_lineups_file[x].rank(ascending=False)
players_only=players_only.drop(['Player'], axis=1)
players_only.astype('int').dtypes
salary_2x_check = (overall_file - (salary_file*2))
salary_3x_check = (overall_file - (salary_file*3))
salary_4x_check = (overall_file - (salary_file*4))
players_only['Average_Rank'] = players_only.mean(axis=1)
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
final_Proj['LevX'] = 0
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['CPT_Own'] = final_Proj['Own'] / 4
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
final_Proj = final_Proj.set_index('Player')
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
with hold_container:
hold_container = st.empty()
final_Proj = final_Proj
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(final_Proj),
file_name='Custom_NFL_overall_export.csv',
mime='text/csv',
)
with tab3:
col1, col2 = st.columns([1, 5])
with col1:
st.info(t_stamp)
if st.button("Load/Reset Data", key='reset3'):
st.cache_data.clear()
player_stats = player_stat_table()
dk_stacks_raw = load_dk_stacks()
fd_stacks_raw = load_fd_stacks()
dk_roo_raw = load_dk_player_projections()
fd_roo_raw = load_fd_player_projections()
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
site_slates = set_slate_teams()
slate_var3 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate'), key='slate_var3')
site_var3 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var3')
custom_var3 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var3')
if custom_var3 == 'No':
if site_var3 == 'Draftkings':
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var3)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_qbs']
raw_baselines = raw_baselines.iloc[:,:-3]
elif site_var3 == 'Fanduel':
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var3)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_qbs']
raw_baselines = raw_baselines.iloc[:,:-3]
split_var3 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var3')
if split_var3 == 'Specific Games':
team_var3 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var3')
elif split_var3 == 'Full Slate Run':
team_var3 = raw_baselines.Team.values.tolist()
pos_split3 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split3')
if pos_split3 == 'Specific Positions':
pos_var3 = st.multiselect('What Positions would you like to view?', options = ['QB'], key='pos_var3')
elif pos_split3 == 'All Positions':
pos_var3 = 'All'
sal_var3 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var3')
if custom_var3 == 'Yes':
contest_var3 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var3')
if site_var3 == 'Draftkings':
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var3)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_qbs']
raw_baselines = raw_baselines.iloc[:,:-3]
elif site_var3 == 'Fanduel':
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var3)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_qbs']
raw_baselines = raw_baselines.iloc[:,:-3]
split_var3 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var3')
if split_var3 == 'Specific Games':
team_var3 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var3')
elif split_var3 == 'Full Slate Run':
team_var3 = raw_baselines.Team.values.tolist()
pos_split3 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split3')
if pos_split3 == 'Specific Positions':
pos_var3 = st.multiselect('What Positions would you like to view?', options = ['QB'])
elif pos_split3 == 'All Positions':
pos_var3 = 'All'
sal_var3 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var3')
with col2:
if custom_var3 == 'No':
final_Proj = raw_baselines[raw_baselines['Team'].isin(team_var3)]
final_Proj = final_Proj[final_Proj['Salary'] >= sal_var3[0]]
final_Proj = final_Proj[final_Proj['Salary'] <= sal_var3[1]]
if pos_var3 != 'All':
final_Proj = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_var3))]
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
final_Proj = final_Proj.set_index('Player')
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(final_Proj),
file_name='NFL_qb_export.csv',
mime='text/csv',
)
elif custom_var3 == 'Yes':
hold_container = st.empty()
if st.button('Create Range of Outcomes for Slate'):
with hold_container:
if site_var3 == 'Draftkings':
working_roo = player_stats
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "PPR": "Fantasy"}, inplace = True)
working_roo.replace('', 0, inplace=True)
working_roo = working_roo[working_roo['Position'] == 'QB']
if site_var3 == 'Fanduel':
working_roo = player_stats
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True)
working_roo.replace('', 0, inplace=True)
working_roo = working_roo[working_roo['Position'] == 'QB']
working_roo = working_roo[working_roo['Team'].isin(team_var3)]
working_roo = working_roo[working_roo['Salary'] >= sal_var2[0]]
working_roo = working_roo[working_roo['Salary'] <= sal_var2[1]]
own_dict = dict(zip(working_roo.Player, working_roo.Own))
team_dict = dict(zip(working_roo.Player, working_roo.Team))
opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
total_sims = 1000
flex_file = working_roo[['Player', 'Position', 'Salary', 'Fantasy', 'Rush Yards', 'Receptions']]
flex_file.rename(columns={"Fantasy": "Median", "Pos": "Position"}, inplace = True)
flex_file['Floor'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median']*.25) + (flex_file['Rush Yards']*.01),flex_file['Median']*.25)
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median'] + flex_file['Floor']) + (flex_file['Rush Yards']*.01), flex_file['Median'] + flex_file['Floor'] + flex_file['Receptions'])
flex_file['STD'] = (flex_file['Median']/4) + flex_file['Receptions']
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file
overall_file = flex_file
salary_file = flex_file
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
salary_file[x] = salary_file['Salary']
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
salary_file.astype('int').dtypes
salary_file = salary_file.div(1000)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
overall_file.astype('int').dtypes
players_only = hold_file[['Player']]
raw_lineups_file = players_only
for x in range(0,total_sims):
maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
players_only[x] = raw_lineups_file[x].rank(ascending=False)
players_only=players_only.drop(['Player'], axis=1)
players_only.astype('int').dtypes
salary_2x_check = (overall_file - (salary_file*2))
salary_3x_check = (overall_file - (salary_file*3))
salary_4x_check = (overall_file - (salary_file*4))
players_only['Average_Rank'] = players_only.mean(axis=1)
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
final_Proj['LevX'] = 0
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['CPT_Own'] = final_Proj['Own'] / 4
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
final_Proj = final_Proj.set_index('Player')
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
with hold_container:
hold_container = st.empty()
final_Proj = final_Proj
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(final_Proj),
file_name='Custom_NFL_qb_export.csv',
mime='text/csv',
)
with tab4:
col1, col2 = st.columns([1, 5])
with col1:
st.info(t_stamp)
if st.button("Load/Reset Data", key='reset4'):
st.cache_data.clear()
player_stats = player_stat_table()
dk_stacks_raw = load_dk_stacks()
fd_stacks_raw = load_fd_stacks()
dk_roo_raw = load_dk_player_projections()
fd_roo_raw = load_fd_player_projections()
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
site_slates = set_slate_teams()
slate_var4 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate'), key='slate_var4')
site_var4 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var4')
custom_var4 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var4')
if custom_var4 == 'No':
if site_var4 == 'Draftkings':
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var4)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_rbs']
raw_baselines = raw_baselines.iloc[:,:-3]
elif site_var4 == 'Fanduel':
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var4)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_rbs']
raw_baselines = raw_baselines.iloc[:,:-3]
split_var4 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var4')
if split_var4 == 'Specific Games':
team_var4 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var4')
elif split_var4 == 'Full Slate Run':
team_var4 = raw_baselines.Team.values.tolist()
pos_split4 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split4')
if pos_split4 == 'Specific Positions':
pos_var4 = st.multiselect('What Positions would you like to view?', options = ['RB'], key='pos_var4')
elif pos_split4 == 'All Positions':
pos_var4 = 'All'
sal_var4 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var4')
if custom_var4 == 'Yes':
contest_var4 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var4')
if site_var4 == 'Draftkings':
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var4)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_rbs']
elif site_var4 == 'Fanduel':
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var4)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_rbs']
split_var4 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var4')
if split_var4 == 'Specific Games':
team_var4 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var4')
elif split_var4 == 'Full Slate Run':
team_var4 = raw_baselines.Team.values.tolist()
pos_split4 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split4')
if pos_split4 == 'Specific Positions':
pos_var4 = st.multiselect('What Positions would you like to view?', options = ['RB'])
elif pos_split4 == 'All Positions':
pos_var4 = 'All'
sal_var4 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var4')
with col2:
if custom_var4 == 'No':
final_Proj = raw_baselines[raw_baselines['Team'].isin(team_var4)]
final_Proj = final_Proj[final_Proj['Salary'] >= sal_var4[0]]
final_Proj = final_Proj[final_Proj['Salary'] <= sal_var4[1]]
if pos_var4 != 'All':
final_Proj = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_var4))]
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
final_Proj = final_Proj.set_index('Player')
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(final_Proj),
file_name='NFL_rb_export.csv',
mime='text/csv',
)
elif custom_var4 == 'Yes':
hold_container = st.empty()
if st.button('Create Range of Outcomes for Slate'):
with hold_container:
if site_var4 == 'Draftkings':
working_roo = player_stats
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "PPR": "Fantasy"}, inplace = True)
working_roo.replace('', 0, inplace=True)
working_roo = working_roo[working_roo['Position'] == 'RB']
if site_var4 == 'Fanduel':
working_roo = player_stats
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True)
working_roo.replace('', 0, inplace=True)
working_roo = working_roo[working_roo['Position'] == 'RB']
working_roo = working_roo[working_roo['Team'].isin(team_var4)]
working_roo = working_roo[working_roo['Salary'] >= sal_var4[0]]
working_roo = working_roo[working_roo['Salary'] <= sal_var4[1]]
own_dict = dict(zip(working_roo.Player, working_roo.Own))
team_dict = dict(zip(working_roo.Player, working_roo.Team))
opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
total_sims = 1000
flex_file = working_roo[['Player', 'Position', 'Salary', 'Fantasy', 'Rush Yards', 'Receptions']]
flex_file.rename(columns={"Fantasy": "Median", "Pos": "Position"}, inplace = True)
flex_file['Floor'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median']*.25) + (flex_file['Rush Yards']*.01),flex_file['Median']*.25)
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median'] + flex_file['Floor']) + (flex_file['Rush Yards']*.01), flex_file['Median'] + flex_file['Floor'] + flex_file['Receptions'])
flex_file['STD'] = (flex_file['Median']/4) + flex_file['Receptions']
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file
overall_file = flex_file
salary_file = flex_file
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
salary_file[x] = salary_file['Salary']
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
salary_file.astype('int').dtypes
salary_file = salary_file.div(1000)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
overall_file.astype('int').dtypes
players_only = hold_file[['Player']]
raw_lineups_file = players_only
for x in range(0,total_sims):
maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
players_only[x] = raw_lineups_file[x].rank(ascending=False)
players_only=players_only.drop(['Player'], axis=1)
players_only.astype('int').dtypes
salary_2x_check = (overall_file - (salary_file*2))
salary_3x_check = (overall_file - (salary_file*3))
salary_4x_check = (overall_file - (salary_file*4))
players_only['Average_Rank'] = players_only.mean(axis=1)
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
final_Proj['LevX'] = 0
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['CPT_Own'] = final_Proj['Own'] / 4
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
final_Proj = final_Proj.set_index('Player')
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
with hold_container:
hold_container = st.empty()
final_Proj = final_Proj
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(final_Proj),
file_name='Custom_NFL_rb_export.csv',
mime='text/csv',
)
with tab5:
col1, col2 = st.columns([1, 5])
with col1:
st.info(t_stamp)
if st.button("Load/Reset Data", key='reset5'):
st.cache_data.clear()
player_stats = player_stat_table()
dk_stacks_raw = load_dk_stacks()
fd_stacks_raw = load_fd_stacks()
dk_roo_raw = load_dk_player_projections()
fd_roo_raw = load_fd_player_projections()
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
site_slates = set_slate_teams()
slate_var5 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate'), key='slate_var5')
site_var5 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var5')
custom_var5 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var5')
if custom_var5 == 'No':
if site_var5 == 'Draftkings':
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var5)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_wrs']
raw_baselines = raw_baselines.iloc[:,:-3]
elif site_var5 == 'Fanduel':
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var5)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_wrs']
raw_baselines = raw_baselines.iloc[:,:-3]
split_var5 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var5')
if split_var5 == 'Specific Games':
team_var5 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var5')
elif split_var5 == 'Full Slate Run':
team_var5 = raw_baselines.Team.values.tolist()
pos_split5 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split5')
if pos_split5 == 'Specific Positions':
pos_var5 = st.multiselect('What Positions would you like to view?', options = ['WR'], key='pos_var5')
elif pos_split5 == 'All Positions':
pos_var5 = 'All'
sal_var5 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var5')
if custom_var5 == 'Yes':
contest_var5 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var5')
if site_var5 == 'Draftkings':
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var5)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_wrs']
elif site_var5 == 'Fanduel':
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var5)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_wrs']
split_var5 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var5')
if split_var5 == 'Specific Games':
team_var5 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var5')
elif split_var5 == 'Full Slate Run':
team_var5 = raw_baselines.Team.values.tolist()
pos_split5 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split5')
if pos_split5 == 'Specific Positions':
pos_var5 = st.multiselect('What Positions would you like to view?', options = ['WR'])
elif pos_split5 == 'All Positions':
pos_var5 = 'All'
sal_var5 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var5')
with col2:
if custom_var5 == 'No':
final_Proj = raw_baselines[raw_baselines['Team'].isin(team_var5)]
final_Proj = final_Proj[final_Proj['Salary'] >= sal_var5[0]]
final_Proj = final_Proj[final_Proj['Salary'] <= sal_var5[1]]
if pos_var5 != 'All':
final_Proj = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_var5))]
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
final_Proj = final_Proj.set_index('Player')
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(final_Proj),
file_name='NFL_wr_export.csv',
mime='text/csv',
)
elif custom_var5 == 'Yes':
hold_container = st.empty()
if st.button('Create Range of Outcomes for Slate'):
with hold_container:
if site_var5 == 'Draftkings':
working_roo = player_stats
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "PPR": "Fantasy"}, inplace = True)
working_roo.replace('', 0, inplace=True)
working_roo = working_roo[working_roo['Position'] == 'WR']
if site_var5 == 'Fanduel':
working_roo = player_stats
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True)
working_roo.replace('', 0, inplace=True)
working_roo = working_roo[working_roo['Position'] == 'WR']
working_roo = working_roo[working_roo['Team'].isin(team_var5)]
working_roo = working_roo[working_roo['Salary'] >= sal_var5[0]]
working_roo = working_roo[working_roo['Salary'] <= sal_var5[1]]
own_dict = dict(zip(working_roo.Player, working_roo.Own))
team_dict = dict(zip(working_roo.Player, working_roo.Team))
opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
total_sims = 1000
flex_file = working_roo[['Player', 'Position', 'Salary', 'Fantasy', 'Rush Yards', 'Receptions']]
flex_file.rename(columns={"Fantasy": "Median", "Pos": "Position"}, inplace = True)
flex_file['Floor'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median']*.25) + (flex_file['Rush Yards']*.01),flex_file['Median']*.25)
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median'] + flex_file['Floor']) + (flex_file['Rush Yards']*.01), flex_file['Median'] + flex_file['Floor'] + flex_file['Receptions'])
flex_file['STD'] = (flex_file['Median']/4) + flex_file['Receptions']
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file
overall_file = flex_file
salary_file = flex_file
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
salary_file[x] = salary_file['Salary']
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
salary_file.astype('int').dtypes
salary_file = salary_file.div(1000)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
overall_file.astype('int').dtypes
players_only = hold_file[['Player']]
raw_lineups_file = players_only
for x in range(0,total_sims):
maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
players_only[x] = raw_lineups_file[x].rank(ascending=False)
players_only=players_only.drop(['Player'], axis=1)
players_only.astype('int').dtypes
salary_2x_check = (overall_file - (salary_file*2))
salary_3x_check = (overall_file - (salary_file*3))
salary_4x_check = (overall_file - (salary_file*4))
players_only['Average_Rank'] = players_only.mean(axis=1)
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
final_Proj['LevX'] = 0
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['CPT_Own'] = final_Proj['Own'] / 4
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
final_Proj = final_Proj.set_index('Player')
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
with hold_container:
hold_container = st.empty()
final_Proj = final_Proj
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(final_Proj),
file_name='Custom_NFL_wr_export.csv',
mime='text/csv',
)
with tab6:
col1, col2 = st.columns([1, 5])
with col1:
st.info(t_stamp)
if st.button("Load/Reset Data", key='reset6'):
st.cache_data.clear()
player_stats = player_stat_table()
dk_stacks_raw = load_dk_stacks()
fd_stacks_raw = load_fd_stacks()
dk_roo_raw = load_dk_player_projections()
fd_roo_raw = load_fd_player_projections()
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
site_slates = set_slate_teams()
slate_var6 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate'), key='slate_var6')
site_var6 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var6')
custom_var6 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var6')
if custom_var6 == 'No':
if site_var6 == 'Draftkings':
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var6)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_tes']
raw_baselines = raw_baselines.iloc[:,:-3]
elif site_var6 == 'Fanduel':
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var6)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_tes']
raw_baselines = raw_baselines.iloc[:,:-3]
split_var6 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var6')
if split_var6 == 'Specific Games':
team_var6 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var6')
elif split_var6 == 'Full Slate Run':
team_var6 = raw_baselines.Team.values.tolist()
pos_split6 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split6')
if pos_split6 == 'Specific Positions':
pos_var6 = st.multiselect('What Positions would you like to view?', options = ['TE'], key='pos_var6')
elif pos_split5 == 'All Positions':
pos_var6 = 'All'
sal_var6 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var6')
if custom_var6 == 'Yes':
contest_var6 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var6')
if site_var6 == 'Draftkings':
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var6)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_tes']
elif site_var6 == 'Fanduel':
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var6)]
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_tes']
split_var6 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var6')
if split_var6 == 'Specific Games':
team_var6 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var6')
elif split_var6 == 'Full Slate Run':
team_var6 = raw_baselines.Team.values.tolist()
pos_split6 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split6')
if pos_split6 == 'Specific Positions':
pos_var6 = st.multiselect('What Positions would you like to view?', options = ['TE'])
elif pos_split6 == 'All Positions':
pos_var6 = 'All'
sal_var6 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var6')
with col2:
if custom_var6 == 'No':
final_Proj = raw_baselines[raw_baselines['Team'].isin(team_var6)]
final_Proj = final_Proj[final_Proj['Salary'] >= sal_var6[0]]
final_Proj = final_Proj[final_Proj['Salary'] <= sal_var6[1]]
if pos_var6 != 'All':
final_Proj = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_var6))]
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
final_Proj = final_Proj.set_index('Player')
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(final_Proj),
file_name='NFL_te_export.csv',
mime='text/csv',
)
elif custom_var6 == 'Yes':
hold_container = st.empty()
if st.button('Create Range of Outcomes for Slate'):
with hold_container:
if site_var6 == 'Draftkings':
working_roo = player_stats
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "PPR": "Fantasy"}, inplace = True)
working_roo.replace('', 0, inplace=True)
working_roo = working_roo[working_roo['Position'] == 'TE']
if site_var6 == 'Fanduel':
working_roo = player_stats
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True)
working_roo.replace('', 0, inplace=True)
working_roo = working_roo[working_roo['Position'] == 'TE']
working_roo = working_roo[working_roo['Team'].isin(team_var6)]
working_roo = working_roo[working_roo['Salary'] >= sal_var6[0]]
working_roo = working_roo[working_roo['Salary'] <= sal_var6[1]]
own_dict = dict(zip(working_roo.Player, working_roo.Own))
team_dict = dict(zip(working_roo.Player, working_roo.Team))
opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
total_sims = 1000
flex_file = working_roo[['Player', 'Position', 'Salary', 'Fantasy', 'Rush Yards', 'Receptions']]
flex_file.rename(columns={"Fantasy": "Median", "Pos": "Position"}, inplace = True)
flex_file['Floor'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median']*.25) + (flex_file['Rush Yards']*.01),flex_file['Median']*.25)
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median'] + flex_file['Floor']) + (flex_file['Rush Yards']*.01), flex_file['Median'] + flex_file['Floor'] + flex_file['Receptions'])
flex_file['STD'] = (flex_file['Median']/4) + flex_file['Receptions']
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file
overall_file = flex_file
salary_file = flex_file
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
salary_file[x] = salary_file['Salary']
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
salary_file.astype('int').dtypes
salary_file = salary_file.div(1000)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
overall_file.astype('int').dtypes
players_only = hold_file[['Player']]
raw_lineups_file = players_only
for x in range(0,total_sims):
maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
players_only[x] = raw_lineups_file[x].rank(ascending=False)
players_only=players_only.drop(['Player'], axis=1)
players_only.astype('int').dtypes
salary_2x_check = (overall_file - (salary_file*2))
salary_3x_check = (overall_file - (salary_file*3))
salary_4x_check = (overall_file - (salary_file*4))
players_only['Average_Rank'] = players_only.mean(axis=1)
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
final_Proj['LevX'] = 0
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
final_Proj['CPT_Own'] = final_Proj['Own'] / 4
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
final_Proj = final_Proj.set_index('Player')
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
with hold_container:
hold_container = st.empty()
final_Proj = final_Proj
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(final_Proj),
file_name='Custom_NFL_te_export.csv',
mime='text/csv',
)