Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -33,7 +33,7 @@ def init_conn():
|
|
33 |
gc = gspread.service_account_from_dict(credentials)
|
34 |
return gc
|
35 |
|
36 |
-
|
37 |
|
38 |
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
|
39 |
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
|
@@ -41,1192 +41,112 @@ game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%
|
|
41 |
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
|
42 |
'4x%': '{:.2%}','GPP%': '{:.2%}'}
|
43 |
|
44 |
-
all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/
|
45 |
-
|
46 |
-
@st.cache_resource(ttl=3600)
|
47 |
-
def set_slate_teams():
|
48 |
-
sh = gc.open_by_url(all_dk_player_projections)
|
49 |
-
worksheet = sh.worksheet('Site_Info')
|
50 |
-
raw_display = pd.DataFrame(worksheet.get_all_records())
|
51 |
-
|
52 |
-
return raw_display
|
53 |
|
54 |
@st.cache_resource(ttl=600)
|
55 |
def player_stat_table():
|
56 |
-
sh =
|
57 |
-
worksheet = sh.worksheet('
|
58 |
-
|
59 |
-
|
60 |
-
return raw_display
|
61 |
-
|
62 |
-
@st.cache_resource(ttl=600)
|
63 |
-
def load_dk_player_projections():
|
64 |
-
sh = gc.open_by_url(all_dk_player_projections)
|
65 |
-
worksheet = sh.worksheet('DK_ROO')
|
66 |
-
load_display = pd.DataFrame(worksheet.get_all_records())
|
67 |
-
load_display.replace('', np.nan, inplace=True)
|
68 |
-
raw_display = load_display.dropna(subset=['Median'])
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
def load_fd_player_projections():
|
74 |
-
sh = gc.open_by_url(all_dk_player_projections)
|
75 |
-
worksheet = sh.worksheet('FD_ROO')
|
76 |
-
load_display = pd.DataFrame(worksheet.get_all_records())
|
77 |
-
load_display.replace('', np.nan, inplace=True)
|
78 |
-
raw_display = load_display.dropna(subset=['Median'])
|
79 |
-
|
80 |
-
return raw_display
|
81 |
-
|
82 |
-
@st.cache_resource(ttl=600)
|
83 |
-
def load_dk_stacks():
|
84 |
-
sh = gc.open_by_url(all_dk_player_projections)
|
85 |
-
worksheet = sh.worksheet('DK_Stacks')
|
86 |
-
load_display = pd.DataFrame(worksheet.get_all_records())
|
87 |
-
raw_display = load_display
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
sh =
|
94 |
-
worksheet = sh.worksheet('
|
95 |
-
|
96 |
-
raw_display = load_display
|
97 |
|
98 |
-
return
|
99 |
|
100 |
@st.cache_data
|
101 |
def convert_df_to_csv(df):
|
102 |
return df.to_csv().encode('utf-8')
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
fd_stacks_raw = load_fd_stacks()
|
107 |
-
dk_roo_raw = load_dk_player_projections()
|
108 |
-
fd_roo_raw = load_fd_player_projections()
|
109 |
-
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
110 |
-
site_slates = set_slate_teams()
|
111 |
|
112 |
-
tab1, tab2, tab3
|
113 |
|
114 |
with tab1:
|
115 |
-
col1, col2 = st.columns([1,
|
116 |
with col1:
|
117 |
st.info(t_stamp)
|
118 |
if st.button("Load/Reset Data", key='reset1'):
|
119 |
st.cache_data.clear()
|
120 |
-
|
121 |
-
|
122 |
-
fd_stacks_raw = load_fd_stacks()
|
123 |
-
dk_roo_raw = load_dk_player_projections()
|
124 |
-
fd_roo_raw = load_fd_player_projections()
|
125 |
-
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
126 |
-
site_slates = set_slate_teams()
|
127 |
-
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate'), key='slate_var1')
|
128 |
site_var1 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var1')
|
129 |
-
|
130 |
-
if
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
if split_var1 == 'Specific Games':
|
141 |
-
team_var1 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var1')
|
142 |
-
elif split_var1 == 'Full Slate Run':
|
143 |
-
team_var1 = raw_baselines.Team.values.tolist()
|
144 |
-
if custom_var1 == 'Yes':
|
145 |
-
contest_var1 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var1')
|
146 |
-
if site_var1 == 'Draftkings':
|
147 |
-
raw_baselines = dk_stacks_raw[dk_stacks_raw['slate'] == str(slate_var1)]
|
148 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
|
149 |
-
elif site_var1 == 'Fanduel':
|
150 |
-
raw_baselines = fd_stacks_raw[fd_stacks_raw['slate'] == str(slate_var1)]
|
151 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
|
152 |
-
split_var1 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
|
153 |
-
if split_var1 == 'Specific Games':
|
154 |
-
team_var1 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var1')
|
155 |
-
elif split_var1 == 'Full Slate Run':
|
156 |
-
team_var1 = raw_baselines.Team.values.tolist()
|
157 |
-
|
158 |
|
159 |
with col2:
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
working_roo.replace('', 0, inplace=True)
|
177 |
-
if site_var1 == 'Fanduel':
|
178 |
-
working_roo = player_stats
|
179 |
-
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True)
|
180 |
-
working_roo.replace('', 0, inplace=True)
|
181 |
-
working_roo = working_roo[working_roo['Team'].isin(team_var1)]
|
182 |
-
|
183 |
-
total_sims = 1000
|
184 |
-
|
185 |
-
salary_dict = dict(zip(working_roo.name, working_roo.Salary))
|
186 |
-
own_dict = dict(zip(working_roo.name, working_roo.Own))
|
187 |
-
fantasy_dict = dict(zip(working_roo.name, working_roo.Fantasy))
|
188 |
-
|
189 |
-
QB_group = working_roo.loc[working_roo['Position'] == 'QB']
|
190 |
-
stacks_df = pd.DataFrame(columns=['Team','QB', 'WR1', 'WR2_TE'])
|
191 |
-
|
192 |
-
for stack in range(0,len(QB_group)):
|
193 |
-
team_var = QB_group.iat[stack,1]
|
194 |
-
WR_group_1 = working_roo.loc[working_roo['Position'] == 'WR']
|
195 |
-
WR_group_2 = WR_group_1.loc[working_roo['Team'] == team_var]
|
196 |
-
TE_group_1 = working_roo.loc[working_roo['Position'] == 'TE']
|
197 |
-
TE_group_2 = TE_group_1.loc[working_roo['Team'] == team_var]
|
198 |
-
cur_list = []
|
199 |
-
qb_piece = QB_group.iat[stack,0]
|
200 |
-
wr_piece = WR_group_2.iat[0,0]
|
201 |
-
te_piece = TE_group_2.iat[0,0]
|
202 |
-
cur_list.append(team_var)
|
203 |
-
cur_list.append(qb_piece)
|
204 |
-
cur_list.append(wr_piece)
|
205 |
-
cur_list.append(te_piece)
|
206 |
-
stacks_df.loc[len(stacks_df)] = cur_list
|
207 |
-
cur_list = []
|
208 |
-
qb_piece = QB_group.iat[stack,0]
|
209 |
-
wr_piece = WR_group_2.iat[1,0]
|
210 |
-
te_piece = TE_group_2.iat[0,0]
|
211 |
-
cur_list.append(team_var)
|
212 |
-
cur_list.append(qb_piece)
|
213 |
-
cur_list.append(wr_piece)
|
214 |
-
cur_list.append(te_piece)
|
215 |
-
stacks_df.loc[len(stacks_df)] = cur_list
|
216 |
-
cur_list = []
|
217 |
-
qb_piece = QB_group.iat[stack,0]
|
218 |
-
wr_piece = WR_group_2.iat[0,0]
|
219 |
-
te_piece = WR_group_2.iat[1,0]
|
220 |
-
cur_list.append(team_var)
|
221 |
-
cur_list.append(qb_piece)
|
222 |
-
cur_list.append(wr_piece)
|
223 |
-
cur_list.append(te_piece)
|
224 |
-
stacks_df.loc[len(stacks_df)] = cur_list
|
225 |
-
|
226 |
-
stacks_df['Salary'] = sum([stacks_df['QB'].map(salary_dict),
|
227 |
-
stacks_df['WR1'].map(salary_dict),
|
228 |
-
stacks_df['WR2_TE'].map(salary_dict)])
|
229 |
-
|
230 |
-
stacks_df['Fantasy'] = sum([stacks_df['QB'].map(fantasy_dict),
|
231 |
-
stacks_df['WR1'].map(fantasy_dict),
|
232 |
-
stacks_df['WR2_TE'].map(fantasy_dict)])
|
233 |
-
|
234 |
-
stacks_df['Own'] = sum([stacks_df['QB'].map(own_dict),
|
235 |
-
stacks_df['WR1'].map(own_dict),
|
236 |
-
stacks_df['WR2_TE'].map(own_dict)])
|
237 |
-
|
238 |
-
stacks_df['team_combo'] = stacks_df['Team'] + " " + stacks_df['QB'] + " " + stacks_df['WR1'] + " " + stacks_df['WR2_TE']
|
239 |
-
|
240 |
-
own_dict = dict(zip(stacks_df.team_combo, stacks_df.Own))
|
241 |
-
qb_dict = dict(zip(stacks_df.team_combo, stacks_df.QB))
|
242 |
-
wr1_dict = dict(zip(stacks_df.team_combo, stacks_df.WR1))
|
243 |
-
wr2_dict = dict(zip(stacks_df.team_combo, stacks_df.WR2_TE))
|
244 |
-
team_dict = dict(zip(stacks_df.team_combo, stacks_df.Team))
|
245 |
-
|
246 |
-
flex_file = stacks_df[['team_combo', 'Salary', 'Fantasy']]
|
247 |
-
flex_file.rename(columns={"Fantasy": "Median"}, inplace = True)
|
248 |
-
flex_file['Floor'] = flex_file['Median']*.25
|
249 |
-
flex_file['Ceiling'] = flex_file['Median'] + flex_file['Floor']
|
250 |
-
flex_file['STD'] = flex_file['Median']/4
|
251 |
-
flex_file = flex_file[['team_combo', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
252 |
-
hold_file = flex_file
|
253 |
-
overall_file = flex_file
|
254 |
-
salary_file = flex_file
|
255 |
-
|
256 |
-
overall_players = overall_file[['team_combo']]
|
257 |
-
|
258 |
-
for x in range(0,total_sims):
|
259 |
-
salary_file[x] = salary_file['Salary']
|
260 |
-
|
261 |
-
salary_file=salary_file.drop(['team_combo', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
262 |
-
salary_file.astype('int').dtypes
|
263 |
-
|
264 |
-
salary_file = salary_file.div(1000)
|
265 |
-
|
266 |
-
for x in range(0,total_sims):
|
267 |
-
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
268 |
-
|
269 |
-
overall_file=overall_file.drop(['team_combo', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
270 |
-
overall_file.astype('int').dtypes
|
271 |
-
|
272 |
-
players_only = hold_file[['team_combo']]
|
273 |
-
raw_lineups_file = players_only
|
274 |
-
|
275 |
-
for x in range(0,total_sims):
|
276 |
-
maps_dict = {'proj_map':dict(zip(hold_file.team_combo,hold_file[x]))}
|
277 |
-
raw_lineups_file[x] = sum([raw_lineups_file['team_combo'].map(maps_dict['proj_map'])])
|
278 |
-
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
279 |
-
|
280 |
-
players_only=players_only.drop(['team_combo'], axis=1)
|
281 |
-
players_only.astype('int').dtypes
|
282 |
-
|
283 |
-
salary_2x_check = (overall_file - (salary_file*2))
|
284 |
-
salary_3x_check = (overall_file - (salary_file*3))
|
285 |
-
salary_4x_check = (overall_file - (salary_file*4))
|
286 |
-
|
287 |
-
players_only['Average_Rank'] = players_only.mean(axis=1)
|
288 |
-
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
|
289 |
-
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
290 |
-
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
291 |
-
players_only['60+%'] = overall_file[overall_file >= 60].count(axis=1)/float(total_sims)
|
292 |
-
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
|
293 |
-
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
|
294 |
-
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
|
295 |
-
|
296 |
-
players_only['team_combo'] = hold_file[['team_combo']]
|
297 |
-
|
298 |
-
final_outcomes = players_only[['team_combo', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%']]
|
299 |
-
|
300 |
-
final_stacks = pd.merge(hold_file, final_outcomes, on="team_combo")
|
301 |
-
final_stacks = final_stacks[['team_combo', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%']]
|
302 |
-
final_stacks['Own'] = final_stacks['team_combo'].map(own_dict)
|
303 |
-
final_stacks = final_stacks[['team_combo', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own']]
|
304 |
-
final_stacks['Projection Rank'] = final_stacks.Median.rank(pct = True)
|
305 |
-
final_stacks['Own Rank'] = final_stacks.Own.rank(pct = True)
|
306 |
-
final_stacks['LevX'] = final_stacks['Projection Rank'] - final_stacks['Own Rank']
|
307 |
-
final_stacks['Team'] = final_stacks['team_combo'].map(team_dict)
|
308 |
-
final_stacks['QB'] = final_stacks['team_combo'].map(qb_dict)
|
309 |
-
final_stacks['WR1_TE'] = final_stacks['team_combo'].map(wr1_dict)
|
310 |
-
final_stacks['WR2_TE'] = final_stacks['team_combo'].map(wr2_dict)
|
311 |
-
|
312 |
-
final_stacks = final_stacks[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish',
|
313 |
-
'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own', 'LevX']]
|
314 |
-
|
315 |
-
final_stacks = final_stacks.sort_values(by='Median', ascending=False)
|
316 |
-
|
317 |
-
with hold_container:
|
318 |
-
hold_container = st.empty()
|
319 |
-
final_stacks = final_stacks
|
320 |
-
st.dataframe(final_stacks.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
321 |
-
|
322 |
-
st.download_button(
|
323 |
-
label="Export Tables",
|
324 |
-
data=convert_df_to_csv(final_stacks),
|
325 |
-
file_name='Custom_NFL_stacks_export.csv',
|
326 |
-
mime='text/csv',
|
327 |
-
)
|
328 |
|
329 |
with tab2:
|
330 |
-
col1, col2 = st.columns([1,
|
331 |
with col1:
|
332 |
st.info(t_stamp)
|
333 |
if st.button("Load/Reset Data", key='reset2'):
|
334 |
st.cache_data.clear()
|
335 |
-
|
336 |
-
|
337 |
-
fd_stacks_raw = load_fd_stacks()
|
338 |
-
dk_roo_raw = load_dk_player_projections()
|
339 |
-
fd_roo_raw = load_fd_player_projections()
|
340 |
-
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
341 |
-
site_slates = set_slate_teams()
|
342 |
-
slate_var2 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate'), key='slate_var2')
|
343 |
site_var2 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var2')
|
344 |
-
custom_var2 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var2')
|
345 |
-
if custom_var2 == 'No':
|
346 |
-
if site_var2 == 'Draftkings':
|
347 |
-
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var2)]
|
348 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
|
349 |
-
raw_baselines = raw_baselines.iloc[:,:-2]
|
350 |
-
elif site_var2 == 'Fanduel':
|
351 |
-
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var2)]
|
352 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
|
353 |
-
raw_baselines = raw_baselines.iloc[:,:-2]
|
354 |
-
split_var2 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var2')
|
355 |
-
if split_var2 == 'Specific Games':
|
356 |
-
team_var2 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var2')
|
357 |
-
elif split_var2 == 'Full Slate Run':
|
358 |
-
team_var2 = raw_baselines.Team.values.tolist()
|
359 |
-
pos_split2 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split2')
|
360 |
-
if pos_split2 == 'Specific Positions':
|
361 |
-
pos_var2 = st.multiselect('What Positions would you like to view?', options = ['QB', 'RB', 'WR', 'TE'])
|
362 |
-
elif pos_split2 == 'All Positions':
|
363 |
-
pos_var2 = 'All'
|
364 |
-
sal_var2 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var2')
|
365 |
-
if custom_var2 == 'Yes':
|
366 |
-
contest_var2 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var2')
|
367 |
-
if site_var2 == 'Draftkings':
|
368 |
-
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var2)]
|
369 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
|
370 |
-
elif site_var2 == 'Fanduel':
|
371 |
-
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var2)]
|
372 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
|
373 |
-
split_var2 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var2')
|
374 |
-
if split_var2 == 'Specific Games':
|
375 |
-
team_var2 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var2')
|
376 |
-
elif split_var2 == 'Full Slate Run':
|
377 |
-
team_var2 = raw_baselines.Team.values.tolist()
|
378 |
-
pos_split2 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split2')
|
379 |
-
if pos_split2 == 'Specific Positions':
|
380 |
-
pos_var2 = st.multiselect('What Positions would you like to view?', options = ['QB', 'RB', 'WR', 'TE'])
|
381 |
-
elif pos_split2 == 'All Positions':
|
382 |
-
pos_var2 = 'All'
|
383 |
-
sal_var2 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var2')
|
384 |
-
|
385 |
|
386 |
with col2:
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
396 |
-
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
397 |
-
st.download_button(
|
398 |
-
label="Export Tables",
|
399 |
-
data=convert_df_to_csv(final_Proj),
|
400 |
-
file_name='NFL_overall_export.csv',
|
401 |
-
mime='text/csv',
|
402 |
-
)
|
403 |
-
elif custom_var2 == 'Yes':
|
404 |
-
hold_container = st.empty()
|
405 |
-
if st.button('Create Range of Outcomes for Slate'):
|
406 |
-
with hold_container:
|
407 |
-
if site_var2 == 'Draftkings':
|
408 |
-
working_roo = player_stats
|
409 |
-
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "PPR": "Fantasy"}, inplace = True)
|
410 |
-
working_roo.replace('', 0, inplace=True)
|
411 |
-
if site_var2 == 'Fanduel':
|
412 |
-
working_roo = player_stats
|
413 |
-
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True)
|
414 |
-
working_roo.replace('', 0, inplace=True)
|
415 |
-
working_roo = working_roo[working_roo['Team'].isin(team_var2)]
|
416 |
-
working_roo = working_roo[working_roo['Salary'] >= sal_var2[0]]
|
417 |
-
working_roo = working_roo[working_roo['Salary'] <= sal_var2[1]]
|
418 |
-
own_dict = dict(zip(working_roo.Player, working_roo.Own))
|
419 |
-
team_dict = dict(zip(working_roo.Player, working_roo.Team))
|
420 |
-
opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
|
421 |
-
total_sims = 1000
|
422 |
-
|
423 |
-
flex_file = working_roo[['Player', 'Position', 'Salary', 'Fantasy', 'Rush Yards', 'Receptions']]
|
424 |
-
flex_file.rename(columns={"Fantasy": "Median", "Pos": "Position"}, inplace = True)
|
425 |
-
flex_file['Floor'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median']*.25) + (flex_file['Rush Yards']*.01),flex_file['Median']*.25)
|
426 |
-
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median'] + flex_file['Floor']) + (flex_file['Rush Yards']*.01), flex_file['Median'] + flex_file['Floor'] + flex_file['Receptions'])
|
427 |
-
flex_file['STD'] = (flex_file['Median']/4) + flex_file['Receptions']
|
428 |
-
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
429 |
-
hold_file = flex_file
|
430 |
-
overall_file = flex_file
|
431 |
-
salary_file = flex_file
|
432 |
-
|
433 |
-
overall_players = overall_file[['Player']]
|
434 |
-
|
435 |
-
for x in range(0,total_sims):
|
436 |
-
salary_file[x] = salary_file['Salary']
|
437 |
-
|
438 |
-
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
439 |
-
salary_file.astype('int').dtypes
|
440 |
-
|
441 |
-
salary_file = salary_file.div(1000)
|
442 |
-
|
443 |
-
for x in range(0,total_sims):
|
444 |
-
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
445 |
-
|
446 |
-
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
447 |
-
overall_file.astype('int').dtypes
|
448 |
-
|
449 |
-
players_only = hold_file[['Player']]
|
450 |
-
raw_lineups_file = players_only
|
451 |
-
|
452 |
-
for x in range(0,total_sims):
|
453 |
-
maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
|
454 |
-
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
455 |
-
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
456 |
-
|
457 |
-
players_only=players_only.drop(['Player'], axis=1)
|
458 |
-
players_only.astype('int').dtypes
|
459 |
-
|
460 |
-
salary_2x_check = (overall_file - (salary_file*2))
|
461 |
-
salary_3x_check = (overall_file - (salary_file*3))
|
462 |
-
salary_4x_check = (overall_file - (salary_file*4))
|
463 |
-
|
464 |
-
players_only['Average_Rank'] = players_only.mean(axis=1)
|
465 |
-
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
|
466 |
-
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
467 |
-
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
468 |
-
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
|
469 |
-
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
|
470 |
-
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
|
471 |
-
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
|
472 |
-
|
473 |
-
players_only['Player'] = hold_file[['Player']]
|
474 |
-
|
475 |
-
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
476 |
-
|
477 |
-
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
|
478 |
-
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
479 |
-
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
|
480 |
-
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
|
481 |
-
final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
|
482 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
|
483 |
-
final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
|
484 |
-
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
|
485 |
-
final_Proj['LevX'] = 0
|
486 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
487 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
488 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
489 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
490 |
-
final_Proj['CPT_Own'] = final_Proj['Own'] / 4
|
491 |
-
|
492 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
|
493 |
-
final_Proj = final_Proj.set_index('Player')
|
494 |
-
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
495 |
-
|
496 |
-
with hold_container:
|
497 |
-
hold_container = st.empty()
|
498 |
-
final_Proj = final_Proj
|
499 |
-
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
500 |
-
|
501 |
-
st.download_button(
|
502 |
-
label="Export Tables",
|
503 |
-
data=convert_df_to_csv(final_Proj),
|
504 |
-
file_name='Custom_NFL_overall_export.csv',
|
505 |
-
mime='text/csv',
|
506 |
-
)
|
507 |
|
508 |
with tab3:
|
509 |
-
col1, col2 = st.columns([1,
|
510 |
with col1:
|
511 |
st.info(t_stamp)
|
512 |
if st.button("Load/Reset Data", key='reset3'):
|
513 |
st.cache_data.clear()
|
514 |
-
|
515 |
-
|
516 |
-
fd_stacks_raw = load_fd_stacks()
|
517 |
-
dk_roo_raw = load_dk_player_projections()
|
518 |
-
fd_roo_raw = load_fd_player_projections()
|
519 |
-
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
520 |
-
site_slates = set_slate_teams()
|
521 |
-
slate_var3 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate'), key='slate_var3')
|
522 |
site_var3 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var3')
|
523 |
-
custom_var3 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var3')
|
524 |
-
if custom_var3 == 'No':
|
525 |
-
if site_var3 == 'Draftkings':
|
526 |
-
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var3)]
|
527 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_qbs']
|
528 |
-
raw_baselines = raw_baselines.iloc[:,:-3]
|
529 |
-
elif site_var3 == 'Fanduel':
|
530 |
-
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var3)]
|
531 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_qbs']
|
532 |
-
raw_baselines = raw_baselines.iloc[:,:-3]
|
533 |
-
split_var3 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var3')
|
534 |
-
if split_var3 == 'Specific Games':
|
535 |
-
team_var3 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var3')
|
536 |
-
elif split_var3 == 'Full Slate Run':
|
537 |
-
team_var3 = raw_baselines.Team.values.tolist()
|
538 |
-
pos_split3 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split3')
|
539 |
-
if pos_split3 == 'Specific Positions':
|
540 |
-
pos_var3 = st.multiselect('What Positions would you like to view?', options = ['QB'], key='pos_var3')
|
541 |
-
elif pos_split3 == 'All Positions':
|
542 |
-
pos_var3 = 'All'
|
543 |
-
sal_var3 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var3')
|
544 |
-
if custom_var3 == 'Yes':
|
545 |
-
contest_var3 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var3')
|
546 |
-
if site_var3 == 'Draftkings':
|
547 |
-
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var3)]
|
548 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_qbs']
|
549 |
-
raw_baselines = raw_baselines.iloc[:,:-3]
|
550 |
-
elif site_var3 == 'Fanduel':
|
551 |
-
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var3)]
|
552 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_qbs']
|
553 |
-
raw_baselines = raw_baselines.iloc[:,:-3]
|
554 |
-
split_var3 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var3')
|
555 |
-
if split_var3 == 'Specific Games':
|
556 |
-
team_var3 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var3')
|
557 |
-
elif split_var3 == 'Full Slate Run':
|
558 |
-
team_var3 = raw_baselines.Team.values.tolist()
|
559 |
-
pos_split3 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split3')
|
560 |
-
if pos_split3 == 'Specific Positions':
|
561 |
-
pos_var3 = st.multiselect('What Positions would you like to view?', options = ['QB'])
|
562 |
-
elif pos_split3 == 'All Positions':
|
563 |
-
pos_var3 = 'All'
|
564 |
-
sal_var3 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var3')
|
565 |
-
|
566 |
|
567 |
with col2:
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
577 |
-
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
578 |
-
st.download_button(
|
579 |
-
label="Export Tables",
|
580 |
-
data=convert_df_to_csv(final_Proj),
|
581 |
-
file_name='NFL_qb_export.csv',
|
582 |
-
mime='text/csv',
|
583 |
-
)
|
584 |
-
elif custom_var3 == 'Yes':
|
585 |
-
hold_container = st.empty()
|
586 |
-
if st.button('Create Range of Outcomes for Slate'):
|
587 |
-
with hold_container:
|
588 |
-
if site_var3 == 'Draftkings':
|
589 |
-
working_roo = player_stats
|
590 |
-
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "PPR": "Fantasy"}, inplace = True)
|
591 |
-
working_roo.replace('', 0, inplace=True)
|
592 |
-
working_roo = working_roo[working_roo['Position'] == 'QB']
|
593 |
-
if site_var3 == 'Fanduel':
|
594 |
-
working_roo = player_stats
|
595 |
-
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True)
|
596 |
-
working_roo.replace('', 0, inplace=True)
|
597 |
-
working_roo = working_roo[working_roo['Position'] == 'QB']
|
598 |
-
working_roo = working_roo[working_roo['Team'].isin(team_var3)]
|
599 |
-
working_roo = working_roo[working_roo['Salary'] >= sal_var2[0]]
|
600 |
-
working_roo = working_roo[working_roo['Salary'] <= sal_var2[1]]
|
601 |
-
own_dict = dict(zip(working_roo.Player, working_roo.Own))
|
602 |
-
team_dict = dict(zip(working_roo.Player, working_roo.Team))
|
603 |
-
opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
|
604 |
-
total_sims = 1000
|
605 |
-
|
606 |
-
flex_file = working_roo[['Player', 'Position', 'Salary', 'Fantasy', 'Rush Yards', 'Receptions']]
|
607 |
-
flex_file.rename(columns={"Fantasy": "Median", "Pos": "Position"}, inplace = True)
|
608 |
-
flex_file['Floor'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median']*.25) + (flex_file['Rush Yards']*.01),flex_file['Median']*.25)
|
609 |
-
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median'] + flex_file['Floor']) + (flex_file['Rush Yards']*.01), flex_file['Median'] + flex_file['Floor'] + flex_file['Receptions'])
|
610 |
-
flex_file['STD'] = (flex_file['Median']/4) + flex_file['Receptions']
|
611 |
-
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
612 |
-
hold_file = flex_file
|
613 |
-
overall_file = flex_file
|
614 |
-
salary_file = flex_file
|
615 |
-
|
616 |
-
overall_players = overall_file[['Player']]
|
617 |
-
|
618 |
-
for x in range(0,total_sims):
|
619 |
-
salary_file[x] = salary_file['Salary']
|
620 |
-
|
621 |
-
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
622 |
-
salary_file.astype('int').dtypes
|
623 |
-
|
624 |
-
salary_file = salary_file.div(1000)
|
625 |
-
|
626 |
-
for x in range(0,total_sims):
|
627 |
-
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
628 |
-
|
629 |
-
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
630 |
-
overall_file.astype('int').dtypes
|
631 |
-
|
632 |
-
players_only = hold_file[['Player']]
|
633 |
-
raw_lineups_file = players_only
|
634 |
-
|
635 |
-
for x in range(0,total_sims):
|
636 |
-
maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
|
637 |
-
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
638 |
-
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
639 |
-
|
640 |
-
players_only=players_only.drop(['Player'], axis=1)
|
641 |
-
players_only.astype('int').dtypes
|
642 |
-
|
643 |
-
salary_2x_check = (overall_file - (salary_file*2))
|
644 |
-
salary_3x_check = (overall_file - (salary_file*3))
|
645 |
-
salary_4x_check = (overall_file - (salary_file*4))
|
646 |
-
|
647 |
-
players_only['Average_Rank'] = players_only.mean(axis=1)
|
648 |
-
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
|
649 |
-
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
650 |
-
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
651 |
-
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
|
652 |
-
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
|
653 |
-
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
|
654 |
-
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
|
655 |
-
|
656 |
-
players_only['Player'] = hold_file[['Player']]
|
657 |
-
|
658 |
-
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
659 |
-
|
660 |
-
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
|
661 |
-
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
662 |
-
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
|
663 |
-
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
|
664 |
-
final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
|
665 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
|
666 |
-
final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
|
667 |
-
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
|
668 |
-
final_Proj['LevX'] = 0
|
669 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
670 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
671 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
672 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
673 |
-
final_Proj['CPT_Own'] = final_Proj['Own'] / 4
|
674 |
-
|
675 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
|
676 |
-
final_Proj = final_Proj.set_index('Player')
|
677 |
-
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
678 |
-
|
679 |
-
with hold_container:
|
680 |
-
hold_container = st.empty()
|
681 |
-
final_Proj = final_Proj
|
682 |
-
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
683 |
-
|
684 |
-
st.download_button(
|
685 |
-
label="Export Tables",
|
686 |
-
data=convert_df_to_csv(final_Proj),
|
687 |
-
file_name='Custom_NFL_qb_export.csv',
|
688 |
-
mime='text/csv',
|
689 |
-
)
|
690 |
-
|
691 |
-
with tab4:
|
692 |
-
col1, col2 = st.columns([1, 5])
|
693 |
-
with col1:
|
694 |
-
st.info(t_stamp)
|
695 |
-
if st.button("Load/Reset Data", key='reset4'):
|
696 |
-
st.cache_data.clear()
|
697 |
-
player_stats = player_stat_table()
|
698 |
-
dk_stacks_raw = load_dk_stacks()
|
699 |
-
fd_stacks_raw = load_fd_stacks()
|
700 |
-
dk_roo_raw = load_dk_player_projections()
|
701 |
-
fd_roo_raw = load_fd_player_projections()
|
702 |
-
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
703 |
-
site_slates = set_slate_teams()
|
704 |
-
slate_var4 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate'), key='slate_var4')
|
705 |
-
site_var4 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var4')
|
706 |
-
custom_var4 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var4')
|
707 |
-
if custom_var4 == 'No':
|
708 |
-
if site_var4 == 'Draftkings':
|
709 |
-
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var4)]
|
710 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_rbs']
|
711 |
-
raw_baselines = raw_baselines.iloc[:,:-3]
|
712 |
-
elif site_var4 == 'Fanduel':
|
713 |
-
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var4)]
|
714 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_rbs']
|
715 |
-
raw_baselines = raw_baselines.iloc[:,:-3]
|
716 |
-
split_var4 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var4')
|
717 |
-
if split_var4 == 'Specific Games':
|
718 |
-
team_var4 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var4')
|
719 |
-
elif split_var4 == 'Full Slate Run':
|
720 |
-
team_var4 = raw_baselines.Team.values.tolist()
|
721 |
-
pos_split4 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split4')
|
722 |
-
if pos_split4 == 'Specific Positions':
|
723 |
-
pos_var4 = st.multiselect('What Positions would you like to view?', options = ['RB'], key='pos_var4')
|
724 |
-
elif pos_split4 == 'All Positions':
|
725 |
-
pos_var4 = 'All'
|
726 |
-
sal_var4 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var4')
|
727 |
-
if custom_var4 == 'Yes':
|
728 |
-
contest_var4 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var4')
|
729 |
-
if site_var4 == 'Draftkings':
|
730 |
-
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var4)]
|
731 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_rbs']
|
732 |
-
elif site_var4 == 'Fanduel':
|
733 |
-
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var4)]
|
734 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_rbs']
|
735 |
-
split_var4 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var4')
|
736 |
-
if split_var4 == 'Specific Games':
|
737 |
-
team_var4 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var4')
|
738 |
-
elif split_var4 == 'Full Slate Run':
|
739 |
-
team_var4 = raw_baselines.Team.values.tolist()
|
740 |
-
pos_split4 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split4')
|
741 |
-
if pos_split4 == 'Specific Positions':
|
742 |
-
pos_var4 = st.multiselect('What Positions would you like to view?', options = ['RB'])
|
743 |
-
elif pos_split4 == 'All Positions':
|
744 |
-
pos_var4 = 'All'
|
745 |
-
sal_var4 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var4')
|
746 |
-
|
747 |
-
|
748 |
-
with col2:
|
749 |
-
if custom_var4 == 'No':
|
750 |
-
final_Proj = raw_baselines[raw_baselines['Team'].isin(team_var4)]
|
751 |
-
final_Proj = final_Proj[final_Proj['Salary'] >= sal_var4[0]]
|
752 |
-
final_Proj = final_Proj[final_Proj['Salary'] <= sal_var4[1]]
|
753 |
-
if pos_var4 != 'All':
|
754 |
-
final_Proj = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_var4))]
|
755 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
|
756 |
-
final_Proj = final_Proj.set_index('Player')
|
757 |
-
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
758 |
-
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
759 |
-
st.download_button(
|
760 |
-
label="Export Tables",
|
761 |
-
data=convert_df_to_csv(final_Proj),
|
762 |
-
file_name='NFL_rb_export.csv',
|
763 |
-
mime='text/csv',
|
764 |
-
)
|
765 |
-
elif custom_var4 == 'Yes':
|
766 |
-
hold_container = st.empty()
|
767 |
-
if st.button('Create Range of Outcomes for Slate'):
|
768 |
-
with hold_container:
|
769 |
-
if site_var4 == 'Draftkings':
|
770 |
-
working_roo = player_stats
|
771 |
-
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "PPR": "Fantasy"}, inplace = True)
|
772 |
-
working_roo.replace('', 0, inplace=True)
|
773 |
-
working_roo = working_roo[working_roo['Position'] == 'RB']
|
774 |
-
if site_var4 == 'Fanduel':
|
775 |
-
working_roo = player_stats
|
776 |
-
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True)
|
777 |
-
working_roo.replace('', 0, inplace=True)
|
778 |
-
working_roo = working_roo[working_roo['Position'] == 'RB']
|
779 |
-
working_roo = working_roo[working_roo['Team'].isin(team_var4)]
|
780 |
-
working_roo = working_roo[working_roo['Salary'] >= sal_var4[0]]
|
781 |
-
working_roo = working_roo[working_roo['Salary'] <= sal_var4[1]]
|
782 |
-
own_dict = dict(zip(working_roo.Player, working_roo.Own))
|
783 |
-
team_dict = dict(zip(working_roo.Player, working_roo.Team))
|
784 |
-
opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
|
785 |
-
total_sims = 1000
|
786 |
-
|
787 |
-
flex_file = working_roo[['Player', 'Position', 'Salary', 'Fantasy', 'Rush Yards', 'Receptions']]
|
788 |
-
flex_file.rename(columns={"Fantasy": "Median", "Pos": "Position"}, inplace = True)
|
789 |
-
flex_file['Floor'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median']*.25) + (flex_file['Rush Yards']*.01),flex_file['Median']*.25)
|
790 |
-
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median'] + flex_file['Floor']) + (flex_file['Rush Yards']*.01), flex_file['Median'] + flex_file['Floor'] + flex_file['Receptions'])
|
791 |
-
flex_file['STD'] = (flex_file['Median']/4) + flex_file['Receptions']
|
792 |
-
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
793 |
-
hold_file = flex_file
|
794 |
-
overall_file = flex_file
|
795 |
-
salary_file = flex_file
|
796 |
-
|
797 |
-
overall_players = overall_file[['Player']]
|
798 |
-
|
799 |
-
for x in range(0,total_sims):
|
800 |
-
salary_file[x] = salary_file['Salary']
|
801 |
-
|
802 |
-
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
803 |
-
salary_file.astype('int').dtypes
|
804 |
-
|
805 |
-
salary_file = salary_file.div(1000)
|
806 |
-
|
807 |
-
for x in range(0,total_sims):
|
808 |
-
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
809 |
-
|
810 |
-
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
811 |
-
overall_file.astype('int').dtypes
|
812 |
-
|
813 |
-
players_only = hold_file[['Player']]
|
814 |
-
raw_lineups_file = players_only
|
815 |
-
|
816 |
-
for x in range(0,total_sims):
|
817 |
-
maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
|
818 |
-
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
819 |
-
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
820 |
-
|
821 |
-
players_only=players_only.drop(['Player'], axis=1)
|
822 |
-
players_only.astype('int').dtypes
|
823 |
-
|
824 |
-
salary_2x_check = (overall_file - (salary_file*2))
|
825 |
-
salary_3x_check = (overall_file - (salary_file*3))
|
826 |
-
salary_4x_check = (overall_file - (salary_file*4))
|
827 |
-
|
828 |
-
players_only['Average_Rank'] = players_only.mean(axis=1)
|
829 |
-
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
|
830 |
-
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
831 |
-
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
832 |
-
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
|
833 |
-
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
|
834 |
-
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
|
835 |
-
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
|
836 |
-
|
837 |
-
players_only['Player'] = hold_file[['Player']]
|
838 |
-
|
839 |
-
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
840 |
-
|
841 |
-
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
|
842 |
-
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
843 |
-
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
|
844 |
-
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
|
845 |
-
final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
|
846 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
|
847 |
-
final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
|
848 |
-
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
|
849 |
-
final_Proj['LevX'] = 0
|
850 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
851 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
852 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
853 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
854 |
-
final_Proj['CPT_Own'] = final_Proj['Own'] / 4
|
855 |
-
|
856 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
|
857 |
-
final_Proj = final_Proj.set_index('Player')
|
858 |
-
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
859 |
-
|
860 |
-
with hold_container:
|
861 |
-
hold_container = st.empty()
|
862 |
-
final_Proj = final_Proj
|
863 |
-
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
864 |
-
|
865 |
-
st.download_button(
|
866 |
-
label="Export Tables",
|
867 |
-
data=convert_df_to_csv(final_Proj),
|
868 |
-
file_name='Custom_NFL_rb_export.csv',
|
869 |
-
mime='text/csv',
|
870 |
-
)
|
871 |
-
|
872 |
-
with tab5:
|
873 |
-
col1, col2 = st.columns([1, 5])
|
874 |
-
with col1:
|
875 |
-
st.info(t_stamp)
|
876 |
-
if st.button("Load/Reset Data", key='reset5'):
|
877 |
-
st.cache_data.clear()
|
878 |
-
player_stats = player_stat_table()
|
879 |
-
dk_stacks_raw = load_dk_stacks()
|
880 |
-
fd_stacks_raw = load_fd_stacks()
|
881 |
-
dk_roo_raw = load_dk_player_projections()
|
882 |
-
fd_roo_raw = load_fd_player_projections()
|
883 |
-
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
884 |
-
site_slates = set_slate_teams()
|
885 |
-
slate_var5 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate'), key='slate_var5')
|
886 |
-
site_var5 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var5')
|
887 |
-
custom_var5 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var5')
|
888 |
-
if custom_var5 == 'No':
|
889 |
-
if site_var5 == 'Draftkings':
|
890 |
-
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var5)]
|
891 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_wrs']
|
892 |
-
raw_baselines = raw_baselines.iloc[:,:-3]
|
893 |
-
elif site_var5 == 'Fanduel':
|
894 |
-
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var5)]
|
895 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_wrs']
|
896 |
-
raw_baselines = raw_baselines.iloc[:,:-3]
|
897 |
-
split_var5 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var5')
|
898 |
-
if split_var5 == 'Specific Games':
|
899 |
-
team_var5 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var5')
|
900 |
-
elif split_var5 == 'Full Slate Run':
|
901 |
-
team_var5 = raw_baselines.Team.values.tolist()
|
902 |
-
pos_split5 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split5')
|
903 |
-
if pos_split5 == 'Specific Positions':
|
904 |
-
pos_var5 = st.multiselect('What Positions would you like to view?', options = ['WR'], key='pos_var5')
|
905 |
-
elif pos_split5 == 'All Positions':
|
906 |
-
pos_var5 = 'All'
|
907 |
-
sal_var5 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var5')
|
908 |
-
if custom_var5 == 'Yes':
|
909 |
-
contest_var5 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var5')
|
910 |
-
if site_var5 == 'Draftkings':
|
911 |
-
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var5)]
|
912 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_wrs']
|
913 |
-
elif site_var5 == 'Fanduel':
|
914 |
-
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var5)]
|
915 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_wrs']
|
916 |
-
split_var5 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var5')
|
917 |
-
if split_var5 == 'Specific Games':
|
918 |
-
team_var5 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var5')
|
919 |
-
elif split_var5 == 'Full Slate Run':
|
920 |
-
team_var5 = raw_baselines.Team.values.tolist()
|
921 |
-
pos_split5 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split5')
|
922 |
-
if pos_split5 == 'Specific Positions':
|
923 |
-
pos_var5 = st.multiselect('What Positions would you like to view?', options = ['WR'])
|
924 |
-
elif pos_split5 == 'All Positions':
|
925 |
-
pos_var5 = 'All'
|
926 |
-
sal_var5 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var5')
|
927 |
-
|
928 |
-
|
929 |
-
with col2:
|
930 |
-
if custom_var5 == 'No':
|
931 |
-
final_Proj = raw_baselines[raw_baselines['Team'].isin(team_var5)]
|
932 |
-
final_Proj = final_Proj[final_Proj['Salary'] >= sal_var5[0]]
|
933 |
-
final_Proj = final_Proj[final_Proj['Salary'] <= sal_var5[1]]
|
934 |
-
if pos_var5 != 'All':
|
935 |
-
final_Proj = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_var5))]
|
936 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
|
937 |
-
final_Proj = final_Proj.set_index('Player')
|
938 |
-
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
939 |
-
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
940 |
-
st.download_button(
|
941 |
-
label="Export Tables",
|
942 |
-
data=convert_df_to_csv(final_Proj),
|
943 |
-
file_name='NFL_wr_export.csv',
|
944 |
-
mime='text/csv',
|
945 |
-
)
|
946 |
-
elif custom_var5 == 'Yes':
|
947 |
-
hold_container = st.empty()
|
948 |
-
if st.button('Create Range of Outcomes for Slate'):
|
949 |
-
with hold_container:
|
950 |
-
if site_var5 == 'Draftkings':
|
951 |
-
working_roo = player_stats
|
952 |
-
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "PPR": "Fantasy"}, inplace = True)
|
953 |
-
working_roo.replace('', 0, inplace=True)
|
954 |
-
working_roo = working_roo[working_roo['Position'] == 'WR']
|
955 |
-
if site_var5 == 'Fanduel':
|
956 |
-
working_roo = player_stats
|
957 |
-
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True)
|
958 |
-
working_roo.replace('', 0, inplace=True)
|
959 |
-
working_roo = working_roo[working_roo['Position'] == 'WR']
|
960 |
-
working_roo = working_roo[working_roo['Team'].isin(team_var5)]
|
961 |
-
working_roo = working_roo[working_roo['Salary'] >= sal_var5[0]]
|
962 |
-
working_roo = working_roo[working_roo['Salary'] <= sal_var5[1]]
|
963 |
-
own_dict = dict(zip(working_roo.Player, working_roo.Own))
|
964 |
-
team_dict = dict(zip(working_roo.Player, working_roo.Team))
|
965 |
-
opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
|
966 |
-
total_sims = 1000
|
967 |
-
|
968 |
-
flex_file = working_roo[['Player', 'Position', 'Salary', 'Fantasy', 'Rush Yards', 'Receptions']]
|
969 |
-
flex_file.rename(columns={"Fantasy": "Median", "Pos": "Position"}, inplace = True)
|
970 |
-
flex_file['Floor'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median']*.25) + (flex_file['Rush Yards']*.01),flex_file['Median']*.25)
|
971 |
-
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median'] + flex_file['Floor']) + (flex_file['Rush Yards']*.01), flex_file['Median'] + flex_file['Floor'] + flex_file['Receptions'])
|
972 |
-
flex_file['STD'] = (flex_file['Median']/4) + flex_file['Receptions']
|
973 |
-
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
974 |
-
hold_file = flex_file
|
975 |
-
overall_file = flex_file
|
976 |
-
salary_file = flex_file
|
977 |
-
|
978 |
-
overall_players = overall_file[['Player']]
|
979 |
-
|
980 |
-
for x in range(0,total_sims):
|
981 |
-
salary_file[x] = salary_file['Salary']
|
982 |
-
|
983 |
-
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
984 |
-
salary_file.astype('int').dtypes
|
985 |
-
|
986 |
-
salary_file = salary_file.div(1000)
|
987 |
-
|
988 |
-
for x in range(0,total_sims):
|
989 |
-
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
990 |
-
|
991 |
-
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
992 |
-
overall_file.astype('int').dtypes
|
993 |
-
|
994 |
-
players_only = hold_file[['Player']]
|
995 |
-
raw_lineups_file = players_only
|
996 |
-
|
997 |
-
for x in range(0,total_sims):
|
998 |
-
maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
|
999 |
-
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
1000 |
-
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
1001 |
-
|
1002 |
-
players_only=players_only.drop(['Player'], axis=1)
|
1003 |
-
players_only.astype('int').dtypes
|
1004 |
-
|
1005 |
-
salary_2x_check = (overall_file - (salary_file*2))
|
1006 |
-
salary_3x_check = (overall_file - (salary_file*3))
|
1007 |
-
salary_4x_check = (overall_file - (salary_file*4))
|
1008 |
-
|
1009 |
-
players_only['Average_Rank'] = players_only.mean(axis=1)
|
1010 |
-
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
|
1011 |
-
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
1012 |
-
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
1013 |
-
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
|
1014 |
-
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
|
1015 |
-
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
|
1016 |
-
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
|
1017 |
-
|
1018 |
-
players_only['Player'] = hold_file[['Player']]
|
1019 |
-
|
1020 |
-
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
1021 |
-
|
1022 |
-
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
|
1023 |
-
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
1024 |
-
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
|
1025 |
-
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
|
1026 |
-
final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
|
1027 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
|
1028 |
-
final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
|
1029 |
-
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
|
1030 |
-
final_Proj['LevX'] = 0
|
1031 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
1032 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
1033 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
1034 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
1035 |
-
final_Proj['CPT_Own'] = final_Proj['Own'] / 4
|
1036 |
-
|
1037 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
|
1038 |
-
final_Proj = final_Proj.set_index('Player')
|
1039 |
-
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
1040 |
-
|
1041 |
-
with hold_container:
|
1042 |
-
hold_container = st.empty()
|
1043 |
-
final_Proj = final_Proj
|
1044 |
-
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
1045 |
-
|
1046 |
-
st.download_button(
|
1047 |
-
label="Export Tables",
|
1048 |
-
data=convert_df_to_csv(final_Proj),
|
1049 |
-
file_name='Custom_NFL_wr_export.csv',
|
1050 |
-
mime='text/csv',
|
1051 |
-
)
|
1052 |
-
|
1053 |
-
with tab6:
|
1054 |
-
col1, col2 = st.columns([1, 5])
|
1055 |
-
with col1:
|
1056 |
-
st.info(t_stamp)
|
1057 |
-
if st.button("Load/Reset Data", key='reset6'):
|
1058 |
-
st.cache_data.clear()
|
1059 |
-
player_stats = player_stat_table()
|
1060 |
-
dk_stacks_raw = load_dk_stacks()
|
1061 |
-
fd_stacks_raw = load_fd_stacks()
|
1062 |
-
dk_roo_raw = load_dk_player_projections()
|
1063 |
-
fd_roo_raw = load_fd_player_projections()
|
1064 |
-
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
1065 |
-
site_slates = set_slate_teams()
|
1066 |
-
slate_var6 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate'), key='slate_var6')
|
1067 |
-
site_var6 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var6')
|
1068 |
-
custom_var6 = st.radio("Are you creating a custom table?", ('No', 'Yes'), key='custom_var6')
|
1069 |
-
if custom_var6 == 'No':
|
1070 |
-
if site_var6 == 'Draftkings':
|
1071 |
-
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var6)]
|
1072 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_tes']
|
1073 |
-
raw_baselines = raw_baselines.iloc[:,:-3]
|
1074 |
-
elif site_var6 == 'Fanduel':
|
1075 |
-
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var6)]
|
1076 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_tes']
|
1077 |
-
raw_baselines = raw_baselines.iloc[:,:-3]
|
1078 |
-
split_var6 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var6')
|
1079 |
-
if split_var6 == 'Specific Games':
|
1080 |
-
team_var6 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var6')
|
1081 |
-
elif split_var6 == 'Full Slate Run':
|
1082 |
-
team_var6 = raw_baselines.Team.values.tolist()
|
1083 |
-
pos_split6 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split6')
|
1084 |
-
if pos_split6 == 'Specific Positions':
|
1085 |
-
pos_var6 = st.multiselect('What Positions would you like to view?', options = ['TE'], key='pos_var6')
|
1086 |
-
elif pos_split5 == 'All Positions':
|
1087 |
-
pos_var6 = 'All'
|
1088 |
-
sal_var6 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var6')
|
1089 |
-
if custom_var6 == 'Yes':
|
1090 |
-
contest_var6 = st.selectbox("What contest type are you running for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var6')
|
1091 |
-
if site_var6 == 'Draftkings':
|
1092 |
-
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var6)]
|
1093 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'dk_tes']
|
1094 |
-
elif site_var6 == 'Fanduel':
|
1095 |
-
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var6)]
|
1096 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'fd_tes']
|
1097 |
-
split_var6 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var6')
|
1098 |
-
if split_var6 == 'Specific Games':
|
1099 |
-
team_var6 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var6')
|
1100 |
-
elif split_var6 == 'Full Slate Run':
|
1101 |
-
team_var6 = raw_baselines.Team.values.tolist()
|
1102 |
-
pos_split6 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split6')
|
1103 |
-
if pos_split6 == 'Specific Positions':
|
1104 |
-
pos_var6 = st.multiselect('What Positions would you like to view?', options = ['TE'])
|
1105 |
-
elif pos_split6 == 'All Positions':
|
1106 |
-
pos_var6 = 'All'
|
1107 |
-
sal_var6 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var6')
|
1108 |
-
|
1109 |
-
|
1110 |
-
with col2:
|
1111 |
-
if custom_var6 == 'No':
|
1112 |
-
final_Proj = raw_baselines[raw_baselines['Team'].isin(team_var6)]
|
1113 |
-
final_Proj = final_Proj[final_Proj['Salary'] >= sal_var6[0]]
|
1114 |
-
final_Proj = final_Proj[final_Proj['Salary'] <= sal_var6[1]]
|
1115 |
-
if pos_var6 != 'All':
|
1116 |
-
final_Proj = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_var6))]
|
1117 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
|
1118 |
-
final_Proj = final_Proj.set_index('Player')
|
1119 |
-
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
1120 |
-
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
1121 |
-
st.download_button(
|
1122 |
-
label="Export Tables",
|
1123 |
-
data=convert_df_to_csv(final_Proj),
|
1124 |
-
file_name='NFL_te_export.csv',
|
1125 |
-
mime='text/csv',
|
1126 |
-
)
|
1127 |
-
elif custom_var6 == 'Yes':
|
1128 |
-
hold_container = st.empty()
|
1129 |
-
if st.button('Create Range of Outcomes for Slate'):
|
1130 |
-
with hold_container:
|
1131 |
-
if site_var6 == 'Draftkings':
|
1132 |
-
working_roo = player_stats
|
1133 |
-
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "PPR": "Fantasy"}, inplace = True)
|
1134 |
-
working_roo.replace('', 0, inplace=True)
|
1135 |
-
working_roo = working_roo[working_roo['Position'] == 'TE']
|
1136 |
-
if site_var6 == 'Fanduel':
|
1137 |
-
working_roo = player_stats
|
1138 |
-
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True)
|
1139 |
-
working_roo.replace('', 0, inplace=True)
|
1140 |
-
working_roo = working_roo[working_roo['Position'] == 'TE']
|
1141 |
-
working_roo = working_roo[working_roo['Team'].isin(team_var6)]
|
1142 |
-
working_roo = working_roo[working_roo['Salary'] >= sal_var6[0]]
|
1143 |
-
working_roo = working_roo[working_roo['Salary'] <= sal_var6[1]]
|
1144 |
-
own_dict = dict(zip(working_roo.Player, working_roo.Own))
|
1145 |
-
team_dict = dict(zip(working_roo.Player, working_roo.Team))
|
1146 |
-
opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
|
1147 |
-
total_sims = 1000
|
1148 |
-
|
1149 |
-
flex_file = working_roo[['Player', 'Position', 'Salary', 'Fantasy', 'Rush Yards', 'Receptions']]
|
1150 |
-
flex_file.rename(columns={"Fantasy": "Median", "Pos": "Position"}, inplace = True)
|
1151 |
-
flex_file['Floor'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median']*.25) + (flex_file['Rush Yards']*.01),flex_file['Median']*.25)
|
1152 |
-
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median'] + flex_file['Floor']) + (flex_file['Rush Yards']*.01), flex_file['Median'] + flex_file['Floor'] + flex_file['Receptions'])
|
1153 |
-
flex_file['STD'] = (flex_file['Median']/4) + flex_file['Receptions']
|
1154 |
-
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
1155 |
-
hold_file = flex_file
|
1156 |
-
overall_file = flex_file
|
1157 |
-
salary_file = flex_file
|
1158 |
-
|
1159 |
-
overall_players = overall_file[['Player']]
|
1160 |
-
|
1161 |
-
for x in range(0,total_sims):
|
1162 |
-
salary_file[x] = salary_file['Salary']
|
1163 |
-
|
1164 |
-
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
1165 |
-
salary_file.astype('int').dtypes
|
1166 |
-
|
1167 |
-
salary_file = salary_file.div(1000)
|
1168 |
-
|
1169 |
-
for x in range(0,total_sims):
|
1170 |
-
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
1171 |
-
|
1172 |
-
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
1173 |
-
overall_file.astype('int').dtypes
|
1174 |
-
|
1175 |
-
players_only = hold_file[['Player']]
|
1176 |
-
raw_lineups_file = players_only
|
1177 |
-
|
1178 |
-
for x in range(0,total_sims):
|
1179 |
-
maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
|
1180 |
-
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
1181 |
-
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
1182 |
-
|
1183 |
-
players_only=players_only.drop(['Player'], axis=1)
|
1184 |
-
players_only.astype('int').dtypes
|
1185 |
-
|
1186 |
-
salary_2x_check = (overall_file - (salary_file*2))
|
1187 |
-
salary_3x_check = (overall_file - (salary_file*3))
|
1188 |
-
salary_4x_check = (overall_file - (salary_file*4))
|
1189 |
-
|
1190 |
-
players_only['Average_Rank'] = players_only.mean(axis=1)
|
1191 |
-
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
|
1192 |
-
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
1193 |
-
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
1194 |
-
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
|
1195 |
-
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
|
1196 |
-
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
|
1197 |
-
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
|
1198 |
-
|
1199 |
-
players_only['Player'] = hold_file[['Player']]
|
1200 |
-
|
1201 |
-
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
1202 |
-
|
1203 |
-
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
|
1204 |
-
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
1205 |
-
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
|
1206 |
-
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
|
1207 |
-
final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
|
1208 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
|
1209 |
-
final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
|
1210 |
-
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
|
1211 |
-
final_Proj['LevX'] = 0
|
1212 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
1213 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
1214 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
1215 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
1216 |
-
final_Proj['CPT_Own'] = final_Proj['Own'] / 4
|
1217 |
-
|
1218 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
|
1219 |
-
final_Proj = final_Proj.set_index('Player')
|
1220 |
-
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
1221 |
-
|
1222 |
-
with hold_container:
|
1223 |
-
hold_container = st.empty()
|
1224 |
-
final_Proj = final_Proj
|
1225 |
-
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
1226 |
-
|
1227 |
-
st.download_button(
|
1228 |
-
label="Export Tables",
|
1229 |
-
data=convert_df_to_csv(final_Proj),
|
1230 |
-
file_name='Custom_NFL_te_export.csv',
|
1231 |
-
mime='text/csv',
|
1232 |
-
)
|
|
|
33 |
gc = gspread.service_account_from_dict(credentials)
|
34 |
return gc
|
35 |
|
36 |
+
gspreadcon = init_conn()
|
37 |
|
38 |
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
|
39 |
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
|
|
|
41 |
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
|
42 |
'4x%': '{:.2%}','GPP%': '{:.2%}'}
|
43 |
|
44 |
+
all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1NmKa-b-2D3w7rRxwMPSchh31GKfJ1XcDI2GU8rXWnHI/edit#gid=1401252991'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
@st.cache_resource(ttl=600)
|
47 |
def player_stat_table():
|
48 |
+
sh = gspreadcon.open_by_url(all_dk_player_projections)
|
49 |
+
worksheet = sh.worksheet('Player_Level_ROO')
|
50 |
+
player_frame = pd.DataFrame(worksheet.get_all_records())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
sh = gspreadcon.open_by_url(all_dk_player_projections)
|
53 |
+
worksheet = sh.worksheet('Player_Lines_ROO')
|
54 |
+
line_frame = pd.DataFrame(worksheet.get_all_records())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
sh = gspreadcon.open_by_url(all_dk_player_projections)
|
57 |
+
worksheet = sh.worksheet('Player_PowerPlay_ROO')
|
58 |
+
pp_frame = pd.DataFrame(worksheet.get_all_records())
|
59 |
+
|
60 |
+
sh = gspreadcon.open_by_url(all_dk_player_projections)
|
61 |
+
worksheet = sh.worksheet('Timestamp')
|
62 |
+
pp_frame = pd.DataFrame(worksheet.acell('A1').value)
|
|
|
63 |
|
64 |
+
return player_frame, line_frame, pp_frame, timestamp
|
65 |
|
66 |
@st.cache_data
|
67 |
def convert_df_to_csv(df):
|
68 |
return df.to_csv().encode('utf-8')
|
69 |
|
70 |
+
player_frame, line_frame, pp_frame, timestamp = player_stat_table()
|
71 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
tab1, tab2, tab3 = st.tabs(["Player Range of Outcomes", "Line Combo Range of Outcomes", "Power Play Range of Outcomes"])
|
74 |
|
75 |
with tab1:
|
76 |
+
col1, col2 = st.columns([1, 7])
|
77 |
with col1:
|
78 |
st.info(t_stamp)
|
79 |
if st.button("Load/Reset Data", key='reset1'):
|
80 |
st.cache_data.clear()
|
81 |
+
player_frame, line_frame, pp_frame, timestamp = player_stat_table()
|
82 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
site_var1 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var1')
|
84 |
+
split_var1 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
|
85 |
+
if split_var1 == 'Specific Games':
|
86 |
+
team_var1 = st.multiselect('Which teams would you like to include in the ROO?', options = player_frame['Team'].unique(), key='team_var1')
|
87 |
+
elif split_var1 == 'Full Slate Run':
|
88 |
+
team_var1 = player_frame.Team.values.tolist()
|
89 |
+
pos_split1 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1')
|
90 |
+
if pos_split1 == 'Specific Positions':
|
91 |
+
pos_var1 = st.multiselect('What Positions would you like to view?', options = ['QB', 'RB', 'WR', 'TE'])
|
92 |
+
elif pos_split1 == 'All Positions':
|
93 |
+
pos_var1 = 'All'
|
94 |
+
sal_var1 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 10000), key='sal_var1')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
with col2:
|
97 |
+
final_Proj = player_frame[player_frame['Site'] == str(site_var1)]
|
98 |
+
final_Proj = final_Proj[player_frame['Team'].isin(team_var1)]
|
99 |
+
final_Proj = final_Proj[final_Proj['Salary'] >= sal_var1[0]]
|
100 |
+
final_Proj = final_Proj[final_Proj['Salary'] <= sal_var1[1]]
|
101 |
+
if pos_var1 != 'All':
|
102 |
+
final_Proj = final_Proj[final_Proj['Position'].str.contains('|'.join(pos_var1))]
|
103 |
+
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
|
104 |
+
final_Proj = final_Proj.set_index('Player')
|
105 |
+
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
106 |
+
st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
107 |
+
st.download_button(
|
108 |
+
label="Export Tables",
|
109 |
+
data=convert_df_to_csv(final_Proj),
|
110 |
+
file_name='NHL_player_export.csv',
|
111 |
+
mime='text/csv',
|
112 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
with tab2:
|
115 |
+
col1, col2 = st.columns([1, 7])
|
116 |
with col1:
|
117 |
st.info(t_stamp)
|
118 |
if st.button("Load/Reset Data", key='reset2'):
|
119 |
st.cache_data.clear()
|
120 |
+
player_frame, line_frame, pp_frame, timestamp = player_stat_table()
|
121 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
site_var2 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var2')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
with col2:
|
125 |
+
final_line_combos = line_frame[line_frame['Site'] == str(site_var2)]
|
126 |
+
st.dataframe(final_line_combos.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
127 |
+
st.download_button(
|
128 |
+
label="Export Tables",
|
129 |
+
data=convert_df_to_csv(final_Proj),
|
130 |
+
file_name='NHL_linecombos_export.csv',
|
131 |
+
mime='text/csv',
|
132 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
with tab3:
|
135 |
+
col1, col2 = st.columns([1, 7])
|
136 |
with col1:
|
137 |
st.info(t_stamp)
|
138 |
if st.button("Load/Reset Data", key='reset3'):
|
139 |
st.cache_data.clear()
|
140 |
+
player_frame, line_frame, pp_frame, timestamp = player_stat_table()
|
141 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
site_var3 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var3')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
with col2:
|
145 |
+
final_pp_combos = pp_frame[pp_frame['Site'] == str(site_var3)]
|
146 |
+
st.dataframe(final_pp_combos.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
147 |
+
st.download_button(
|
148 |
+
label="Export Tables",
|
149 |
+
data=convert_df_to_csv(final_Proj),
|
150 |
+
file_name='NHL_powerplay_export.csv',
|
151 |
+
mime='text/csv',
|
152 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|