Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -246,35 +246,43 @@ with tab1:
|
|
246 |
min_var1 = st.slider("Is there a certain TOI range you want to view?", 0, 50, (0, 50), key='min_var1')
|
247 |
|
248 |
with col2:
|
|
|
249 |
if split_var1 == 'Season Logs':
|
250 |
choose_cols = st.container()
|
251 |
with choose_cols:
|
252 |
choose_disp = st.multiselect('Which stats would you like to view?', options = season_data_cols, default = season_data_cols, key='col_display')
|
253 |
disp_stats = basic_season_cols + choose_disp
|
254 |
display = st.container()
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
season_long_table = seasonlong_build(
|
262 |
season_long_table = season_long_table.set_index('Player')
|
263 |
season_long_table_disp = season_long_table.reindex(disp_stats,axis="columns")
|
264 |
display.dataframe(season_long_table_disp.style.format(precision=2), height=750, use_container_width = True)
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
266 |
elif split_var1 == 'Gamelogs':
|
267 |
choose_cols = st.container()
|
268 |
with choose_cols:
|
269 |
choose_disp = st.multiselect('Which stats would you like to view?', options = data_cols, default = data_cols, key='col_display')
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
|
|
278 |
display = st.container()
|
279 |
|
280 |
bottom_menu = st.columns((4, 1, 1))
|
@@ -282,7 +290,7 @@ with tab1:
|
|
282 |
batch_size = st.selectbox("Page Size", options=[25, 50, 100])
|
283 |
with bottom_menu[1]:
|
284 |
total_pages = (
|
285 |
-
int(len(
|
286 |
)
|
287 |
current_page = st.number_input(
|
288 |
"Page", min_value=1, max_value=total_pages, step=1
|
@@ -291,9 +299,15 @@ with tab1:
|
|
291 |
st.markdown(f"Page **{current_page}** of **{total_pages}** ")
|
292 |
|
293 |
|
294 |
-
pages = split_frame(
|
295 |
# pages = pages.set_index('Player')
|
296 |
display.dataframe(data=pages[current_page - 1].style.format(precision=2), height=500, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
|
298 |
with tab2:
|
299 |
col1, col2 = st.columns([1, 9])
|
|
|
246 |
min_var1 = st.slider("Is there a certain TOI range you want to view?", 0, 50, (0, 50), key='min_var1')
|
247 |
|
248 |
with col2:
|
249 |
+
working_data = gamelog_table
|
250 |
if split_var1 == 'Season Logs':
|
251 |
choose_cols = st.container()
|
252 |
with choose_cols:
|
253 |
choose_disp = st.multiselect('Which stats would you like to view?', options = season_data_cols, default = season_data_cols, key='col_display')
|
254 |
disp_stats = basic_season_cols + choose_disp
|
255 |
display = st.container()
|
256 |
+
working_data = working_data[working_data['Date'] >= low_date]
|
257 |
+
working_data = working_data[working_data['Date'] <= high_date]
|
258 |
+
working_data = working_data[working_data['TOI'] >= min_var1[0]]
|
259 |
+
working_data = working_data[working_data['TOI'] <= min_var1[1]]
|
260 |
+
working_data = working_data[working_data['Team'].isin(team_var1)]
|
261 |
+
working_data = working_data[working_data['Player'].isin(player_var1)]
|
262 |
+
season_long_table = seasonlong_build(working_data)
|
263 |
season_long_table = season_long_table.set_index('Player')
|
264 |
season_long_table_disp = season_long_table.reindex(disp_stats,axis="columns")
|
265 |
display.dataframe(season_long_table_disp.style.format(precision=2), height=750, use_container_width = True)
|
266 |
+
st.download_button(
|
267 |
+
label="Export seasonlogs Model",
|
268 |
+
data=convert_df_to_csv(season_long_table),
|
269 |
+
file_name='Seasonlogs_NHL_View.csv',
|
270 |
+
mime='text/csv',
|
271 |
+
)
|
272 |
|
273 |
elif split_var1 == 'Gamelogs':
|
274 |
choose_cols = st.container()
|
275 |
with choose_cols:
|
276 |
choose_disp = st.multiselect('Which stats would you like to view?', options = data_cols, default = data_cols, key='col_display')
|
277 |
+
gamelog_disp_stats = basic_cols + choose_disp
|
278 |
+
working_data = working_data[working_data['Date'] >= low_date]
|
279 |
+
working_data = working_data[working_data['Date'] <= high_date]
|
280 |
+
working_data = working_data[working_data['TOI'] >= min_var1[0]]
|
281 |
+
working_data = working_data[working_data['TOI'] <= min_var1[1]]
|
282 |
+
working_data = working_data[working_data['Team'].isin(team_var1)]
|
283 |
+
working_data = working_data[working_data['Player'].isin(player_var1)]
|
284 |
+
working_data = working_data.reset_index(drop=True)
|
285 |
+
gamelog_data = working_data.reindex(gamelog_disp_stats,axis="columns")
|
286 |
display = st.container()
|
287 |
|
288 |
bottom_menu = st.columns((4, 1, 1))
|
|
|
290 |
batch_size = st.selectbox("Page Size", options=[25, 50, 100])
|
291 |
with bottom_menu[1]:
|
292 |
total_pages = (
|
293 |
+
int(len(gamelog_data) / batch_size) if int(len(gamelog_data) / batch_size) > 0 else 1
|
294 |
)
|
295 |
current_page = st.number_input(
|
296 |
"Page", min_value=1, max_value=total_pages, step=1
|
|
|
299 |
st.markdown(f"Page **{current_page}** of **{total_pages}** ")
|
300 |
|
301 |
|
302 |
+
pages = split_frame(gamelog_data, batch_size)
|
303 |
# pages = pages.set_index('Player')
|
304 |
display.dataframe(data=pages[current_page - 1].style.format(precision=2), height=500, use_container_width=True)
|
305 |
+
st.download_button(
|
306 |
+
label="Export gamelogs Model",
|
307 |
+
data=convert_df_to_csv(gamelog_data),
|
308 |
+
file_name='Gamelogs_NBA_View.csv',
|
309 |
+
mime='text/csv',
|
310 |
+
)
|
311 |
|
312 |
with tab2:
|
313 |
col1, col2 = st.columns([1, 9])
|