Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
st.set_page_config(layout="wide")
|
3 |
+
|
4 |
+
for name in dir():
|
5 |
+
if not name.startswith('_'):
|
6 |
+
del globals()[name]
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
import streamlit as st
|
11 |
+
import gspread
|
12 |
+
import gc
|
13 |
+
|
14 |
+
@st.cache_resource
|
15 |
+
def init_conn():
|
16 |
+
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
17 |
+
|
18 |
+
credentials = {
|
19 |
+
"type": "service_account",
|
20 |
+
"project_id": "model-sheets-connect",
|
21 |
+
"private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
|
22 |
+
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
|
23 |
+
"client_email": "[email protected]",
|
24 |
+
"client_id": "100369174533302798535",
|
25 |
+
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
26 |
+
"token_uri": "https://oauth2.googleapis.com/token",
|
27 |
+
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
28 |
+
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
|
29 |
+
}
|
30 |
+
|
31 |
+
gc_con = gspread.service_account_from_dict(credentials, scope)
|
32 |
+
|
33 |
+
return gc_con
|
34 |
+
|
35 |
+
gcservice_account = init_conn()
|
36 |
+
|
37 |
+
NBA_Data = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=1808117109'
|
38 |
+
|
39 |
+
@st.cache_resource(ttl = 600)
|
40 |
+
def init_baselines():
|
41 |
+
sh = gcservice_account.open_by_url(NBA_Data)
|
42 |
+
|
43 |
+
worksheet = sh.worksheet('Gamelog')
|
44 |
+
raw_display = pd.DataFrame(worksheet.get_values())
|
45 |
+
raw_display.columns = raw_display.iloc[0]
|
46 |
+
raw_display = raw_display[1:]
|
47 |
+
raw_display = raw_display.reset_index(drop=True)
|
48 |
+
gamelog_table = raw_display[raw_display['PLAYER_NAME'] != ""]
|
49 |
+
gamelog_table = gamelog_table[['PLAYER_NAME', 'TEAM_NAME', 'SEASON_ID', 'GAME_DATE', 'MATCHUP', 'MIN', 'touches', 'PTS', 'FGM', 'FGA', 'FG_PCT', 'FG3M', 'FG3A',
|
50 |
+
'FG3_PCT', 'FTM', 'FTA', 'FT_PCT', 'reboundChancesOffensive', 'OREB', 'reboundChancesDefensive', 'DREB', 'reboundChancesTotal', 'REB',
|
51 |
+
'passes', 'secondaryAssists', 'freeThrowAssists', 'assists', 'STL', 'BLK', 'TOV', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy']]
|
52 |
+
gamelog_table['assists'].replace("", 0, inplace=True)
|
53 |
+
gamelog_table['reboundChancesTotal'].replace("", 0, inplace=True)
|
54 |
+
gamelog_table['passes'].replace("", 0, inplace=True)
|
55 |
+
gamelog_table['touches'].replace("", 0, inplace=True)
|
56 |
+
gamelog_table['Fantasy'].replace("", 0, inplace=True)
|
57 |
+
gamelog_table['FD_Fantasy'].replace("", 0, inplace=True)
|
58 |
+
gamelog_table['REB'] = gamelog_table['REB'].astype(int)
|
59 |
+
gamelog_table['assists'] = gamelog_table['assists'].astype(int)
|
60 |
+
gamelog_table['reboundChancesTotal'] = gamelog_table['reboundChancesTotal'].astype(int)
|
61 |
+
gamelog_table['passes'] = gamelog_table['passes'].astype(int)
|
62 |
+
gamelog_table['touches'] = gamelog_table['touches'].astype(int)
|
63 |
+
gamelog_table['Fantasy'] = gamelog_table['Fantasy'].astype(float)
|
64 |
+
gamelog_table['FD_Fantasy'] = gamelog_table['FD_Fantasy'].astype(float)
|
65 |
+
gamelog_table['rebound%'] = gamelog_table['REB'] / gamelog_table['reboundChancesTotal']
|
66 |
+
gamelog_table['assists_per_pass'] = gamelog_table['assists'] / gamelog_table['passes']
|
67 |
+
gamelog_table['Fantasy_per_touch'] = gamelog_table['Fantasy'] / gamelog_table['touches']
|
68 |
+
gamelog_table['FD_Fantasy_per_touch'] = gamelog_table['FD_Fantasy'] / gamelog_table['touches']
|
69 |
+
data_cols = gamelog_table.columns.drop(['PLAYER_NAME', 'TEAM_NAME', 'SEASON_ID', 'GAME_DATE', 'MATCHUP'])
|
70 |
+
gamelog_table[data_cols] = gamelog_table[data_cols].apply(pd.to_numeric, errors='coerce')
|
71 |
+
gamelog_table['GAME_DATE'] = pd.to_datetime(gamelog_table['GAME_DATE']).dt.date
|
72 |
+
|
73 |
+
gamelog_table = gamelog_table.set_axis(['Player', 'Team', 'Season', 'Date', 'Matchup', 'Min', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
|
74 |
+
'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
|
75 |
+
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
|
76 |
+
'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch'], axis=1)
|
77 |
+
|
78 |
+
return gamelog_table
|
79 |
+
|
80 |
+
@st.cache_data(show_spinner=False)
|
81 |
+
def seasonlong_build(data_sample):
|
82 |
+
season_long_table = data_sample[['Player', 'Team']]
|
83 |
+
season_long_table['Min'] = data_sample.groupby(['Player', 'Season'], sort=False)['Min'].transform('mean').astype(float)
|
84 |
+
season_long_table['Touches'] = data_sample.groupby(['Player', 'Season'], sort=False)['Touches'].transform('mean').astype(float)
|
85 |
+
season_long_table['Pts'] = data_sample.groupby(['Player', 'Season'], sort=False)['Pts'].transform('mean').astype(float)
|
86 |
+
season_long_table['FGM'] = data_sample.groupby(['Player', 'Season'], sort=False)['FGM'].transform('mean').astype(float)
|
87 |
+
season_long_table['FGA'] = data_sample.groupby(['Player', 'Season'], sort=False)['FGA'].transform('mean').astype(float)
|
88 |
+
season_long_table['FG%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FGM'].transform('sum').astype(int) /
|
89 |
+
data_sample.groupby(['Player', 'Season'], sort=False)['FGA'].transform('sum').astype(int))
|
90 |
+
season_long_table['FG3M'] = data_sample.groupby(['Player', 'Season'], sort=False)['FG3M'].transform('mean').astype(float)
|
91 |
+
season_long_table['FG3A'] = data_sample.groupby(['Player', 'Season'], sort=False)['FG3A'].transform('mean').astype(float)
|
92 |
+
season_long_table['FG3%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FG3M'].transform('sum').astype(int) /
|
93 |
+
data_sample.groupby(['Player', 'Season'], sort=False)['FG3A'].transform('sum').astype(int))
|
94 |
+
season_long_table['FTM'] = data_sample.groupby(['Player', 'Season'], sort=False)['FTM'].transform('mean').astype(float)
|
95 |
+
season_long_table['FTA'] = data_sample.groupby(['Player', 'Season'], sort=False)['FTA'].transform('mean').astype(float)
|
96 |
+
season_long_table['FT%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FTM'].transform('sum').astype(int) /
|
97 |
+
data_sample.groupby(['Player', 'Season'], sort=False)['FTA'].transform('sum').astype(int))
|
98 |
+
season_long_table['OREB Chance'] = data_sample.groupby(['Player', 'Season'], sort=False)['OREB Chance'].transform('mean').astype(float)
|
99 |
+
season_long_table['OREB'] = data_sample.groupby(['Player', 'Season'], sort=False)['OREB'].transform('mean').astype(float)
|
100 |
+
season_long_table['DREB Chance'] = data_sample.groupby(['Player', 'Season'], sort=False)['DREB Chance'].transform('mean').astype(float)
|
101 |
+
season_long_table['DREB'] = data_sample.groupby(['Player', 'Season'], sort=False)['DREB'].transform('mean').astype(float)
|
102 |
+
season_long_table['REB Chance'] = data_sample.groupby(['Player', 'Season'], sort=False)['REB Chance'].transform('mean').astype(float)
|
103 |
+
season_long_table['REB'] = data_sample.groupby(['Player', 'Season'], sort=False)['REB'].transform('mean').astype(float)
|
104 |
+
season_long_table['Passes'] = data_sample.groupby(['Player', 'Season'], sort=False)['Passes'].transform('mean').astype(float)
|
105 |
+
season_long_table['Alt Assists'] = data_sample.groupby(['Player', 'Season'], sort=False)['Alt Assists'].transform('mean').astype(float)
|
106 |
+
season_long_table['FT Assists'] = data_sample.groupby(['Player', 'Season'], sort=False)['FT Assists'].transform('mean').astype(float)
|
107 |
+
season_long_table['Assists'] = data_sample.groupby(['Player', 'Season'], sort=False)['Assists'].transform('mean').astype(float)
|
108 |
+
season_long_table['Stl'] = data_sample.groupby(['Player', 'Season'], sort=False)['Stl'].transform('mean').astype(float)
|
109 |
+
season_long_table['Blk'] = data_sample.groupby(['Player', 'Season'], sort=False)['Blk'].transform('mean').astype(float)
|
110 |
+
season_long_table['Tov'] = data_sample.groupby(['Player', 'Season'], sort=False)['Tov'].transform('mean').astype(float)
|
111 |
+
season_long_table['PF'] = data_sample.groupby(['Player', 'Season'], sort=False)['PF'].transform('mean').astype(float)
|
112 |
+
season_long_table['DD'] = data_sample.groupby(['Player', 'Season'], sort=False)['DD'].transform('mean').astype(float)
|
113 |
+
season_long_table['TD'] = data_sample.groupby(['Player', 'Season'], sort=False)['TD'].transform('mean').astype(float)
|
114 |
+
season_long_table['Fantasy'] = data_sample.groupby(['Player', 'Season'], sort=False)['Fantasy'].transform('mean').astype(float)
|
115 |
+
season_long_table['FD_Fantasy'] = data_sample.groupby(['Player', 'Season'], sort=False)['FD_Fantasy'].transform('mean').astype(float)
|
116 |
+
season_long_table['Rebound%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['REB'].transform('sum').astype(int) /
|
117 |
+
data_sample.groupby(['Player', 'Season'], sort=False)['REB Chance'].transform('sum').astype(int))
|
118 |
+
season_long_table['Assists/Pass'] = (data_sample.groupby(['Player', 'Season'], sort=False)['Assists'].transform('sum').astype(int) /
|
119 |
+
data_sample.groupby(['Player', 'Season'], sort=False)['Passes'].transform('sum').astype(int))
|
120 |
+
season_long_table['Fantasy/Touch'] = (data_sample.groupby(['Player', 'Season'], sort=False)['Fantasy'].transform('sum').astype(int) /
|
121 |
+
data_sample.groupby(['Player', 'Season'], sort=False)['Touches'].transform('sum').astype(int))
|
122 |
+
season_long_table['FD Fantasy/Touch'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FD_Fantasy'].transform('sum').astype(int) /
|
123 |
+
data_sample.groupby(['Player', 'Season'], sort=False)['Touches'].transform('sum').astype(int))
|
124 |
+
season_long_table = season_long_table.drop_duplicates(subset='Player')
|
125 |
+
|
126 |
+
season_long_table = season_long_table.set_axis(['Player', 'Team', 'Min', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
|
127 |
+
'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
|
128 |
+
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
|
129 |
+
'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch'], axis=1)
|
130 |
+
|
131 |
+
return season_long_table
|
132 |
+
|
133 |
+
@st.cache_data(show_spinner=False)
|
134 |
+
def run_fantasy_corr(data_sample):
|
135 |
+
cor_testing = data_sample
|
136 |
+
cor_testing = cor_testing[cor_testing['Season'] == '22023']
|
137 |
+
date_list = cor_testing['Date'].unique().tolist()
|
138 |
+
player_list = cor_testing['Player'].unique().tolist()
|
139 |
+
corr_frame = pd.DataFrame()
|
140 |
+
corr_frame['DATE'] = date_list
|
141 |
+
for player in player_list:
|
142 |
+
player_testing = cor_testing[cor_testing['Player'] == player]
|
143 |
+
fantasy_map = dict(zip(player_testing['Date'], player_testing['Fantasy']))
|
144 |
+
corr_frame[player] = corr_frame['DATE'].map(fantasy_map)
|
145 |
+
players_fantasy = corr_frame.drop('DATE', axis=1)
|
146 |
+
corrM = players_fantasy.corr()
|
147 |
+
|
148 |
+
return corrM
|
149 |
+
|
150 |
+
@st.cache_data(show_spinner=False)
|
151 |
+
def run_min_corr(data_sample):
|
152 |
+
cor_testing = data_sample
|
153 |
+
cor_testing = cor_testing[cor_testing['Season'] == '22023']
|
154 |
+
date_list = cor_testing['Date'].unique().tolist()
|
155 |
+
player_list = cor_testing['Player'].unique().tolist()
|
156 |
+
corr_frame = pd.DataFrame()
|
157 |
+
corr_frame['DATE'] = date_list
|
158 |
+
for player in player_list:
|
159 |
+
player_testing = cor_testing[cor_testing['Player'] == player]
|
160 |
+
fantasy_map = dict(zip(player_testing['Date'], player_testing['Min']))
|
161 |
+
corr_frame[player] = corr_frame['DATE'].map(fantasy_map)
|
162 |
+
players_fantasy = corr_frame.drop('DATE', axis=1)
|
163 |
+
corrM = players_fantasy.corr()
|
164 |
+
|
165 |
+
return corrM
|
166 |
+
|
167 |
+
@st.cache_data(show_spinner=False)
|
168 |
+
def split_frame(input_df, rows):
|
169 |
+
df = [input_df.loc[i : i + rows - 1, :] for i in range(0, len(input_df), rows)]
|
170 |
+
return df
|
171 |
+
|
172 |
+
def convert_df_to_csv(df):
|
173 |
+
return df.to_csv().encode('utf-8')
|
174 |
+
|
175 |
+
gamelog_table = init_baselines()
|
176 |
+
indv_teams = gamelog_table.drop_duplicates(subset='Team')
|
177 |
+
total_teams = indv_teams.Team.values.tolist()
|
178 |
+
indv_players = gamelog_table.drop_duplicates(subset='Player')
|
179 |
+
total_players = indv_players.Player.values.tolist()
|
180 |
+
total_dates = gamelog_table.Date.values.tolist()
|
181 |
+
|
182 |
+
tab1, tab2 = st.tabs(['Gamelogs', 'Correlation Matrix'])
|
183 |
+
|
184 |
+
with tab1:
|
185 |
+
col1, col2 = st.columns([1, 9])
|
186 |
+
with col1:
|
187 |
+
if st.button("Reset Data", key='reset1'):
|
188 |
+
st.cache_data.clear()
|
189 |
+
gamelog_table = init_baselines()
|
190 |
+
indv_teams = gamelog_table.drop_duplicates(subset='Team')
|
191 |
+
total_teams = indv_teams.Team.values.tolist()
|
192 |
+
indv_players = gamelog_table.drop_duplicates(subset='Player')
|
193 |
+
total_players = indv_players.Player.values.tolist()
|
194 |
+
total_dates = gamelog_table.Date.values.tolist()
|
195 |
+
|
196 |
+
split_var1 = st.radio("What table would you like to view?", ('Season Logs', 'Gamelogs'), key='split_var1')
|
197 |
+
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
|
198 |
+
|
199 |
+
if split_var2 == 'Specific Teams':
|
200 |
+
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = total_teams, key='team_var1')
|
201 |
+
elif split_var2 == 'All':
|
202 |
+
team_var1 = total_teams
|
203 |
+
|
204 |
+
split_var3 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='split_var3')
|
205 |
+
|
206 |
+
if split_var3 == 'Specific Dates':
|
207 |
+
low_date = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='low_date')
|
208 |
+
if low_date is not None:
|
209 |
+
low_date = pd.to_datetime(low_date).date()
|
210 |
+
high_date = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='high_date')
|
211 |
+
if high_date is not None:
|
212 |
+
high_date = pd.to_datetime(high_date).date()
|
213 |
+
elif split_var3 == 'All':
|
214 |
+
low_date = gamelog_table['Date'].min()
|
215 |
+
high_date = gamelog_table['Date'].max()
|
216 |
+
|
217 |
+
split_var4 = st.radio("Would you like to view all players or specific ones?", ('All', 'Specific Players'), key='split_var4')
|
218 |
+
|
219 |
+
if split_var4 == 'Specific Players':
|
220 |
+
player_var1 = st.multiselect('Which players would you like to include in the tables?', options = total_players, key='player_var1')
|
221 |
+
elif split_var4 == 'All':
|
222 |
+
player_var1 = total_players
|
223 |
+
|
224 |
+
min_var1 = st.slider("Is there a certain minutes range you want to view?", 0, 60, (0, 60), key='min_var1')
|
225 |
+
|
226 |
+
with col2:
|
227 |
+
if split_var1 == 'Season Logs':
|
228 |
+
display = st.container()
|
229 |
+
gamelog_table = gamelog_table[gamelog_table['Date'] >= low_date]
|
230 |
+
gamelog_table = gamelog_table[gamelog_table['Date'] <= high_date]
|
231 |
+
gamelog_table = gamelog_table[gamelog_table['Min'] >= min_var1[0]]
|
232 |
+
gamelog_table = gamelog_table[gamelog_table['Min'] <= min_var1[1]]
|
233 |
+
gamelog_table = gamelog_table[gamelog_table['Team'].isin(team_var1)]
|
234 |
+
gamelog_table = gamelog_table[gamelog_table['Player'].isin(player_var1)]
|
235 |
+
season_long_table = seasonlong_build(gamelog_table)
|
236 |
+
season_long_table = season_long_table.set_index('Player')
|
237 |
+
display.dataframe(season_long_table.style.format(precision=2), height=750, use_container_width = True)
|
238 |
+
|
239 |
+
elif split_var1 == 'Gamelogs':
|
240 |
+
gamelog_table = gamelog_table[gamelog_table['Date'] >= low_date]
|
241 |
+
gamelog_table = gamelog_table[gamelog_table['Date'] <= high_date]
|
242 |
+
gamelog_table = gamelog_table[gamelog_table['Min'] >= min_var1[0]]
|
243 |
+
gamelog_table = gamelog_table[gamelog_table['Min'] <= min_var1[1]]
|
244 |
+
gamelog_table = gamelog_table[gamelog_table['Team'].isin(team_var1)]
|
245 |
+
gamelog_table = gamelog_table[gamelog_table['Player'].isin(player_var1)]
|
246 |
+
gamelog_table = gamelog_table.reset_index(drop=True)
|
247 |
+
display = st.container()
|
248 |
+
|
249 |
+
bottom_menu = st.columns((4, 1, 1))
|
250 |
+
with bottom_menu[2]:
|
251 |
+
batch_size = st.selectbox("Page Size", options=[25, 50, 100])
|
252 |
+
with bottom_menu[1]:
|
253 |
+
total_pages = (
|
254 |
+
int(len(gamelog_table) / batch_size) if int(len(gamelog_table) / batch_size) > 0 else 1
|
255 |
+
)
|
256 |
+
current_page = st.number_input(
|
257 |
+
"Page", min_value=1, max_value=total_pages, step=1
|
258 |
+
)
|
259 |
+
with bottom_menu[0]:
|
260 |
+
st.markdown(f"Page **{current_page}** of **{total_pages}** ")
|
261 |
+
|
262 |
+
|
263 |
+
pages = split_frame(gamelog_table, batch_size)
|
264 |
+
# pages = pages.set_index('Player')
|
265 |
+
display.dataframe(data=pages[current_page - 1].style.format(precision=2), height=500, use_container_width=True)
|
266 |
+
|
267 |
+
with tab2:
|
268 |
+
col1, col2 = st.columns([1, 9])
|
269 |
+
with col1:
|
270 |
+
if st.button("Reset Data", key='reset2'):
|
271 |
+
st.cache_data.clear()
|
272 |
+
gamelog_table = init_baselines()
|
273 |
+
indv_teams = gamelog_table.drop_duplicates(subset='Team')
|
274 |
+
total_teams = indv_teams.Team.values.tolist()
|
275 |
+
indv_players = gamelog_table.drop_duplicates(subset='Player')
|
276 |
+
total_players = indv_players.Player.values.tolist()
|
277 |
+
total_dates = gamelog_table.Date.values.tolist()
|
278 |
+
|
279 |
+
corr_var = st.radio("Are you correlating fantasy or minutes?", ('Fantasy', 'Minutes'), key='corr_var')
|
280 |
+
|
281 |
+
split_var1_t2 = st.radio("Would you like to view specific teams or specific players?", ('Specific Teams', 'Specific Players'), key='split_var1_t2')
|
282 |
+
|
283 |
+
if split_var1_t2 == 'Specific Teams':
|
284 |
+
corr_var1_t2 = st.multiselect('Which teams would you like to include in the correlation?', options = total_teams, key='corr_var1_t2')
|
285 |
+
elif split_var1_t2 == 'Specific Players':
|
286 |
+
corr_var1_t2 = st.multiselect('Which players would you like to include in the correlation?', options = total_players, key='corr_var1_t2')
|
287 |
+
|
288 |
+
split_var2_t2 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='split_var3_t2')
|
289 |
+
|
290 |
+
if split_var2_t2 == 'Specific Dates':
|
291 |
+
low_date_t2 = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='low_date_t2')
|
292 |
+
if low_date_t2 is not None:
|
293 |
+
low_date_t2 = pd.to_datetime(low_date_t2).date()
|
294 |
+
high_date_t2 = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='high_date_t2')
|
295 |
+
if high_date_t2 is not None:
|
296 |
+
high_date_t2 = pd.to_datetime(high_date_t2).date()
|
297 |
+
elif split_var2_t2 == 'All':
|
298 |
+
low_date_t2 = gamelog_table['Date'].min()
|
299 |
+
high_date_t2 = gamelog_table['Date'].max()
|
300 |
+
|
301 |
+
min_var1_t2 = st.slider("Is there a certain minutes range you want to view?", 0, 60, (0, 60), key='min_var1_t2')
|
302 |
+
|
303 |
+
with col2:
|
304 |
+
if split_var1_t2 == 'Specific Teams':
|
305 |
+
display = st.container()
|
306 |
+
gamelog_table = gamelog_table.sort_values(by='Fantasy', ascending=False)
|
307 |
+
gamelog_table = gamelog_table[gamelog_table['Date'] >= low_date_t2]
|
308 |
+
gamelog_table = gamelog_table[gamelog_table['Date'] <= high_date_t2]
|
309 |
+
gamelog_table = gamelog_table[gamelog_table['Min'] >= min_var1_t2[0]]
|
310 |
+
gamelog_table = gamelog_table[gamelog_table['Min'] <= min_var1_t2[1]]
|
311 |
+
gamelog_table = gamelog_table[gamelog_table['Team'].isin(corr_var1_t2)]
|
312 |
+
if corr_var == 'Fantasy':
|
313 |
+
corr_display = run_fantasy_corr(gamelog_table)
|
314 |
+
elif corr_var == 'Minutes':
|
315 |
+
corr_display = run_min_corr(gamelog_table)
|
316 |
+
display.dataframe(corr_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=1000, use_container_width = True)
|
317 |
+
|
318 |
+
elif split_var1_t2 == 'Specific Players':
|
319 |
+
display = st.container()
|
320 |
+
gamelog_table = gamelog_table.sort_values(by='Fantasy', ascending=False)
|
321 |
+
gamelog_table = gamelog_table[gamelog_table['Date'] >= low_date_t2]
|
322 |
+
gamelog_table = gamelog_table[gamelog_table['Date'] <= high_date_t2]
|
323 |
+
gamelog_table = gamelog_table[gamelog_table['Min'] >= min_var1_t2[0]]
|
324 |
+
gamelog_table = gamelog_table[gamelog_table['Min'] <= min_var1_t2[1]]
|
325 |
+
gamelog_table = gamelog_table[gamelog_table['Player'].isin(corr_var1_t2)]
|
326 |
+
if corr_var == 'Fantasy':
|
327 |
+
corr_display = run_fantasy_corr(gamelog_table)
|
328 |
+
elif corr_var == 'Minutes':
|
329 |
+
corr_display = run_min_corr(gamelog_table)
|
330 |
+
display.dataframe(corr_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|