Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
st.set_page_config(layout="wide")
|
3 |
+
|
4 |
+
for name in dir():
|
5 |
+
if not name.startswith('_'):
|
6 |
+
del globals()[name]
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
import streamlit as st
|
11 |
+
import gspread
|
12 |
+
import gc
|
13 |
+
|
14 |
+
@st.cache_resource
|
15 |
+
def init_conn():
|
16 |
+
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
17 |
+
|
18 |
+
credentials = {
|
19 |
+
"type": "service_account",
|
20 |
+
"project_id": "model-sheets-connect",
|
21 |
+
"private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
|
22 |
+
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
|
23 |
+
"client_email": "[email protected]",
|
24 |
+
"client_id": "100369174533302798535",
|
25 |
+
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
26 |
+
"token_uri": "https://oauth2.googleapis.com/token",
|
27 |
+
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
28 |
+
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
|
29 |
+
}
|
30 |
+
|
31 |
+
gc_con = gspread.service_account_from_dict(credentials, scope)
|
32 |
+
|
33 |
+
return gc_con
|
34 |
+
|
35 |
+
gcservice_account = init_conn()
|
36 |
+
|
37 |
+
DEM_data = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=1808117109'
|
38 |
+
|
39 |
+
percentages_format = {'Pts% Boost': '{:.2%}', 'Reb% Boost': '{:.2%}', 'Ast% Boost': '{:.2%}', '3p% Boost': '{:.2%}',
|
40 |
+
'Stl Boost%': '{:.2%}', 'Blk Boost%': '{:.2%}', 'TOV Boost%': '{:.2%}', 'FPPM Boost': '{:.2%}',
|
41 |
+
'Team FPPM Boost': '{:.2%}'}
|
42 |
+
|
43 |
+
@st.cache_resource(ttl = 600)
|
44 |
+
def init_baselines():
|
45 |
+
sh = gcservice_account.open_by_url(DEM_data)
|
46 |
+
|
47 |
+
worksheet = sh.worksheet('DEM Matchups')
|
48 |
+
raw_display = pd.DataFrame(worksheet.get_values())
|
49 |
+
raw_display.columns = raw_display.iloc[0]
|
50 |
+
raw_display = raw_display[1:]
|
51 |
+
raw_display = raw_display.reset_index(drop=True)
|
52 |
+
matchups = raw_display[raw_display['Var'] != ""]
|
53 |
+
matchups_dict = dict(zip(matchups['Team'], matchups['Opp']))
|
54 |
+
|
55 |
+
worksheet = sh.worksheet('PG_DEM_Calc')
|
56 |
+
raw_display = pd.DataFrame(worksheet.get_values())
|
57 |
+
raw_display.columns = raw_display.iloc[0]
|
58 |
+
raw_display = raw_display[1:]
|
59 |
+
raw_display = raw_display.reset_index(drop=True)
|
60 |
+
cols_to_check = ['Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost', 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM Boost']
|
61 |
+
raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100
|
62 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
|
63 |
+
raw_display['position'] = 'Point Guard'
|
64 |
+
pg_dem = raw_display[raw_display['Acro'] != ""]
|
65 |
+
|
66 |
+
worksheet = sh.worksheet('SG_DEM_Calc')
|
67 |
+
raw_display = pd.DataFrame(worksheet.get_values())
|
68 |
+
raw_display.columns = raw_display.iloc[0]
|
69 |
+
raw_display = raw_display[1:]
|
70 |
+
raw_display = raw_display.reset_index(drop=True)
|
71 |
+
cols_to_check = ['Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost', 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM Boost']
|
72 |
+
raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100
|
73 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
|
74 |
+
raw_display['position'] = 'Shooting Guard'
|
75 |
+
sg_dem = raw_display[raw_display['Acro'] != ""]
|
76 |
+
|
77 |
+
worksheet = sh.worksheet('SF_DEM_Calc')
|
78 |
+
raw_display = pd.DataFrame(worksheet.get_values())
|
79 |
+
raw_display.columns = raw_display.iloc[0]
|
80 |
+
raw_display = raw_display[1:]
|
81 |
+
raw_display = raw_display.reset_index(drop=True)
|
82 |
+
cols_to_check = ['Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost', 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM Boost']
|
83 |
+
raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100
|
84 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
|
85 |
+
raw_display['position'] = 'Small Forward'
|
86 |
+
sf_dem = raw_display[raw_display['Acro'] != ""]
|
87 |
+
|
88 |
+
worksheet = sh.worksheet('PF_DEM_Calc')
|
89 |
+
raw_display = pd.DataFrame(worksheet.get_values())
|
90 |
+
raw_display.columns = raw_display.iloc[0]
|
91 |
+
raw_display = raw_display[1:]
|
92 |
+
raw_display = raw_display.reset_index(drop=True)
|
93 |
+
cols_to_check = ['Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost', 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM Boost']
|
94 |
+
raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100
|
95 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
|
96 |
+
raw_display['position'] = 'Power Forward'
|
97 |
+
pf_dem = raw_display[raw_display['Acro'] != ""]
|
98 |
+
|
99 |
+
worksheet = sh.worksheet('C_DEM_Calc')
|
100 |
+
raw_display = pd.DataFrame(worksheet.get_values())
|
101 |
+
raw_display.columns = raw_display.iloc[0]
|
102 |
+
raw_display = raw_display[1:]
|
103 |
+
raw_display = raw_display.reset_index(drop=True)
|
104 |
+
cols_to_check = ['Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost', 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM Boost']
|
105 |
+
raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100
|
106 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
|
107 |
+
raw_display['position'] = 'Center'
|
108 |
+
c_dem = raw_display[raw_display['Acro'] != ""]
|
109 |
+
|
110 |
+
overall_dem = pd.concat([pg_dem, sg_dem, sf_dem, pf_dem, c_dem])
|
111 |
+
overall_dem = overall_dem[['Acro', 'G', 'Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost',
|
112 |
+
'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM', 'FPPM Boost', 'position']]
|
113 |
+
overall_dem['Team'] = overall_dem['Acro'] + '-' + overall_dem['position']
|
114 |
+
overall_dem['Team FPPM Boost'] = overall_dem.groupby('Acro', sort=False)['FPPM Boost'].transform('mean')
|
115 |
+
overall_dem = overall_dem.reset_index()
|
116 |
+
|
117 |
+
|
118 |
+
export_dem = overall_dem[['Team', 'Acro', 'G', 'Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost',
|
119 |
+
'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM', 'FPPM Boost', 'Team FPPM Boost', 'position']]
|
120 |
+
|
121 |
+
return export_dem, matchups, matchups_dict
|
122 |
+
|
123 |
+
def convert_df_to_csv(df):
|
124 |
+
return df.to_csv().encode('utf-8')
|
125 |
+
|
126 |
+
overall_dem, matchups, matchups_dict = init_baselines()
|
127 |
+
|
128 |
+
col1, col2 = st.columns([1, 9])
|
129 |
+
with col1:
|
130 |
+
if st.button("Reset Data", key='reset1'):
|
131 |
+
st.cache_data.clear()
|
132 |
+
overall_dem, matchups, matchups_dict = init_baselines()
|
133 |
+
split_var1 = st.radio("View all teams or just this main slate's matchups?", ('Slate Matchups', 'All'), key='split_var1')
|
134 |
+
if split_var1 == 'Slate Matchups':
|
135 |
+
view_var1 = matchups.Opp.values.tolist()
|
136 |
+
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
|
137 |
+
if split_var2 == 'Specific Teams':
|
138 |
+
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = view_var1, key='team_var1')
|
139 |
+
elif split_var2 == 'All':
|
140 |
+
team_var1 = view_var1
|
141 |
+
split_var3 = st.radio("Would you like to view all positions or specific ones?", ('All', 'Specific Positions'), key='split_var3')
|
142 |
+
if split_var3 == 'Specific Positions':
|
143 |
+
pos_var1 = st.multiselect('Which teams would you like to include in the tables?', options = overall_dem['position'].unique(), key='pos_var1')
|
144 |
+
elif split_var3 == 'All':
|
145 |
+
pos_var1 = overall_dem.position.values.tolist()
|
146 |
+
if split_var1 == 'All':
|
147 |
+
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
|
148 |
+
if split_var2 == 'Specific Teams':
|
149 |
+
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = overall_dem['Acro'].unique(), key='team_var1')
|
150 |
+
elif split_var2 == 'All':
|
151 |
+
team_var1 = overall_dem.Acro.values.tolist()
|
152 |
+
split_var3 = st.radio("Would you like to view all positions or specific ones?", ('All', 'Specific Positions'), key='split_var3')
|
153 |
+
if split_var3 == 'Specific Positions':
|
154 |
+
pos_var1 = st.multiselect('Which teams would you like to include in the tables?', options = overall_dem['position'].unique(), key='pos_var1')
|
155 |
+
elif split_var3 == 'All':
|
156 |
+
pos_var1 = overall_dem.position.values.tolist()
|
157 |
+
with col2:
|
158 |
+
if split_var1 == 'Slate Matchups':
|
159 |
+
dem_display = overall_dem[overall_dem['Acro'].isin(view_var1)]
|
160 |
+
dem_display['Team (Getting Boost)'] = dem_display['Acro'].map(matchups_dict)
|
161 |
+
dem_display.rename(columns={"Acro": "Opp (Giving Boost)"}, inplace = True)
|
162 |
+
dem_display = dem_display[['Team (Getting Boost)', 'Opp (Giving Boost)', 'G', 'Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost',
|
163 |
+
'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM', 'FPPM Boost', 'Team FPPM Boost', 'position']]
|
164 |
+
dem_display = dem_display[dem_display['Team (Getting Boost)'].isin(team_var1)]
|
165 |
+
dem_display = dem_display[dem_display['position'].isin(pos_var1)]
|
166 |
+
dem_display = dem_display.sort_values(by='FPPM Boost', ascending=False)
|
167 |
+
elif split_var1 == 'All':
|
168 |
+
dem_display = overall_dem[overall_dem['Acro'].isin(team_var1)]
|
169 |
+
dem_display = dem_display[dem_display['position'].isin(pos_var1)]
|
170 |
+
dem_display = dem_display.sort_values(by='FPPM Boost', ascending=False)
|
171 |
+
dem_display.rename(columns={"Team": "Team (Giving Boost)"}, inplace = True)
|
172 |
+
dem_display = dem_display.set_index('Team (Giving Boost)')
|
173 |
+
st.dataframe(dem_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
|
174 |
+
st.download_button(
|
175 |
+
label="Export DEM Numbers",
|
176 |
+
data=convert_df_to_csv(overall_dem),
|
177 |
+
file_name='DEM_export.csv',
|
178 |
+
mime='text/csv',
|
179 |
+
)
|