Multichem commited on
Commit
be4a56a
·
1 Parent(s): 892e9d7

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +179 -0
app.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ st.set_page_config(layout="wide")
3
+
4
+ for name in dir():
5
+ if not name.startswith('_'):
6
+ del globals()[name]
7
+
8
+ import numpy as np
9
+ import pandas as pd
10
+ import streamlit as st
11
+ import gspread
12
+ import gc
13
+
14
+ @st.cache_resource
15
+ def init_conn():
16
+ scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
17
+
18
+ credentials = {
19
+ "type": "service_account",
20
+ "project_id": "model-sheets-connect",
21
+ "private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
22
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
23
+ "client_email": "[email protected]",
24
+ "client_id": "100369174533302798535",
25
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
26
+ "token_uri": "https://oauth2.googleapis.com/token",
27
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
28
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
29
+ }
30
+
31
+ gc_con = gspread.service_account_from_dict(credentials, scope)
32
+
33
+ return gc_con
34
+
35
+ gcservice_account = init_conn()
36
+
37
+ DEM_data = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=1808117109'
38
+
39
+ percentages_format = {'Pts% Boost': '{:.2%}', 'Reb% Boost': '{:.2%}', 'Ast% Boost': '{:.2%}', '3p% Boost': '{:.2%}',
40
+ 'Stl Boost%': '{:.2%}', 'Blk Boost%': '{:.2%}', 'TOV Boost%': '{:.2%}', 'FPPM Boost': '{:.2%}',
41
+ 'Team FPPM Boost': '{:.2%}'}
42
+
43
+ @st.cache_resource(ttl = 600)
44
+ def init_baselines():
45
+ sh = gcservice_account.open_by_url(DEM_data)
46
+
47
+ worksheet = sh.worksheet('DEM Matchups')
48
+ raw_display = pd.DataFrame(worksheet.get_values())
49
+ raw_display.columns = raw_display.iloc[0]
50
+ raw_display = raw_display[1:]
51
+ raw_display = raw_display.reset_index(drop=True)
52
+ matchups = raw_display[raw_display['Var'] != ""]
53
+ matchups_dict = dict(zip(matchups['Team'], matchups['Opp']))
54
+
55
+ worksheet = sh.worksheet('PG_DEM_Calc')
56
+ raw_display = pd.DataFrame(worksheet.get_values())
57
+ raw_display.columns = raw_display.iloc[0]
58
+ raw_display = raw_display[1:]
59
+ raw_display = raw_display.reset_index(drop=True)
60
+ cols_to_check = ['Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost', 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM Boost']
61
+ raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100
62
+ raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
63
+ raw_display['position'] = 'Point Guard'
64
+ pg_dem = raw_display[raw_display['Acro'] != ""]
65
+
66
+ worksheet = sh.worksheet('SG_DEM_Calc')
67
+ raw_display = pd.DataFrame(worksheet.get_values())
68
+ raw_display.columns = raw_display.iloc[0]
69
+ raw_display = raw_display[1:]
70
+ raw_display = raw_display.reset_index(drop=True)
71
+ cols_to_check = ['Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost', 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM Boost']
72
+ raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100
73
+ raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
74
+ raw_display['position'] = 'Shooting Guard'
75
+ sg_dem = raw_display[raw_display['Acro'] != ""]
76
+
77
+ worksheet = sh.worksheet('SF_DEM_Calc')
78
+ raw_display = pd.DataFrame(worksheet.get_values())
79
+ raw_display.columns = raw_display.iloc[0]
80
+ raw_display = raw_display[1:]
81
+ raw_display = raw_display.reset_index(drop=True)
82
+ cols_to_check = ['Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost', 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM Boost']
83
+ raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100
84
+ raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
85
+ raw_display['position'] = 'Small Forward'
86
+ sf_dem = raw_display[raw_display['Acro'] != ""]
87
+
88
+ worksheet = sh.worksheet('PF_DEM_Calc')
89
+ raw_display = pd.DataFrame(worksheet.get_values())
90
+ raw_display.columns = raw_display.iloc[0]
91
+ raw_display = raw_display[1:]
92
+ raw_display = raw_display.reset_index(drop=True)
93
+ cols_to_check = ['Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost', 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM Boost']
94
+ raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100
95
+ raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
96
+ raw_display['position'] = 'Power Forward'
97
+ pf_dem = raw_display[raw_display['Acro'] != ""]
98
+
99
+ worksheet = sh.worksheet('C_DEM_Calc')
100
+ raw_display = pd.DataFrame(worksheet.get_values())
101
+ raw_display.columns = raw_display.iloc[0]
102
+ raw_display = raw_display[1:]
103
+ raw_display = raw_display.reset_index(drop=True)
104
+ cols_to_check = ['Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost', 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM Boost']
105
+ raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100
106
+ raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
107
+ raw_display['position'] = 'Center'
108
+ c_dem = raw_display[raw_display['Acro'] != ""]
109
+
110
+ overall_dem = pd.concat([pg_dem, sg_dem, sf_dem, pf_dem, c_dem])
111
+ overall_dem = overall_dem[['Acro', 'G', 'Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost',
112
+ 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM', 'FPPM Boost', 'position']]
113
+ overall_dem['Team'] = overall_dem['Acro'] + '-' + overall_dem['position']
114
+ overall_dem['Team FPPM Boost'] = overall_dem.groupby('Acro', sort=False)['FPPM Boost'].transform('mean')
115
+ overall_dem = overall_dem.reset_index()
116
+
117
+
118
+ export_dem = overall_dem[['Team', 'Acro', 'G', 'Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost',
119
+ 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM', 'FPPM Boost', 'Team FPPM Boost', 'position']]
120
+
121
+ return export_dem, matchups, matchups_dict
122
+
123
+ def convert_df_to_csv(df):
124
+ return df.to_csv().encode('utf-8')
125
+
126
+ overall_dem, matchups, matchups_dict = init_baselines()
127
+
128
+ col1, col2 = st.columns([1, 9])
129
+ with col1:
130
+ if st.button("Reset Data", key='reset1'):
131
+ st.cache_data.clear()
132
+ overall_dem, matchups, matchups_dict = init_baselines()
133
+ split_var1 = st.radio("View all teams or just this main slate's matchups?", ('Slate Matchups', 'All'), key='split_var1')
134
+ if split_var1 == 'Slate Matchups':
135
+ view_var1 = matchups.Opp.values.tolist()
136
+ split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
137
+ if split_var2 == 'Specific Teams':
138
+ team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = view_var1, key='team_var1')
139
+ elif split_var2 == 'All':
140
+ team_var1 = view_var1
141
+ split_var3 = st.radio("Would you like to view all positions or specific ones?", ('All', 'Specific Positions'), key='split_var3')
142
+ if split_var3 == 'Specific Positions':
143
+ pos_var1 = st.multiselect('Which teams would you like to include in the tables?', options = overall_dem['position'].unique(), key='pos_var1')
144
+ elif split_var3 == 'All':
145
+ pos_var1 = overall_dem.position.values.tolist()
146
+ if split_var1 == 'All':
147
+ split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
148
+ if split_var2 == 'Specific Teams':
149
+ team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = overall_dem['Acro'].unique(), key='team_var1')
150
+ elif split_var2 == 'All':
151
+ team_var1 = overall_dem.Acro.values.tolist()
152
+ split_var3 = st.radio("Would you like to view all positions or specific ones?", ('All', 'Specific Positions'), key='split_var3')
153
+ if split_var3 == 'Specific Positions':
154
+ pos_var1 = st.multiselect('Which teams would you like to include in the tables?', options = overall_dem['position'].unique(), key='pos_var1')
155
+ elif split_var3 == 'All':
156
+ pos_var1 = overall_dem.position.values.tolist()
157
+ with col2:
158
+ if split_var1 == 'Slate Matchups':
159
+ dem_display = overall_dem[overall_dem['Acro'].isin(view_var1)]
160
+ dem_display['Team (Getting Boost)'] = dem_display['Acro'].map(matchups_dict)
161
+ dem_display.rename(columns={"Acro": "Opp (Giving Boost)"}, inplace = True)
162
+ dem_display = dem_display[['Team (Getting Boost)', 'Opp (Giving Boost)', 'G', 'Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost',
163
+ 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM', 'FPPM Boost', 'Team FPPM Boost', 'position']]
164
+ dem_display = dem_display[dem_display['Team (Getting Boost)'].isin(team_var1)]
165
+ dem_display = dem_display[dem_display['position'].isin(pos_var1)]
166
+ dem_display = dem_display.sort_values(by='FPPM Boost', ascending=False)
167
+ elif split_var1 == 'All':
168
+ dem_display = overall_dem[overall_dem['Acro'].isin(team_var1)]
169
+ dem_display = dem_display[dem_display['position'].isin(pos_var1)]
170
+ dem_display = dem_display.sort_values(by='FPPM Boost', ascending=False)
171
+ dem_display.rename(columns={"Team": "Team (Giving Boost)"}, inplace = True)
172
+ dem_display = dem_display.set_index('Team (Giving Boost)')
173
+ st.dataframe(dem_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
174
+ st.download_button(
175
+ label="Export DEM Numbers",
176
+ data=convert_df_to_csv(overall_dem),
177
+ file_name='DEM_export.csv',
178
+ mime='text/csv',
179
+ )