James McCool commited on
Commit
9f83d6b
·
1 Parent(s): 428f4e9

changed hold_file to over_file based on local ROO sequence

Browse files
Files changed (1) hide show
  1. app.py +19 -22
app.py CHANGED
@@ -1,4 +1,5 @@
1
  import numpy as np
 
2
  import pandas as pd
3
  import streamlit as st
4
  import gspread
@@ -169,29 +170,27 @@ with tab1:
169
  salary_file = flex_file.copy()
170
 
171
  overall_players = overall_file[['Player']]
172
-
173
  for x in range(0,total_sims):
174
  salary_file[x] = salary_file['Salary']
175
-
 
176
  salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
177
  salary_file.astype('int').dtypes
178
-
179
  salary_file = salary_file.div(1000)
180
-
181
- for x in range(0,total_sims):
182
- overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
183
-
184
  overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
185
  overall_file.astype('int').dtypes
186
-
187
  players_only = hold_file[['Player']]
188
  raw_lineups_file = players_only
189
-
190
  for x in range(0,total_sims):
191
- maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
192
  raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
193
  players_only[x] = raw_lineups_file[x].rank(ascending=False)
194
-
195
  players_only=players_only.drop(['Player'], axis=1)
196
  players_only.astype('int').dtypes
197
 
@@ -256,29 +255,27 @@ with tab1:
256
  salary_file = flex_file.copy()
257
 
258
  overall_players = overall_file[['Player']]
259
-
260
  for x in range(0,total_sims):
261
  salary_file[x] = salary_file['Salary']
262
-
 
263
  salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
264
  salary_file.astype('int').dtypes
265
-
266
  salary_file = salary_file.div(1000)
267
-
268
- for x in range(0,total_sims):
269
- overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
270
-
271
  overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
272
  overall_file.astype('int').dtypes
273
-
274
  players_only = hold_file[['Player']]
275
  raw_lineups_file = players_only
276
-
277
  for x in range(0,total_sims):
278
- maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
279
  raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
280
  players_only[x] = raw_lineups_file[x].rank(ascending=False)
281
-
282
  players_only=players_only.drop(['Player'], axis=1)
283
  players_only.astype('int').dtypes
284
 
 
1
  import numpy as np
2
+ from numpy import random
3
  import pandas as pd
4
  import streamlit as st
5
  import gspread
 
170
  salary_file = flex_file.copy()
171
 
172
  overall_players = overall_file[['Player']]
173
+
174
  for x in range(0,total_sims):
175
  salary_file[x] = salary_file['Salary']
176
+ overall_file[x] = random.normal(overall_file['Median'],overall_file['STD'])
177
+
178
  salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
179
  salary_file.astype('int').dtypes
180
+
181
  salary_file = salary_file.div(1000)
182
+
 
 
 
183
  overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
184
  overall_file.astype('int').dtypes
185
+
186
  players_only = hold_file[['Player']]
187
  raw_lineups_file = players_only
188
+
189
  for x in range(0,total_sims):
190
+ maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
191
  raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
192
  players_only[x] = raw_lineups_file[x].rank(ascending=False)
193
+
194
  players_only=players_only.drop(['Player'], axis=1)
195
  players_only.astype('int').dtypes
196
 
 
255
  salary_file = flex_file.copy()
256
 
257
  overall_players = overall_file[['Player']]
258
+
259
  for x in range(0,total_sims):
260
  salary_file[x] = salary_file['Salary']
261
+ overall_file[x] = random.normal(overall_file['Median'],overall_file['STD'])
262
+
263
  salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
264
  salary_file.astype('int').dtypes
265
+
266
  salary_file = salary_file.div(1000)
267
+
 
 
 
268
  overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
269
  overall_file.astype('int').dtypes
270
+
271
  players_only = hold_file[['Player']]
272
  raw_lineups_file = players_only
273
+
274
  for x in range(0,total_sims):
275
+ maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
276
  raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
277
  players_only[x] = raw_lineups_file[x].rank(ascending=False)
278
+
279
  players_only=players_only.drop(['Player'], axis=1)
280
  players_only.astype('int').dtypes
281