Spaces:
Sleeping
Sleeping
James McCool
commited on
Commit
·
9f83d6b
1
Parent(s):
428f4e9
changed hold_file to over_file based on local ROO sequence
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import numpy as np
|
|
|
2 |
import pandas as pd
|
3 |
import streamlit as st
|
4 |
import gspread
|
@@ -169,29 +170,27 @@ with tab1:
|
|
169 |
salary_file = flex_file.copy()
|
170 |
|
171 |
overall_players = overall_file[['Player']]
|
172 |
-
|
173 |
for x in range(0,total_sims):
|
174 |
salary_file[x] = salary_file['Salary']
|
175 |
-
|
|
|
176 |
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
177 |
salary_file.astype('int').dtypes
|
178 |
-
|
179 |
salary_file = salary_file.div(1000)
|
180 |
-
|
181 |
-
for x in range(0,total_sims):
|
182 |
-
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
183 |
-
|
184 |
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
185 |
overall_file.astype('int').dtypes
|
186 |
-
|
187 |
players_only = hold_file[['Player']]
|
188 |
raw_lineups_file = players_only
|
189 |
-
|
190 |
for x in range(0,total_sims):
|
191 |
-
maps_dict = {'proj_map':dict(zip(hold_file.Player,
|
192 |
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
193 |
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
194 |
-
|
195 |
players_only=players_only.drop(['Player'], axis=1)
|
196 |
players_only.astype('int').dtypes
|
197 |
|
@@ -256,29 +255,27 @@ with tab1:
|
|
256 |
salary_file = flex_file.copy()
|
257 |
|
258 |
overall_players = overall_file[['Player']]
|
259 |
-
|
260 |
for x in range(0,total_sims):
|
261 |
salary_file[x] = salary_file['Salary']
|
262 |
-
|
|
|
263 |
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
264 |
salary_file.astype('int').dtypes
|
265 |
-
|
266 |
salary_file = salary_file.div(1000)
|
267 |
-
|
268 |
-
for x in range(0,total_sims):
|
269 |
-
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
270 |
-
|
271 |
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
272 |
overall_file.astype('int').dtypes
|
273 |
-
|
274 |
players_only = hold_file[['Player']]
|
275 |
raw_lineups_file = players_only
|
276 |
-
|
277 |
for x in range(0,total_sims):
|
278 |
-
maps_dict = {'proj_map':dict(zip(hold_file.Player,
|
279 |
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
280 |
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
281 |
-
|
282 |
players_only=players_only.drop(['Player'], axis=1)
|
283 |
players_only.astype('int').dtypes
|
284 |
|
|
|
1 |
import numpy as np
|
2 |
+
from numpy import random
|
3 |
import pandas as pd
|
4 |
import streamlit as st
|
5 |
import gspread
|
|
|
170 |
salary_file = flex_file.copy()
|
171 |
|
172 |
overall_players = overall_file[['Player']]
|
173 |
+
|
174 |
for x in range(0,total_sims):
|
175 |
salary_file[x] = salary_file['Salary']
|
176 |
+
overall_file[x] = random.normal(overall_file['Median'],overall_file['STD'])
|
177 |
+
|
178 |
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
179 |
salary_file.astype('int').dtypes
|
180 |
+
|
181 |
salary_file = salary_file.div(1000)
|
182 |
+
|
|
|
|
|
|
|
183 |
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
184 |
overall_file.astype('int').dtypes
|
185 |
+
|
186 |
players_only = hold_file[['Player']]
|
187 |
raw_lineups_file = players_only
|
188 |
+
|
189 |
for x in range(0,total_sims):
|
190 |
+
maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
|
191 |
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
192 |
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
193 |
+
|
194 |
players_only=players_only.drop(['Player'], axis=1)
|
195 |
players_only.astype('int').dtypes
|
196 |
|
|
|
255 |
salary_file = flex_file.copy()
|
256 |
|
257 |
overall_players = overall_file[['Player']]
|
258 |
+
|
259 |
for x in range(0,total_sims):
|
260 |
salary_file[x] = salary_file['Salary']
|
261 |
+
overall_file[x] = random.normal(overall_file['Median'],overall_file['STD'])
|
262 |
+
|
263 |
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
264 |
salary_file.astype('int').dtypes
|
265 |
+
|
266 |
salary_file = salary_file.div(1000)
|
267 |
+
|
|
|
|
|
|
|
268 |
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
269 |
overall_file.astype('int').dtypes
|
270 |
+
|
271 |
players_only = hold_file[['Player']]
|
272 |
raw_lineups_file = players_only
|
273 |
+
|
274 |
for x in range(0,total_sims):
|
275 |
+
maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
|
276 |
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
277 |
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
278 |
+
|
279 |
players_only=players_only.drop(['Player'], axis=1)
|
280 |
players_only.astype('int').dtypes
|
281 |
|