James McCool commited on
Commit
b41ab08
·
1 Parent(s): cac36b2

Initial app creation

Browse files
Files changed (3) hide show
  1. app.py +355 -0
  2. app.yaml +10 -0
  3. requirements.txt +9 -0
app.py ADDED
@@ -0,0 +1,355 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import streamlit as st
4
+ import gspread
5
+
6
+ st.set_page_config(layout="wide")
7
+
8
+ @st.cache_resource
9
+ def init_conn():
10
+ scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
11
+
12
+ credentials = {
13
+ "type": "service_account",
14
+ "project_id": "model-sheets-connect",
15
+ "private_key_id": st.secrets['model_sheets_connect_pk'],
16
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
17
+ "client_email": "[email protected]",
18
+ "client_id": "100369174533302798535",
19
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
20
+ "token_uri": "https://oauth2.googleapis.com/token",
21
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
22
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
23
+ }
24
+
25
+ credentials2 = {
26
+ "type": "service_account",
27
+ "project_id": "sheets-api-connect-378620",
28
+ "private_key_id": st.secrets['sheets_api_connect_pk'],
29
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
30
+ "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
31
+ "client_id": "106625872877651920064",
32
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
33
+ "token_uri": "https://oauth2.googleapis.com/token",
34
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
35
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
36
+ }
37
+
38
+ NFL_Data = st.secrets['NHL_Data']
39
+
40
+ gc = gspread.service_account_from_dict(credentials)
41
+ gc2 = gspread.service_account_from_dict(credentials2)
42
+
43
+ return gc, gc2, NHL_Data
44
+
45
+ gcservice_account, gcservice_account2, NHL_Data = init_conn()
46
+
47
+ wrong_acro = ['WSH', 'AZ']
48
+ right_acro = ['WAS', 'ARI']
49
+
50
+ game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
51
+ 'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
52
+
53
+ team_roo_format = {'Top Score%': '{:.2%}','0 Runs': '{:.2%}', '1 Run': '{:.2%}', '2 Runs': '{:.2%}', '3 Runs': '{:.2%}', '4 Runs': '{:.2%}',
54
+ '5 Runs': '{:.2%}','6 Runs': '{:.2%}', '7 Runs': '{:.2%}', '8 Runs': '{:.2%}', '9 Runs': '{:.2%}', '10 Runs': '{:.2%}'}
55
+
56
+ player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
57
+ '4x%': '{:.2%}','GPP%': '{:.2%}'}
58
+
59
+ @st.cache_resource(ttl = 600)
60
+ def player_stat_table():
61
+ try:
62
+ sh = gcservice_account.open_by_url(NHL_Data)
63
+ except:
64
+ sh = gcservice_account2.open_by_url(NHL_Data)
65
+ worksheet = sh.worksheet('Player_Level_ROO')
66
+ player_stats = pd.DataFrame(worksheet.get_all_records())
67
+ load_display = pd.DataFrame(worksheet.get_all_records())
68
+ load_display.replace('', np.nan, inplace=True)
69
+
70
+ dk_load_display = load_display[load_display['Site'] == 'Draftkings']
71
+ fd_load_display = load_display[load_display['Site'] == 'Fanduel']
72
+
73
+ dk_load_display = dk_load_display.sort_values(by='Own', ascending=False)
74
+ fd_load_display = fd_load_display.sort_values(by='Own', ascending=False)
75
+
76
+ dk_load_display = dk_load_display.dropna(subset=['Own'])
77
+ fd_load_display = fd_load_display.dropna(subset=['Own'])
78
+
79
+ dk_roo_raw = dk_load_display
80
+ fd_roo_raw = fd_load_display
81
+
82
+ return player_stats, dk_roo_raw, fd_roo_raw
83
+
84
+ @st.cache_data
85
+ def convert_df_to_csv(df):
86
+ return df.to_csv().encode('utf-8')
87
+
88
+ player_stats, dk_roo_raw, fd_roo_raw = player_stat_table()
89
+ opp_dict = dict(zip(dk_roo_raw.Team, dk_roo_raw.Opp))
90
+ t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
91
+
92
+ tab1, tab2 = st.tabs(['Pivot Finder', 'Uploads and Info'])
93
+
94
+ with tab1:
95
+ col1, col2 = st.columns([1, 5])
96
+ with col1:
97
+ st.info(t_stamp)
98
+ if st.button("Load/Reset Data", key='reset1'):
99
+ st.cache_data.clear()
100
+ player_stats, dk_roo_raw, fd_roo_raw = player_stat_table()
101
+ opp_dict = dict(zip(dk_roo_raw.Team, dk_roo_raw.Opp))
102
+ t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
103
+ data_var1 = st.radio("Which data are you loading?", ('Paydirt', 'User'), key='data_var1')
104
+ site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
105
+ if site_var1 == 'Draftkings':
106
+ if data_var1 == 'User':
107
+ raw_baselines = proj_dataframe
108
+ elif data_var1 != 'User':
109
+ raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == 'Main Slate']
110
+ elif site_var1 == 'Fanduel':
111
+ if data_var1 == 'User':
112
+ raw_baselines = proj_dataframe
113
+ elif data_var1 != 'User':
114
+ raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == 'Main Slate']
115
+ check_seq = st.radio("Do you want to check a single player or the top 10 in ownership?", ('Single Player', 'Top 10 Owned'), key='check_seq')
116
+ if check_seq == 'Single Player':
117
+ player_check = st.selectbox('Select player to create comps', options = raw_baselines['Player'].unique(), key='dk_player')
118
+ elif check_seq == 'Top 10 Owned':
119
+ player_check = raw_baselines['Player'].head(10).tolist()
120
+ Salary_var = st.number_input('Acceptable +/- Salary range', min_value = 0, max_value = 1000, value = 300, step = 100)
121
+ Median_var = st.number_input('Acceptable +/- Median range', min_value = 0, max_value = 10, value = 3, step = 1)
122
+ pos_var1 = st.radio("Compare to all positions or specific positions?", ('All Positions', 'Specific Positions'), key='pos_var1')
123
+ if pos_var1 == 'Specific Positions':
124
+ pos_var_list = st.multiselect('Which positions would you like to include?', options = raw_baselines['Position'].unique(), key='pos_var_list')
125
+ elif pos_var1 == 'All Positions':
126
+ pos_var_list = raw_baselines.Position.values.tolist()
127
+ split_var1 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
128
+ if split_var1 == 'Specific Games':
129
+ team_var1 = st.multiselect('Which teams would you like to include?', options = raw_baselines['Team'].unique(), key='team_var1')
130
+ elif split_var1 == 'Full Slate Run':
131
+ team_var1 = raw_baselines.Team.values.tolist()
132
+
133
+ with col2:
134
+ hold_container = st.empty()
135
+ if st.button('Simulate appropriate pivots'):
136
+ with hold_container:
137
+ if site_var1 == 'Draftkings':
138
+ working_roo = raw_baselines
139
+ working_roo.replace('', 0, inplace=True)
140
+ if site_var1 == 'Fanduel':
141
+ working_roo = raw_baselines
142
+ working_roo.replace('', 0, inplace=True)
143
+
144
+
145
+ own_dict = dict(zip(working_roo.Player, working_roo.Own))
146
+ team_dict = dict(zip(working_roo.Player, working_roo.Team))
147
+ opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
148
+ total_sims = 1000
149
+ if check_seq == 'Single Player':
150
+ player_var = working_roo.loc[working_roo['Player'] == player_check]
151
+ player_var = player_var.reset_index()
152
+
153
+ working_roo = working_roo[working_roo['Position'].isin(pos_var_list)]
154
+ working_roo = working_roo[working_roo['Team'].isin(team_var1)]
155
+ working_roo = working_roo.loc[(working_roo['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo['Salary'] <= player_var['Salary'][0] + Salary_var)]
156
+ working_roo = working_roo.loc[(working_roo['Median'] >= player_var['Median'][0] - Median_var) & (working_roo['Median'] <= player_var['Median'][0] + Median_var)]
157
+
158
+ flex_file = working_roo[['Player', 'Position', 'Salary', 'Median']]
159
+ flex_file['Floor_raw'] = flex_file['Median'] * .25
160
+ flex_file['Ceiling_raw'] = flex_file['Median'] * 2
161
+ flex_file['Floor'] = np.where(flex_file['Position'] == 'G', flex_file['Median'] * .5, flex_file['Floor_raw'])
162
+ flex_file['Floor'] = np.where(flex_file['Position'] == 'D', flex_file['Median'] * .1, flex_file['Floor_raw'])
163
+ flex_file['Ceiling'] = np.where(flex_file['Position'] == 'G', flex_file['Median'] * 1.75, flex_file['Ceiling_raw'])
164
+ flex_file['Ceiling'] = np.where(flex_file['Position'] == 'D', flex_file['Median'] * 1.75, flex_file['Ceiling_raw'])
165
+ flex_file['STD'] = flex_file['Median'] / 3
166
+ flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
167
+ hold_file = flex_file.copy()
168
+ overall_file = flex_file.copy()
169
+ salary_file = flex_file.copy()
170
+
171
+ overall_players = overall_file[['Player']]
172
+
173
+ for x in range(0,total_sims):
174
+ salary_file[x] = salary_file['Salary']
175
+
176
+ salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
177
+ salary_file.astype('int').dtypes
178
+
179
+ salary_file = salary_file.div(1000)
180
+
181
+ for x in range(0,total_sims):
182
+ overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
183
+
184
+ overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
185
+ overall_file.astype('int').dtypes
186
+
187
+ players_only = hold_file[['Player']]
188
+ raw_lineups_file = players_only
189
+
190
+ for x in range(0,total_sims):
191
+ maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
192
+ raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
193
+ players_only[x] = raw_lineups_file[x].rank(ascending=False)
194
+
195
+ players_only=players_only.drop(['Player'], axis=1)
196
+ players_only.astype('int').dtypes
197
+
198
+ salary_2x_check = (overall_file - (salary_file*2))
199
+ salary_3x_check = (overall_file - (salary_file*3))
200
+ salary_4x_check = (overall_file - (salary_file*4))
201
+
202
+ players_only['Average_Rank'] = players_only.mean(axis=1)
203
+ players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
204
+ players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
205
+ players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
206
+ players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
207
+ players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
208
+ players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
209
+ players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
210
+
211
+ players_only['Player'] = hold_file[['Player']]
212
+
213
+ final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
214
+
215
+ final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
216
+ final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
217
+ final_Proj['Own'] = final_Proj['Player'].map(own_dict)
218
+ final_Proj['Team'] = final_Proj['Player'].map(team_dict)
219
+ final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
220
+ final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
221
+ final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
222
+ final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
223
+ final_Proj['LevX'] = 0
224
+ final_Proj['LevX'] = np.where(final_Proj['Position'] == 'C', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
225
+ final_Proj['LevX'] = np.where(final_Proj['Position'] == 'W', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
226
+ final_Proj['LevX'] = np.where(final_Proj['Position'] == 'D', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
227
+ final_Proj['LevX'] = np.where(final_Proj['Position'] == 'G', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
228
+ final_Proj['CPT_Own'] = final_Proj['Own'] / 4
229
+
230
+ final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'LevX']]
231
+ final_Proj = final_Proj.set_index('Player')
232
+ final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)
233
+
234
+ elif check_seq == 'Top 10 Owned':
235
+ final_proj_list = []
236
+ for players in player_check:
237
+ player_var = working_roo.loc[working_roo['Player'] == players]
238
+ player_var = player_var.reset_index()
239
+
240
+ working_roo_temp = working_roo[working_roo['Position'].isin(pos_var_list)]
241
+ working_roo_temp = working_roo_temp[working_roo_temp['Team'].isin(team_var1)]
242
+ working_roo_temp = working_roo_temp.loc[(working_roo_temp['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo_temp['Salary'] <= player_var['Salary'][0] + Salary_var)]
243
+ working_roo_temp = working_roo_temp.loc[(working_roo_temp['Median'] >= player_var['Median'][0] - Median_var) & (working_roo_temp['Median'] <= player_var['Median'][0] + Median_var)]
244
+
245
+ flex_file = working_roo_temp[['Player', 'Position', 'Salary', 'Median']]
246
+ flex_file['Floor_raw'] = flex_file['Median'] * .25
247
+ flex_file['Ceiling_raw'] = flex_file['Median'] * 2
248
+ flex_file['Floor'] = np.where(flex_file['Position'] == 'G', flex_file['Median'] * .5, flex_file['Floor_raw'])
249
+ flex_file['Floor'] = np.where(flex_file['Position'] == 'D', flex_file['Median'] * .1, flex_file['Floor_raw'])
250
+ flex_file['Ceiling'] = np.where(flex_file['Position'] == 'G', flex_file['Median'] * 1.75, flex_file['Ceiling_raw'])
251
+ flex_file['Ceiling'] = np.where(flex_file['Position'] == 'D', flex_file['Median'] * 1.75, flex_file['Ceiling_raw'])
252
+ flex_file['STD'] = flex_file['Median'] / 3
253
+ flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
254
+ hold_file = flex_file.copy()
255
+ overall_file = flex_file.copy()
256
+ salary_file = flex_file.copy()
257
+
258
+ overall_players = overall_file[['Player']]
259
+
260
+ for x in range(0,total_sims):
261
+ salary_file[x] = salary_file['Salary']
262
+
263
+ salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
264
+ salary_file.astype('int').dtypes
265
+
266
+ salary_file = salary_file.div(1000)
267
+
268
+ for x in range(0,total_sims):
269
+ overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
270
+
271
+ overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
272
+ overall_file.astype('int').dtypes
273
+
274
+ players_only = hold_file[['Player']]
275
+ raw_lineups_file = players_only
276
+
277
+ for x in range(0,total_sims):
278
+ maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
279
+ raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
280
+ players_only[x] = raw_lineups_file[x].rank(ascending=False)
281
+
282
+ players_only=players_only.drop(['Player'], axis=1)
283
+ players_only.astype('int').dtypes
284
+
285
+ salary_2x_check = (overall_file - (salary_file*2))
286
+ salary_3x_check = (overall_file - (salary_file*3))
287
+ salary_4x_check = (overall_file - (salary_file*4))
288
+
289
+ players_only['Average_Rank'] = players_only.mean(axis=1)
290
+ players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
291
+ players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
292
+ players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
293
+ players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
294
+ players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
295
+ players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
296
+ players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
297
+
298
+ players_only['Player'] = hold_file[['Player']]
299
+
300
+ final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
301
+
302
+ final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
303
+ final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
304
+ final_Proj['Own'] = final_Proj['Player'].map(own_dict)
305
+ final_Proj['Team'] = final_Proj['Player'].map(team_dict)
306
+ final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
307
+ final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
308
+ final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
309
+ final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
310
+ final_Proj['LevX'] = 0
311
+ final_Proj['LevX'] = np.where(final_Proj['Position'] == 'C', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
312
+ final_Proj['LevX'] = np.where(final_Proj['Position'] == 'W', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
313
+ final_Proj['LevX'] = np.where(final_Proj['Position'] == 'D', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
314
+ final_Proj['LevX'] = np.where(final_Proj['Position'] == 'G', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
315
+ final_Proj['CPT_Own'] = final_Proj['Own'] / 4
316
+
317
+ final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'LevX']]
318
+
319
+ final_Proj = final_Proj.set_index('Player')
320
+ final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)
321
+ final_proj_list.append(final_Proj)
322
+
323
+ # Concatenate all the final_Proj dataframes
324
+ final_Proj_combined = pd.concat(final_proj_list)
325
+ final_Proj_combined = final_Proj_combined.sort_values(by='Top_finish', ascending=False)
326
+ final_Proj = final_Proj_combined # Assign the combined dataframe back to final_Proj
327
+
328
+ with hold_container:
329
+ hold_container = st.empty()
330
+ final_Proj = final_Proj
331
+ st.dataframe(final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
332
+
333
+ st.download_button(
334
+ label="Export Tables",
335
+ data=convert_df_to_csv(final_Proj),
336
+ file_name='NHL_pivot_export.csv',
337
+ mime='text/csv',
338
+ )
339
+
340
+ with tab2:
341
+ st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'.")
342
+ col1, col2 = st.columns([1, 5])
343
+
344
+ with col1:
345
+ proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
346
+
347
+ if proj_file is not None:
348
+ try:
349
+ proj_dataframe = pd.read_csv(proj_file)
350
+ except:
351
+ proj_dataframe = pd.read_excel(proj_file)
352
+ with col2:
353
+ if proj_file is not None:
354
+ st.dataframe(proj_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
355
+
app.yaml ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ runtime: python
2
+ env: flex
3
+
4
+ runtime_config:
5
+ python_version: 3
6
+
7
+ entrypoint: streamlit run streamlit-app.py --server.port $PORT
8
+
9
+ automatic_scaling:
10
+ max_num_instances: 200
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ streamlit
2
+ gspread
3
+ openpyxl
4
+ matplotlib
5
+ streamlit-aggrid
6
+ pulp
7
+ docker
8
+ plotly
9
+ scipy