PGA_DFS_models / app.py
James McCool
Enhance app.py UI with site selection and dynamic data display. Added a select box for choosing between DraftKings and FanDuel, and updated the data display to filter based on the selected site. Improved layout with empty containers for better organization.
24e9e65
raw
history blame
2.74 kB
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import numpy as np
import pandas as pd
import streamlit as st
import gc
import pymongo
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["PGA_Database"]
return db
db = init_conn()
dk_player_url = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2USuxZbkogI_2jnxFfQVVs/edit#gid=1828092624'
CSV_URL = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2USuxZbkogI_2jnxFfQVVs/edit#gid=1828092624'
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '100+%': '{:.2%}', '10x%': '{:.2%}', '11x%': '{:.2%}',
'12x%': '{:.2%}','LevX': '{:.2%}'}
@st.cache_resource(ttl = 600)
def init_baselines():
collection = db["PGA_Range_of_Outcomes"]
cursor = collection.find()
player_frame = pd.DataFrame(cursor)
data_cols = player_frame.columns.drop('Player')
player_frame[data_cols] = player_frame[data_cols].apply(pd.to_numeric, errors='coerce')
roo_data = player_frame
return roo_data
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
roo_data = init_baselines()
hold_display = roo_data
lineup_display = []
check_list = []
rand_player = 0
boost_player = 0
salaryCut = 0
tab1, tab2 = st.tabs(["Player Overall Projections", "Not Ready Yet"])
with tab1:
if st.button("Reset Data", key='reset1'):
# Clear values from *all* all in-memory and on-disk data caches:
# i.e. clear values from both square and cube
st.cache_data.clear()
roo_data = init_baselines()
hold_display = roo_data
lineup_display = []
check_list = []
rand_player = 0
boost_player = 0
salaryCut = 0
options_container = st.empty()
hold_container = st.empty()
with options_container:
site_var = st.selectbox("Site", ["DraftKings", "FanDuel"])
with hold_container:
hold_display = hold_display.loc[hold_display['Site'] == site_var]
display = hold_display.set_index('Player')
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True)
st.download_button(
label="Export Projections",
data=convert_df_to_csv(display),
file_name='PGA_DFS_export.csv',
mime='text/csv',
)
with tab2:
st.write("Not Ready Yet")