PGA_DFS_models / app.py
James McCool
Refactor app.py: Enhance data initialization and timestamp handling. Updated init_baselines to return both processed data and timestamp, ensuring better data management. Adjusted references to the updated function throughout the code, including site selection logic and display updates.
e54a8b1
raw
history blame
2.76 kB
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import numpy as np
import pandas as pd
import streamlit as st
import gc
import pymongo
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["PGA_Database"]
return db
db = init_conn()
dk_player_url = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2USuxZbkogI_2jnxFfQVVs/edit#gid=1828092624'
CSV_URL = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2USuxZbkogI_2jnxFfQVVs/edit#gid=1828092624'
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '100+%': '{:.2%}', '10x%': '{:.2%}', '11x%': '{:.2%}',
'12x%': '{:.2%}','LevX': '{:.2%}'}
@st.cache_resource(ttl = 600)
def init_baselines():
collection = db["PGA_Range_of_Outcomes"]
cursor = collection.find()
player_frame = pd.DataFrame(cursor)
timestamp = player_frame['Timestamp'][0]
roo_data = player_frame.drop(columns=['_id', 'index', 'Timestamp'])
roo_data['Salary'] = roo_data['Salary'].astype(int)
return roo_data, timestamp
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
roo_data, timestamp = init_baselines()
hold_display = roo_data
lineup_display = []
check_list = []
rand_player = 0
boost_player = 0
salaryCut = 0
tab1, tab2 = st.tabs(["Player Overall Projections", "Not Ready Yet"])
with tab1:
if st.button("Reset Data", key='reset1'):
# Clear values from *all* all in-memory and on-disk data caches:
# i.e. clear values from both square and cube
st.cache_data.clear()
roo_data, timestamp = init_baselines()
hold_display = roo_data
lineup_display = []
check_list = []
rand_player = 0
boost_player = 0
salaryCut = 0
st.write(timestamp)
options_container = st.empty()
hold_container = st.empty()
with options_container:
site_var = st.selectbox("Select a Site", ["Draftkings", "FanDuel"])
with hold_container:
display = hold_display[hold_display['Site'] == site_var]
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True)
st.download_button(
label="Export Projections",
data=convert_df_to_csv(display),
file_name='PGA_DFS_export.csv',
mime='text/csv',
)
with tab2:
st.write("Not Ready Yet")