James McCool commited on
Commit
03d7065
·
1 Parent(s): 6bd6835

Optimize player frequency table generation in tab2

Browse files

- Modify DataFrame creation to add salary column after initial setup
- Reorder columns for better readability
- Set player name as index for improved table display
- Apply changes consistently for both Regular and Showdown slate frequency tables

Files changed (1) hide show
  1. app.py +6 -2
app.py CHANGED
@@ -385,13 +385,15 @@ with tab2:
385
  # Create a DataFrame with the results
386
  summary_df = pd.DataFrame({
387
  'Player': value_counts.index,
388
- 'Salary': value_counts.index.map(player_salaries),
389
  'Frequency': value_counts.values,
390
  'Percentage': percentages.values
391
  })
392
 
393
  # Sort by frequency in descending order
 
 
394
  summary_df = summary_df.sort_values('Frequency', ascending=False)
 
395
 
396
  # Display the table
397
  st.write("Player Frequency Table:")
@@ -418,13 +420,15 @@ with tab2:
418
  # Create a DataFrame with the results
419
  summary_df = pd.DataFrame({
420
  'Player': value_counts.index,
421
- 'Salary': value_counts.index.map(player_salaries),
422
  'Frequency': value_counts.values,
423
  'Percentage': percentages.values
424
  })
425
 
426
  # Sort by frequency in descending order
 
 
427
  summary_df = summary_df.sort_values('Frequency', ascending=False)
 
428
 
429
  # Display the table
430
  st.write("Seed Frame Frequency Table:")
 
385
  # Create a DataFrame with the results
386
  summary_df = pd.DataFrame({
387
  'Player': value_counts.index,
 
388
  'Frequency': value_counts.values,
389
  'Percentage': percentages.values
390
  })
391
 
392
  # Sort by frequency in descending order
393
+ summary_df['Salary'] = summary_df['Player'].map(player_salaries)
394
+ summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']]
395
  summary_df = summary_df.sort_values('Frequency', ascending=False)
396
+ summary_df = summary_df.set_index('Player')
397
 
398
  # Display the table
399
  st.write("Player Frequency Table:")
 
420
  # Create a DataFrame with the results
421
  summary_df = pd.DataFrame({
422
  'Player': value_counts.index,
 
423
  'Frequency': value_counts.values,
424
  'Percentage': percentages.values
425
  })
426
 
427
  # Sort by frequency in descending order
428
+ summary_df['Salary'] = summary_df['Player'].map(player_salaries)
429
+ summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']]
430
  summary_df = summary_df.sort_values('Frequency', ascending=False)
431
+ summary_df = summary_df.set_index('Player')
432
 
433
  # Display the table
434
  st.write("Seed Frame Frequency Table:")