Spaces:
Running
Running
James McCool
commited on
Commit
·
03d7065
1
Parent(s):
6bd6835
Optimize player frequency table generation in tab2
Browse files- Modify DataFrame creation to add salary column after initial setup
- Reorder columns for better readability
- Set player name as index for improved table display
- Apply changes consistently for both Regular and Showdown slate frequency tables
app.py
CHANGED
@@ -385,13 +385,15 @@ with tab2:
|
|
385 |
# Create a DataFrame with the results
|
386 |
summary_df = pd.DataFrame({
|
387 |
'Player': value_counts.index,
|
388 |
-
'Salary': value_counts.index.map(player_salaries),
|
389 |
'Frequency': value_counts.values,
|
390 |
'Percentage': percentages.values
|
391 |
})
|
392 |
|
393 |
# Sort by frequency in descending order
|
|
|
|
|
394 |
summary_df = summary_df.sort_values('Frequency', ascending=False)
|
|
|
395 |
|
396 |
# Display the table
|
397 |
st.write("Player Frequency Table:")
|
@@ -418,13 +420,15 @@ with tab2:
|
|
418 |
# Create a DataFrame with the results
|
419 |
summary_df = pd.DataFrame({
|
420 |
'Player': value_counts.index,
|
421 |
-
'Salary': value_counts.index.map(player_salaries),
|
422 |
'Frequency': value_counts.values,
|
423 |
'Percentage': percentages.values
|
424 |
})
|
425 |
|
426 |
# Sort by frequency in descending order
|
|
|
|
|
427 |
summary_df = summary_df.sort_values('Frequency', ascending=False)
|
|
|
428 |
|
429 |
# Display the table
|
430 |
st.write("Seed Frame Frequency Table:")
|
|
|
385 |
# Create a DataFrame with the results
|
386 |
summary_df = pd.DataFrame({
|
387 |
'Player': value_counts.index,
|
|
|
388 |
'Frequency': value_counts.values,
|
389 |
'Percentage': percentages.values
|
390 |
})
|
391 |
|
392 |
# Sort by frequency in descending order
|
393 |
+
summary_df['Salary'] = summary_df['Player'].map(player_salaries)
|
394 |
+
summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']]
|
395 |
summary_df = summary_df.sort_values('Frequency', ascending=False)
|
396 |
+
summary_df = summary_df.set_index('Player')
|
397 |
|
398 |
# Display the table
|
399 |
st.write("Player Frequency Table:")
|
|
|
420 |
# Create a DataFrame with the results
|
421 |
summary_df = pd.DataFrame({
|
422 |
'Player': value_counts.index,
|
|
|
423 |
'Frequency': value_counts.values,
|
424 |
'Percentage': percentages.values
|
425 |
})
|
426 |
|
427 |
# Sort by frequency in descending order
|
428 |
+
summary_df['Salary'] = summary_df['Player'].map(player_salaries)
|
429 |
+
summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']]
|
430 |
summary_df = summary_df.sort_values('Frequency', ascending=False)
|
431 |
+
summary_df = summary_df.set_index('Player')
|
432 |
|
433 |
# Display the table
|
434 |
st.write("Seed Frame Frequency Table:")
|