Multichem commited on
Commit
0917471
·
1 Parent(s): 6bf230d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +267 -0
app.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pulp
2
+ import numpy as np
3
+ import pandas as pd
4
+ import random
5
+ import sys
6
+ import openpyxl
7
+ import re
8
+ import time
9
+ import streamlit as st
10
+ import matplotlib
11
+ from matplotlib.colors import LinearSegmentedColormap
12
+ import json
13
+ import requests
14
+ import gspread
15
+ import plotly.figure_factory as ff
16
+
17
+ scope = ['https://www.googleapis.com/auth/spreadsheets',
18
+ "https://www.googleapis.com/auth/drive"]
19
+
20
+ credentials = {
21
+ "type": "service_account",
22
+ "project_id": "sheets-api-connect-378620",
23
+ "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
24
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
25
+ "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
26
+ "client_id": "106625872877651920064",
27
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
28
+ "token_uri": "https://oauth2.googleapis.com/token",
29
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
30
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
31
+ }
32
+
33
+ gc = gspread.service_account_from_dict(credentials)
34
+
35
+ st.set_page_config(layout="wide")
36
+
37
+ dk_player_url = 'PGA_Basic_ROO'
38
+ CSV_URL = 'https://sheetdb.io/api/v1/ckjq8yp37qxly?sheet=DK_CSV'
39
+
40
+ @st.cache_data
41
+ def load_dk_player_model(URL):
42
+ sh = gc.open(URL)
43
+ worksheet = sh.get_worksheet(0)
44
+ raw_display = pd.DataFrame(worksheet.get_all_records())
45
+ raw_display["Salary"] = raw_display["Salary"].replace("$", "", regex=True).astype(float)
46
+ raw_display['Top_finish'] = raw_display['Top_finish'].str.replace('%', '').astype(float)/100
47
+ raw_display['Top_5_finish'] = raw_display['Top_5_finish'].str.replace('%', '').astype(float)/100
48
+ raw_display['Top_10_finish'] = raw_display['Top_10_finish'].str.replace('%', '').astype(float)/100
49
+ raw_display['100+%'] = raw_display['100+%'].str.replace('%', '').astype(float)/100
50
+ raw_display['10x%'] = raw_display['10x%'].str.replace('%', '').astype(float)/100
51
+ raw_display['11x%'] = raw_display['11x%'].str.replace('%', '').astype(float)/100
52
+ raw_display['12x%'] = raw_display['12x%'].str.replace('%', '').astype(float)/100
53
+ raw_display['LevX'] = raw_display['LevX'].str.replace('%', '').astype(float)/100
54
+
55
+ return raw_display
56
+
57
+ @st.cache_data
58
+ def grab_csv_data(URL):
59
+ draftkings_data = pd.read_json(URL)
60
+ draftkings_data.rename(columns={"Name": "Player"}, inplace = True)
61
+
62
+ return draftkings_data
63
+
64
+ tab1, tab2 = st.tabs(["Player Overall Projections", "Optimizer"])
65
+
66
+ def convert_df_to_csv(df):
67
+ return df.to_csv().encode('utf-8')
68
+
69
+ lineup_display = []
70
+ check_list = []
71
+ rand_player = 0
72
+ boost_player = 0
73
+ salaryCut = 0
74
+
75
+ with tab1:
76
+ if st.button("Reset Data", key='reset1'):
77
+ # Clear values from *all* all in-memory and on-disk data caches:
78
+ # i.e. clear values from both square and cube
79
+ st.cache_data.clear()
80
+ hold_display = load_dk_player_model(dk_player_url)
81
+ csv_data = grab_csv_data(CSV_URL)
82
+ csv_merge = pd.merge(csv_data, hold_display, how='left', left_on=['Player'], right_on = ['Player'])
83
+ id_dict = dict(zip(csv_merge['Player'], csv_merge['Name + ID']))
84
+ hold_container = st.empty()
85
+ display = hold_display.set_index('Player')
86
+ st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
87
+ st.download_button(
88
+ label="Export Projections",
89
+ data=convert_df_to_csv(display),
90
+ file_name='PGA_DFS_export.csv',
91
+ mime='text/csv',
92
+ )
93
+
94
+ with tab2:
95
+ col1, col2 = st.columns([1, 4])
96
+
97
+ with col1:
98
+
99
+ max_sal = st.number_input('Max Salary', min_value = 35000, max_value = 50000, value = 50000, step = 100)
100
+ min_sal = st.number_input('Min Salary', min_value = 35000, max_value = 49900, value = 49000, step = 100)
101
+ proj_cut = st.number_input('Lowest median allowed', min_value = 0, max_value = 100, value = 50, step = 1)
102
+ slack_var = st.number_input('Median randomness', min_value = 0, max_value = 5, value = 0, step = 1)
103
+ totalRuns_raw = st.number_input('How many Lineups', min_value = 1, max_value = 1000, value = 5, step = 1)
104
+
105
+
106
+ totalRuns = totalRuns_raw
107
+ cut_group_1 = []
108
+ cut_group_2 = []
109
+ force_group_1 = []
110
+ force_group_2 = []
111
+ avoid_players = []
112
+ lock_player = []
113
+ lineups = []
114
+ player_pool_raw = []
115
+
116
+ player_pool = []
117
+ player_count = []
118
+ player_trim_pool = []
119
+ portfolio = pd.DataFrame()
120
+ x = 1
121
+
122
+ if st.button('Optimize'):
123
+ max_proj = 1000
124
+ max_own = 1000
125
+ total_proj = 0
126
+ total_own = 0
127
+
128
+ with col2:
129
+ with st.spinner('Wait for it...'):
130
+ with hold_container.container():
131
+
132
+ while x <= totalRuns:
133
+
134
+ raw_proj_file = hold_display
135
+ raw_flex_file = raw_proj_file.dropna(how='all')
136
+ raw_flex_file = raw_flex_file.loc[raw_flex_file['Median'] > 0]
137
+ raw_flex_file = raw_flex_file.loc[raw_flex_file['Median'] > proj_cut]
138
+ flex_file = raw_flex_file
139
+ flex_file = flex_file[['Player', 'Salary', 'Median', 'Own', 'LevX']]
140
+ flex_file.rename(columns={"Own": "Proj DK Own%"}, inplace = True)
141
+ flex_file['name_var'] = flex_file['Player']
142
+ flex_file['lock'] = flex_file['Player'].isin(lock_player)*1
143
+ flex_file['force_group_1'] = flex_file['Player'].isin(force_group_1)*1
144
+ flex_file['force_group_2'] = flex_file['Player'].isin(force_group_2)*1
145
+ flex_file['cut_group_1'] = flex_file['Player'].isin(cut_group_1)*1
146
+ flex_file['cut_group_2'] = flex_file['Player'].isin(cut_group_2)*1
147
+ chalk_file = flex_file.sort_values(by='Proj DK Own%', ascending=False)
148
+ chalk_group_df = chalk_file.sample(n=10)
149
+ chalk_group = chalk_group_df['Player'].tolist()
150
+ flex_file['chalk_group'] = flex_file['Player'].isin(chalk_group)*1
151
+ flex_file['Pos'] = 'G'
152
+ flex_file = flex_file[['Player', 'name_var', 'Pos', 'Salary', 'Median', 'Proj DK Own%', 'lock', 'force_group_1', 'force_group_2', 'cut_group_1', 'cut_group_2', 'chalk_group', 'LevX']]
153
+ if x > 1:
154
+ if slack_var > 0:
155
+ flex_file['randNumCol'] = np.random.randint(-int(slack_var),int(slack_var), flex_file.shape[0])
156
+ elif slack_var ==0:
157
+ flex_file['randNumCol'] = 0
158
+ elif x == 1:
159
+ flex_file['randNumCol'] = 0
160
+ flex_file['Median'] = flex_file['Median'] + flex_file['randNumCol']
161
+ flex_file_check = flex_file
162
+ check_list.append(flex_file['Median'][4])
163
+ player_ids = flex_file.index
164
+
165
+ overall_players = flex_file[['Player']]
166
+ overall_players['player_var_add'] = flex_file.index
167
+ overall_players['player_var'] = 'player_vars_' + overall_players['player_var_add'].astype(str)
168
+
169
+ player_vars = pulp.LpVariable.dicts("player_vars", flex_file.index, 0, 1, pulp.LpInteger)
170
+ total_score = pulp.LpProblem("Fantasy_Points_Problem", pulp.LpMaximize)
171
+ player_match = dict(zip(overall_players['player_var'], overall_players['Player']))
172
+ player_index_match = dict(zip(overall_players['player_var'], overall_players['player_var_add']))
173
+ player_own = dict(zip(flex_file['Player'], flex_file['Proj DK Own%']))
174
+ player_sal = dict(zip(flex_file['Player'], flex_file['Salary']))
175
+ player_lev = dict(zip(flex_file['Player'], flex_file['LevX']))
176
+ player_proj = dict(zip(flex_file['Player'], flex_file['Median']))
177
+
178
+ obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
179
+ total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
180
+
181
+ obj_points_max = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
182
+ obj_own_max = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index}
183
+
184
+ obj_salary = {idx: (flex_file['Salary'][idx]) for idx in flex_file.index}
185
+ total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) <= max_sal
186
+ total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) >= min_sal
187
+
188
+ for flex in flex_file['Pos'].unique():
189
+ sub_idx = flex_file[flex_file['Pos'] != "Var"].index
190
+ total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 6
191
+
192
+ player_count = []
193
+ player_trim = []
194
+ lineup_list = []
195
+
196
+ total_score += pulp.lpSum([player_vars[idx]*obj_points_max[idx] for idx in flex_file.index]) <= max_proj - .01
197
+
198
+ total_score.solve()
199
+ for v in total_score.variables():
200
+ if v.varValue > 0:
201
+ lineup_list.append(v.name)
202
+ df = pd.DataFrame(lineup_list)
203
+ df['Names'] = df[0].map(player_match)
204
+ df['Cost'] = df['Names'].map(player_sal)
205
+ df['Proj'] = df['Names'].map(player_proj)
206
+ df['Own'] = df['Names'].map(player_own)
207
+ total_cost = sum(df['Cost'])
208
+ total_own = sum(df['Own'])
209
+ total_proj = sum(df['Proj'])
210
+ lineup_raw = pd.DataFrame(lineup_list)
211
+ lineup_raw['Names'] = lineup_raw[0].map(player_match)
212
+ lineup_raw['value'] = lineup_raw[0].map(player_index_match)
213
+ lineup_final = lineup_raw.sort_values(by=['value'])
214
+ del lineup_final[lineup_final.columns[0]]
215
+ del lineup_final[lineup_final.columns[1]]
216
+ lineup_final = lineup_final.reset_index(drop=True)
217
+ lineup_test = lineup_final
218
+ lineup_final = lineup_final.T
219
+ lineup_final['Cost'] = total_cost
220
+ lineup_final['Proj'] = total_proj
221
+ lineup_final['Own'] = total_own
222
+
223
+ if total_cost < 50001:
224
+ lineups.append(lineup_final)
225
+
226
+ lineup_test['Salary'] = lineup_test['Names'].map(player_sal)
227
+ lineup_test['Proj'] = lineup_test['Names'].map(player_proj)
228
+ lineup_test['Own'] = lineup_test['Names'].map(player_own)
229
+ lineup_test['LevX'] = lineup_test['Names'].map(player_lev)
230
+ lineup_test.loc['Column_Total'] = lineup_test.sum(numeric_only=True, axis=0)
231
+
232
+ lineup_display.append(lineup_test)
233
+
234
+ with col2:
235
+ with st.container():
236
+ st.table(lineup_test)
237
+
238
+ max_proj = total_proj
239
+ max_own = total_own
240
+
241
+ check_list.append(total_proj)
242
+
243
+ portfolio = portfolio.append(lineup_final, ignore_index = True)
244
+
245
+ x += 1
246
+
247
+ portfolio.rename(columns={0: "Player_1", 1: "Player_2", 2: "Player_3", 3: "Player_4", 4: "Player_5", 5: "Player_6"}, inplace = True)
248
+ portfolio = portfolio.dropna()
249
+
250
+ final_outcomes = portfolio
251
+ final_outcomes['p1 id'] = final_outcomes['Player_1'].map(id_dict)
252
+ final_outcomes['p2 id'] = final_outcomes['Player_2'].map(id_dict)
253
+ final_outcomes['p3 id'] = final_outcomes['Player_3'].map(id_dict)
254
+ final_outcomes['p4 id'] = final_outcomes['Player_4'].map(id_dict)
255
+ final_outcomes['p5 id'] = final_outcomes['Player_5'].map(id_dict)
256
+ final_outcomes['p6 id'] = final_outcomes['Player_6'].map(id_dict)
257
+ final_outcomes = final_outcomes[['p1 id', 'p2 id', 'p3 id', 'p4 id', 'p5 id', 'p6 id']]
258
+ with col1:
259
+ st.download_button(
260
+ label="Export Lineups",
261
+ data=convert_df_to_csv(final_outcomes),
262
+ file_name='PGA_DFS_export.csv',
263
+ mime='text/csv',
264
+ )
265
+
266
+ with hold_container:
267
+ hold_container = st.empty()