James McCool commited on
Commit
3297127
·
1 Parent(s): 237dfa0

Add player salary mapping to optimize data display and analysis

Browse files

- Create player_salaries dictionary mapping players to their salaries
- Update summary DataFrame generation to include player salaries
- Ensure salary information is available when resetting data and generating player frequency reports

Files changed (1) hide show
  1. app.py +4 -0
app.py CHANGED
@@ -110,6 +110,7 @@ def convert_df(array):
110
  return array.to_csv().encode('utf-8')
111
 
112
  roo_data, sd_roo_data, timestamp = init_baselines()
 
113
  hold_display = roo_data
114
  lineup_display = []
115
  check_list = []
@@ -178,6 +179,7 @@ with tab2:
178
  if st.button("Load/Reset Data", key='reset2'):
179
  st.cache_data.clear()
180
  roo_data, sd_roo_data, timestamp = init_baselines()
 
181
  hold_display = roo_data
182
  dk_lineups = init_DK_lineups('Regular')
183
  fd_lineups = init_FD_lineups('Regular')
@@ -379,6 +381,7 @@ with tab2:
379
  # Create a DataFrame with the results
380
  summary_df = pd.DataFrame({
381
  'Player': value_counts.index,
 
382
  'Frequency': value_counts.values,
383
  'Percentage': percentages.values
384
  })
@@ -411,6 +414,7 @@ with tab2:
411
  # Create a DataFrame with the results
412
  summary_df = pd.DataFrame({
413
  'Player': value_counts.index,
 
414
  'Frequency': value_counts.values,
415
  'Percentage': percentages.values
416
  })
 
110
  return array.to_csv().encode('utf-8')
111
 
112
  roo_data, sd_roo_data, timestamp = init_baselines()
113
+ player_salaries = map(dict, roo_data[['Player', 'Salary']].values)
114
  hold_display = roo_data
115
  lineup_display = []
116
  check_list = []
 
179
  if st.button("Load/Reset Data", key='reset2'):
180
  st.cache_data.clear()
181
  roo_data, sd_roo_data, timestamp = init_baselines()
182
+ player_salaries = map(dict, roo_data[['Player', 'Salary']].values)
183
  hold_display = roo_data
184
  dk_lineups = init_DK_lineups('Regular')
185
  fd_lineups = init_FD_lineups('Regular')
 
381
  # Create a DataFrame with the results
382
  summary_df = pd.DataFrame({
383
  'Player': value_counts.index,
384
+ 'Salary': value_counts.index.map(player_salaries),
385
  'Frequency': value_counts.values,
386
  'Percentage': percentages.values
387
  })
 
414
  # Create a DataFrame with the results
415
  summary_df = pd.DataFrame({
416
  'Player': value_counts.index,
417
+ 'Salary': value_counts.index.map(player_salaries),
418
  'Frequency': value_counts.values,
419
  'Percentage': percentages.values
420
  })