Spaces:
Running
Running
James McCool
commited on
Commit
·
3d00450
1
Parent(s):
6493759
Refactor app.py to replace Google Sheets integration with MongoDB. Removed gspread and related credentials, added pymongo for database connection. Updated data retrieval methods to fetch data from MongoDB collections. Adjusted UI elements and cleaned up unused code.
Browse files- app.py +19 -207
- requirements.txt +1 -1
app.py
CHANGED
@@ -5,36 +5,21 @@ for name in dir():
|
|
5 |
if not name.startswith('_'):
|
6 |
del globals()[name]
|
7 |
|
8 |
-
import pulp
|
9 |
import numpy as np
|
10 |
import pandas as pd
|
11 |
import streamlit as st
|
12 |
-
import gspread
|
13 |
import gc
|
|
|
14 |
|
15 |
@st.cache_resource
|
16 |
def init_conn():
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
credentials = {
|
21 |
-
"type": "service_account",
|
22 |
-
"project_id": "sheets-api-connect-378620",
|
23 |
-
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
|
24 |
-
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
|
25 |
-
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
|
26 |
-
"client_id": "106625872877651920064",
|
27 |
-
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
28 |
-
"token_uri": "https://oauth2.googleapis.com/token",
|
29 |
-
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
30 |
-
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
|
31 |
-
}
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
gcservice_account = init_conn()
|
38 |
|
39 |
dk_player_url = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2USuxZbkogI_2jnxFfQVVs/edit#gid=1828092624'
|
40 |
CSV_URL = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2USuxZbkogI_2jnxFfQVVs/edit#gid=1828092624'
|
@@ -44,50 +29,41 @@ player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_fi
|
|
44 |
|
45 |
@st.cache_resource(ttl = 600)
|
46 |
def init_baselines():
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
data_cols =
|
51 |
-
|
52 |
-
roo_data =
|
53 |
-
|
54 |
-
worksheet = sh.worksheet('DK_CSV')
|
55 |
-
draftkings_data = pd.DataFrame(worksheet.get_all_records())
|
56 |
-
draftkings_data.rename(columns={"Name": "Player"}, inplace = True)
|
57 |
|
58 |
-
return roo_data
|
59 |
|
60 |
def convert_df_to_csv(df):
|
61 |
return df.to_csv().encode('utf-8')
|
62 |
|
63 |
-
roo_data
|
64 |
hold_display = roo_data
|
65 |
-
csv_data = draftkings_data
|
66 |
-
csv_merge = pd.merge(csv_data, hold_display, how='left', left_on=['Player'], right_on = ['Player'])
|
67 |
-
id_dict = dict(zip(csv_merge['Player'], csv_merge['Name + ID']))
|
68 |
lineup_display = []
|
69 |
check_list = []
|
70 |
rand_player = 0
|
71 |
boost_player = 0
|
72 |
salaryCut = 0
|
73 |
|
74 |
-
tab1, tab2 = st.tabs(["Player Overall Projections", "
|
75 |
|
76 |
with tab1:
|
77 |
if st.button("Reset Data", key='reset1'):
|
78 |
# Clear values from *all* all in-memory and on-disk data caches:
|
79 |
# i.e. clear values from both square and cube
|
80 |
st.cache_data.clear()
|
81 |
-
roo_data
|
82 |
hold_display = roo_data
|
83 |
-
csv_data = draftkings_data
|
84 |
-
csv_merge = pd.merge(csv_data, hold_display, how='left', left_on=['Player'], right_on = ['Player'])
|
85 |
-
id_dict = dict(zip(csv_merge['Player'], csv_merge['Name + ID']))
|
86 |
lineup_display = []
|
87 |
check_list = []
|
88 |
rand_player = 0
|
89 |
boost_player = 0
|
90 |
salaryCut = 0
|
|
|
91 |
hold_container = st.empty()
|
92 |
display = hold_display.set_index('Player')
|
93 |
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True)
|
@@ -99,168 +75,4 @@ with tab1:
|
|
99 |
)
|
100 |
|
101 |
with tab2:
|
102 |
-
|
103 |
-
|
104 |
-
with col1:
|
105 |
-
|
106 |
-
max_sal = st.number_input('Max Salary', min_value = 35000, max_value = 50000, value = 50000, step = 100)
|
107 |
-
min_sal = st.number_input('Min Salary', min_value = 35000, max_value = 49900, value = 49000, step = 100)
|
108 |
-
proj_cut = st.number_input('Lowest median allowed', min_value = 0, max_value = 100, value = 25, step = 1)
|
109 |
-
slack_var = st.number_input('Median randomness', min_value = 0, max_value = 5, value = 0, step = 1)
|
110 |
-
totalRuns_raw = st.number_input('How many Lineups', min_value = 1, max_value = 1000, value = 5, step = 1)
|
111 |
-
|
112 |
-
|
113 |
-
totalRuns = totalRuns_raw
|
114 |
-
cut_group_1 = []
|
115 |
-
cut_group_2 = []
|
116 |
-
force_group_1 = []
|
117 |
-
force_group_2 = []
|
118 |
-
avoid_players = []
|
119 |
-
lock_player = []
|
120 |
-
lineups = []
|
121 |
-
player_pool_raw = []
|
122 |
-
|
123 |
-
player_pool = []
|
124 |
-
player_count = []
|
125 |
-
player_trim_pool = []
|
126 |
-
portfolio = pd.DataFrame()
|
127 |
-
x = 1
|
128 |
-
|
129 |
-
if st.button('Optimize'):
|
130 |
-
max_proj = 1000
|
131 |
-
max_own = 1000
|
132 |
-
total_proj = 0
|
133 |
-
total_own = 0
|
134 |
-
|
135 |
-
with col2:
|
136 |
-
with st.spinner('Wait for it...'):
|
137 |
-
with hold_container.container():
|
138 |
-
|
139 |
-
while x <= totalRuns:
|
140 |
-
|
141 |
-
raw_proj_file = hold_display
|
142 |
-
raw_flex_file = raw_proj_file.dropna(how='all')
|
143 |
-
raw_flex_file = raw_flex_file.loc[raw_flex_file['Median'] > 0]
|
144 |
-
raw_flex_file = raw_flex_file.loc[raw_flex_file['Median'] > proj_cut]
|
145 |
-
flex_file = raw_flex_file
|
146 |
-
flex_file = flex_file[['Player', 'Salary', 'Median', 'Own', 'LevX']]
|
147 |
-
flex_file.rename(columns={"Own": "Proj DK Own%"}, inplace = True)
|
148 |
-
flex_file['name_var'] = flex_file['Player']
|
149 |
-
flex_file['lock'] = flex_file['Player'].isin(lock_player)*1
|
150 |
-
flex_file['Pos'] = 'G'
|
151 |
-
flex_file = flex_file[['Player', 'name_var', 'Pos', 'Salary', 'Median', 'Proj DK Own%', 'lock', 'LevX']]
|
152 |
-
if x > 1:
|
153 |
-
if slack_var > 0:
|
154 |
-
flex_file['randNumCol'] = np.random.randint(-int(slack_var),int(slack_var), flex_file.shape[0])
|
155 |
-
elif slack_var ==0:
|
156 |
-
flex_file['randNumCol'] = 0
|
157 |
-
elif x == 1:
|
158 |
-
flex_file['randNumCol'] = 0
|
159 |
-
flex_file['Median'] = flex_file['Median'] + flex_file['randNumCol']
|
160 |
-
flex_file_check = flex_file
|
161 |
-
check_list.append(flex_file['Median'][4])
|
162 |
-
player_ids = flex_file.index
|
163 |
-
|
164 |
-
overall_players = flex_file[['Player']]
|
165 |
-
overall_players['player_var_add'] = flex_file.index
|
166 |
-
overall_players['player_var'] = 'player_vars_' + overall_players['player_var_add'].astype(str)
|
167 |
-
|
168 |
-
player_vars = pulp.LpVariable.dicts("player_vars", flex_file.index, 0, 1, pulp.LpInteger)
|
169 |
-
total_score = pulp.LpProblem("Fantasy_Points_Problem", pulp.LpMaximize)
|
170 |
-
player_match = dict(zip(overall_players['player_var'], overall_players['Player']))
|
171 |
-
player_index_match = dict(zip(overall_players['player_var'], overall_players['player_var_add']))
|
172 |
-
player_own = dict(zip(flex_file['Player'], flex_file['Proj DK Own%']))
|
173 |
-
player_sal = dict(zip(flex_file['Player'], flex_file['Salary']))
|
174 |
-
player_lev = dict(zip(flex_file['Player'], flex_file['LevX']))
|
175 |
-
player_proj = dict(zip(flex_file['Player'], flex_file['Median']))
|
176 |
-
|
177 |
-
obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
|
178 |
-
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
|
179 |
-
|
180 |
-
obj_points_max = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
|
181 |
-
obj_own_max = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index}
|
182 |
-
|
183 |
-
obj_salary = {idx: (flex_file['Salary'][idx]) for idx in flex_file.index}
|
184 |
-
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) <= max_sal
|
185 |
-
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) >= min_sal
|
186 |
-
|
187 |
-
for flex in flex_file['Pos'].unique():
|
188 |
-
sub_idx = flex_file[flex_file['Pos'] != "Var"].index
|
189 |
-
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 6
|
190 |
-
|
191 |
-
player_count = []
|
192 |
-
player_trim = []
|
193 |
-
lineup_list = []
|
194 |
-
|
195 |
-
total_score += pulp.lpSum([player_vars[idx]*obj_points_max[idx] for idx in flex_file.index]) <= max_proj - .01
|
196 |
-
|
197 |
-
total_score.solve()
|
198 |
-
for v in total_score.variables():
|
199 |
-
if v.varValue > 0:
|
200 |
-
lineup_list.append(v.name)
|
201 |
-
df = pd.DataFrame(lineup_list)
|
202 |
-
df['Names'] = df[0].map(player_match)
|
203 |
-
df['Cost'] = df['Names'].map(player_sal)
|
204 |
-
df['Proj'] = df['Names'].map(player_proj)
|
205 |
-
df['Own'] = df['Names'].map(player_own)
|
206 |
-
total_cost = sum(df['Cost'])
|
207 |
-
total_own = sum(df['Own'])
|
208 |
-
total_proj = sum(df['Proj'])
|
209 |
-
lineup_raw = pd.DataFrame(lineup_list)
|
210 |
-
lineup_raw['Names'] = lineup_raw[0].map(player_match)
|
211 |
-
lineup_raw['value'] = lineup_raw[0].map(player_index_match)
|
212 |
-
lineup_final = lineup_raw.sort_values(by=['value'])
|
213 |
-
del lineup_final[lineup_final.columns[0]]
|
214 |
-
del lineup_final[lineup_final.columns[1]]
|
215 |
-
lineup_final = lineup_final.reset_index(drop=True)
|
216 |
-
lineup_test = lineup_final
|
217 |
-
lineup_final = lineup_final.T
|
218 |
-
lineup_final['Cost'] = total_cost
|
219 |
-
lineup_final['Proj'] = total_proj
|
220 |
-
lineup_final['Own'] = total_own
|
221 |
-
|
222 |
-
if total_cost < 50001:
|
223 |
-
lineups.append(lineup_final)
|
224 |
-
|
225 |
-
lineup_test['Salary'] = lineup_test['Names'].map(player_sal)
|
226 |
-
lineup_test['Proj'] = lineup_test['Names'].map(player_proj)
|
227 |
-
lineup_test['Own'] = lineup_test['Names'].map(player_own)
|
228 |
-
lineup_test['LevX'] = lineup_test['Names'].map(player_lev)
|
229 |
-
lineup_test.loc['Column_Total'] = lineup_test.sum(numeric_only=True, axis=0)
|
230 |
-
|
231 |
-
lineup_display.append(lineup_test)
|
232 |
-
|
233 |
-
with col2:
|
234 |
-
with st.container():
|
235 |
-
st.table(lineup_test)
|
236 |
-
|
237 |
-
max_proj = total_proj
|
238 |
-
max_own = total_own
|
239 |
-
|
240 |
-
check_list.append(total_proj)
|
241 |
-
|
242 |
-
portfolio = pd.concat([portfolio, lineup_final], ignore_index=True)
|
243 |
-
|
244 |
-
x += 1
|
245 |
-
|
246 |
-
portfolio.rename(columns={0: "Player_1", 1: "Player_2", 2: "Player_3", 3: "Player_4", 4: "Player_5", 5: "Player_6"}, inplace = True)
|
247 |
-
portfolio = portfolio.dropna()
|
248 |
-
|
249 |
-
final_outcomes = portfolio
|
250 |
-
final_outcomes['p1 id'] = final_outcomes['Player_1'].map(id_dict)
|
251 |
-
final_outcomes['p2 id'] = final_outcomes['Player_2'].map(id_dict)
|
252 |
-
final_outcomes['p3 id'] = final_outcomes['Player_3'].map(id_dict)
|
253 |
-
final_outcomes['p4 id'] = final_outcomes['Player_4'].map(id_dict)
|
254 |
-
final_outcomes['p5 id'] = final_outcomes['Player_5'].map(id_dict)
|
255 |
-
final_outcomes['p6 id'] = final_outcomes['Player_6'].map(id_dict)
|
256 |
-
final_outcomes = final_outcomes[['p1 id', 'p2 id', 'p3 id', 'p4 id', 'p5 id', 'p6 id']]
|
257 |
-
with col1:
|
258 |
-
st.download_button(
|
259 |
-
label="Export Lineups",
|
260 |
-
data=convert_df_to_csv(final_outcomes),
|
261 |
-
file_name='PGA_DFS_export.csv',
|
262 |
-
mime='text/csv',
|
263 |
-
)
|
264 |
-
|
265 |
-
with hold_container:
|
266 |
-
hold_container = st.empty()
|
|
|
5 |
if not name.startswith('_'):
|
6 |
del globals()[name]
|
7 |
|
|
|
8 |
import numpy as np
|
9 |
import pandas as pd
|
10 |
import streamlit as st
|
|
|
11 |
import gc
|
12 |
+
import pymongo
|
13 |
|
14 |
@st.cache_resource
|
15 |
def init_conn():
|
16 |
+
uri = st.secrets['mongo_uri']
|
17 |
+
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
18 |
+
db = client["PGA_Database"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
return db
|
21 |
+
|
22 |
+
db = init_conn()
|
|
|
|
|
23 |
|
24 |
dk_player_url = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2USuxZbkogI_2jnxFfQVVs/edit#gid=1828092624'
|
25 |
CSV_URL = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2USuxZbkogI_2jnxFfQVVs/edit#gid=1828092624'
|
|
|
29 |
|
30 |
@st.cache_resource(ttl = 600)
|
31 |
def init_baselines():
|
32 |
+
collection = db["PGA_Range_of_Outcomes"]
|
33 |
+
cursor = collection.find()
|
34 |
+
player_frame = pd.DataFrame(cursor)
|
35 |
+
data_cols = player_frame.columns.drop('Player')
|
36 |
+
player_frame[data_cols] = player_frame[data_cols].apply(pd.to_numeric, errors='coerce')
|
37 |
+
roo_data = player_frame
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
return roo_data
|
40 |
|
41 |
def convert_df_to_csv(df):
|
42 |
return df.to_csv().encode('utf-8')
|
43 |
|
44 |
+
roo_data = init_baselines()
|
45 |
hold_display = roo_data
|
|
|
|
|
|
|
46 |
lineup_display = []
|
47 |
check_list = []
|
48 |
rand_player = 0
|
49 |
boost_player = 0
|
50 |
salaryCut = 0
|
51 |
|
52 |
+
tab1, tab2 = st.tabs(["Player Overall Projections", "Not Ready Yet"])
|
53 |
|
54 |
with tab1:
|
55 |
if st.button("Reset Data", key='reset1'):
|
56 |
# Clear values from *all* all in-memory and on-disk data caches:
|
57 |
# i.e. clear values from both square and cube
|
58 |
st.cache_data.clear()
|
59 |
+
roo_data = init_baselines()
|
60 |
hold_display = roo_data
|
|
|
|
|
|
|
61 |
lineup_display = []
|
62 |
check_list = []
|
63 |
rand_player = 0
|
64 |
boost_player = 0
|
65 |
salaryCut = 0
|
66 |
+
|
67 |
hold_container = st.empty()
|
68 |
display = hold_display.set_index('Player')
|
69 |
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True)
|
|
|
75 |
)
|
76 |
|
77 |
with tab2:
|
78 |
+
st.write("Not Ready Yet")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -2,7 +2,7 @@ streamlit
|
|
2 |
gspread
|
3 |
openpyxl
|
4 |
matplotlib
|
5 |
-
|
6 |
pulp
|
7 |
docker
|
8 |
plotly
|
|
|
2 |
gspread
|
3 |
openpyxl
|
4 |
matplotlib
|
5 |
+
pymongo
|
6 |
pulp
|
7 |
docker
|
8 |
plotly
|