James McCool commited on
Commit
71230df
·
1 Parent(s): e54a8b1

Enhance app.py: Introduce DK and FD lineup initialization functions. Added init_DK_lineups and init_FD_lineups to fetch and process data for DraftKings and FanDuel, respectively. Updated data reset logic to clear session state and initialize lineups upon user action. Improved data export functionality and added player frequency analysis for better insights.

Browse files
Files changed (1) hide show
  1. app.py +303 -11
app.py CHANGED
@@ -26,6 +26,8 @@ CSV_URL = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2USuxZbk
26
 
27
  player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '100+%': '{:.2%}', '10x%': '{:.2%}', '11x%': '{:.2%}',
28
  '12x%': '{:.2%}','LevX': '{:.2%}'}
 
 
29
 
30
  @st.cache_resource(ttl = 600)
31
  def init_baselines():
@@ -40,9 +42,56 @@ def init_baselines():
40
 
41
  return roo_data, timestamp
42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  def convert_df_to_csv(df):
44
  return df.to_csv().encode('utf-8')
45
 
 
 
 
 
 
46
  roo_data, timestamp = init_baselines()
47
  hold_display = roo_data
48
  lineup_display = []
@@ -55,16 +104,16 @@ tab1, tab2 = st.tabs(["Player Overall Projections", "Not Ready Yet"])
55
 
56
  with tab1:
57
  if st.button("Reset Data", key='reset1'):
58
- # Clear values from *all* all in-memory and on-disk data caches:
59
- # i.e. clear values from both square and cube
60
- st.cache_data.clear()
61
- roo_data, timestamp = init_baselines()
62
- hold_display = roo_data
63
- lineup_display = []
64
- check_list = []
65
- rand_player = 0
66
- boost_player = 0
67
- salaryCut = 0
68
  st.write(timestamp)
69
  options_container = st.empty()
70
  hold_container = st.empty()
@@ -84,4 +133,247 @@ with tab1:
84
  )
85
 
86
  with tab2:
87
- st.write("Not Ready Yet")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '100+%': '{:.2%}', '10x%': '{:.2%}', '11x%': '{:.2%}',
28
  '12x%': '{:.2%}','LevX': '{:.2%}'}
29
+ dk_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']
30
+ fd_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']
31
 
32
  @st.cache_resource(ttl = 600)
33
  def init_baselines():
 
42
 
43
  return roo_data, timestamp
44
 
45
+ @st.cache_data(ttl = 60)
46
+ def init_DK_lineups():
47
+
48
+ collection = db['PGA_DK_Seed_Frame_Name_Map']
49
+ cursor = collection.find()
50
+ raw_data = pd.DataFrame(list(cursor))
51
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
52
+
53
+ collection = db["PGA_DK_Seed_Frame"]
54
+ cursor = collection.find().limit(10000)
55
+
56
+ raw_display = pd.DataFrame(list(cursor))
57
+ raw_display = raw_display[['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']]
58
+ dict_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6']
59
+ st.write("converting names")
60
+ for col in dict_columns:
61
+ raw_display[col] = raw_display[col].map(names_dict)
62
+ DK_seed = raw_display.to_numpy()
63
+
64
+ return DK_seed
65
+
66
+ @st.cache_data(ttl = 60)
67
+ def init_FD_lineups():
68
+
69
+ collection = db['PGA_DK_Seed_Frame_Name_Map']
70
+ cursor = collection.find()
71
+ raw_data = pd.DataFrame(list(cursor))
72
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
73
+
74
+ collection = db["PGA_DK_Seed_Frame"]
75
+ cursor = collection.find().limit(10000)
76
+
77
+ raw_display = pd.DataFrame(list(cursor))
78
+ raw_display = raw_display[['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']]
79
+ dict_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6']
80
+ st.write("converting names")
81
+ for col in dict_columns:
82
+ raw_display[col] = raw_display[col].map(names_dict)
83
+ FD_seed = raw_display.to_numpy()
84
+
85
+ return FD_seed
86
+
87
  def convert_df_to_csv(df):
88
  return df.to_csv().encode('utf-8')
89
 
90
+ @st.cache_data
91
+ def convert_df(array):
92
+ array = pd.DataFrame(array, columns=column_names)
93
+ return array.to_csv().encode('utf-8')
94
+
95
  roo_data, timestamp = init_baselines()
96
  hold_display = roo_data
97
  lineup_display = []
 
104
 
105
  with tab1:
106
  if st.button("Reset Data", key='reset1'):
107
+ # Clear values from *all* all in-memory and on-disk data caches:
108
+ # i.e. clear values from both square and cube
109
+ st.cache_data.clear()
110
+ roo_data, timestamp = init_baselines()
111
+ dk_lineups = init_DK_lineups()
112
+ fd_lineups = init_FD_lineups()
113
+ hold_display = roo_data
114
+ for key in st.session_state.keys():
115
+ del st.session_state[key]
116
+
117
  st.write(timestamp)
118
  options_container = st.empty()
119
  hold_container = st.empty()
 
133
  )
134
 
135
  with tab2:
136
+ col1, col2 = st.columns([1, 7])
137
+ with col1:
138
+ if st.button("Load/Reset Data", key='reset2'):
139
+ st.cache_data.clear()
140
+ roo_data, timestamp = init_baselines()
141
+ hold_display = roo_data
142
+ dk_lineups = init_DK_lineups()
143
+ fd_lineups = init_FD_lineups()
144
+ t_stamp = f"Last Update: " + str(timestamp) + f" CST"
145
+ for key in st.session_state.keys():
146
+ del st.session_state[key]
147
+
148
+ slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Just the Main Slate'))
149
+ site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
150
+ lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1)
151
+
152
+ if site_var1 == 'Draftkings':
153
+ raw_baselines = hold_display
154
+ ROO_slice = raw_baselines[raw_baselines['site'] == 'Draftkings']
155
+ # Get the minimum and maximum ownership values from dk_lineups
156
+ min_own = np.min(dk_lineups[:,12])
157
+ max_own = np.max(dk_lineups[:,12])
158
+ column_names = dk_columns
159
+
160
+ player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
161
+ if player_var1 == 'Specific Players':
162
+ player_var2 = st.multiselect('Which players do you want?', options = raw_baselines['Player'].unique())
163
+ elif player_var1 == 'Full Slate':
164
+ player_var2 = raw_baselines.Player.values.tolist()
165
+
166
+ elif site_var1 == 'Fanduel':
167
+ raw_baselines = hold_display
168
+ ROO_slice = raw_baselines[raw_baselines['site'] == 'Fanduel']
169
+ min_own = np.min(fd_lineups[:,12])
170
+ max_own = np.max(fd_lineups[:,12])
171
+ column_names = fd_columns
172
+
173
+ player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
174
+ if player_var1 == 'Specific Players':
175
+ player_var2 = st.multiselect('Which players do you want?', options = raw_baselines['Player'].unique())
176
+ elif player_var1 == 'Full Slate':
177
+ player_var2 = raw_baselines.Player.values.tolist()
178
+
179
+ if st.button("Prepare data export", key='data_export'):
180
+ data_export = st.session_state.working_seed.copy()
181
+ # if site_var1 == 'Draftkings':
182
+ # for col_idx in range(6):
183
+ # data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
184
+ # elif site_var1 == 'Fanduel':
185
+ # for col_idx in range(6):
186
+ # data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
187
+ st.download_button(
188
+ label="Export optimals set",
189
+ data=convert_df(data_export),
190
+ file_name='NBA_optimals_export.csv',
191
+ mime='text/csv',
192
+ )
193
+ with col2:
194
+
195
+ if site_var1 == 'Draftkings':
196
+ if 'working_seed' in st.session_state:
197
+ st.session_state.working_seed = st.session_state.working_seed
198
+ if player_var1 == 'Specific Players':
199
+ st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
200
+ elif player_var1 == 'Full Slate':
201
+ st.session_state.working_seed = dk_lineups.copy()
202
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
203
+ elif 'working_seed' not in st.session_state:
204
+ st.session_state.working_seed = dk_lineups.copy()
205
+ st.session_state.working_seed = st.session_state.working_seed
206
+ if player_var1 == 'Specific Players':
207
+ st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
208
+ elif player_var1 == 'Full Slate':
209
+ st.session_state.working_seed = dk_lineups.copy()
210
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
211
+
212
+ elif site_var1 == 'Fanduel':
213
+ if 'working_seed' in st.session_state:
214
+ st.session_state.working_seed = st.session_state.working_seed
215
+ if player_var1 == 'Specific Players':
216
+ st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
217
+ elif player_var1 == 'Full Slate':
218
+ st.session_state.working_seed = fd_lineups.copy()
219
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
220
+ elif 'working_seed' not in st.session_state:
221
+ st.session_state.working_seed = fd_lineups.copy()
222
+ st.session_state.working_seed = st.session_state.working_seed
223
+ if player_var1 == 'Specific Players':
224
+ st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
225
+ elif player_var1 == 'Full Slate':
226
+ st.session_state.working_seed = fd_lineups.copy()
227
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
228
+
229
+ export_file = st.session_state.data_export_display.copy()
230
+ # if site_var1 == 'Draftkings':
231
+ # for col_idx in range(6):
232
+ # export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
233
+ # elif site_var1 == 'Fanduel':
234
+ # for col_idx in range(6):
235
+ # export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
236
+
237
+ with st.container():
238
+ if st.button("Reset Optimals", key='reset3'):
239
+ for key in st.session_state.keys():
240
+ del st.session_state[key]
241
+ if site_var1 == 'Draftkings':
242
+ st.session_state.working_seed = dk_lineups.copy()
243
+ elif site_var1 == 'Fanduel':
244
+ st.session_state.working_seed = fd_lineups.copy()
245
+ if 'data_export_display' in st.session_state:
246
+ st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
247
+ st.download_button(
248
+ label="Export display optimals",
249
+ data=convert_df(export_file),
250
+ file_name='NBA_display_optimals.csv',
251
+ mime='text/csv',
252
+ )
253
+
254
+ with st.container():
255
+ if 'working_seed' in st.session_state:
256
+ # Create a new dataframe with summary statistics
257
+ if site_var1 == 'Draftkings':
258
+ summary_df = pd.DataFrame({
259
+ 'Metric': ['Min', 'Average', 'Max', 'STDdev'],
260
+ 'Salary': [
261
+ np.min(st.session_state.working_seed[:,6]),
262
+ np.mean(st.session_state.working_seed[:,6]),
263
+ np.max(st.session_state.working_seed[:,6]),
264
+ np.std(st.session_state.working_seed[:,6])
265
+ ],
266
+ 'Proj': [
267
+ np.min(st.session_state.working_seed[:,7]),
268
+ np.mean(st.session_state.working_seed[:,7]),
269
+ np.max(st.session_state.working_seed[:,7]),
270
+ np.std(st.session_state.working_seed[:,7])
271
+ ],
272
+ 'Own': [
273
+ np.min(st.session_state.working_seed[:,12]),
274
+ np.mean(st.session_state.working_seed[:,12]),
275
+ np.max(st.session_state.working_seed[:,12]),
276
+ np.std(st.session_state.working_seed[:,12])
277
+ ]
278
+ })
279
+ elif site_var1 == 'Fanduel':
280
+ summary_df = pd.DataFrame({
281
+ 'Metric': ['Min', 'Average', 'Max', 'STDdev'],
282
+ 'Salary': [
283
+ np.min(st.session_state.working_seed[:,6]),
284
+ np.mean(st.session_state.working_seed[:,6]),
285
+ np.max(st.session_state.working_seed[:,6]),
286
+ np.std(st.session_state.working_seed[:,6])
287
+ ],
288
+ 'Proj': [
289
+ np.min(st.session_state.working_seed[:,7]),
290
+ np.mean(st.session_state.working_seed[:,7]),
291
+ np.max(st.session_state.working_seed[:,7]),
292
+ np.std(st.session_state.working_seed[:,7])
293
+ ],
294
+ 'Own': [
295
+ np.min(st.session_state.working_seed[:,12]),
296
+ np.mean(st.session_state.working_seed[:,12]),
297
+ np.max(st.session_state.working_seed[:,12]),
298
+ np.std(st.session_state.working_seed[:,12])
299
+ ]
300
+ })
301
+
302
+ # Set the index of the summary dataframe as the "Metric" column
303
+ summary_df = summary_df.set_index('Metric')
304
+
305
+ # Display the summary dataframe
306
+ st.subheader("Optimal Statistics")
307
+ st.dataframe(summary_df.style.format({
308
+ 'Salary': '{:.2f}',
309
+ 'Proj': '{:.2f}',
310
+ 'Own': '{:.2f}'
311
+ }).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)
312
+
313
+ with st.container():
314
+ tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"])
315
+ with tab1:
316
+ if 'data_export_display' in st.session_state:
317
+ if site_var1 == 'Draftkings':
318
+ player_columns = st.session_state.data_export_display.iloc[:, :6]
319
+ elif site_var1 == 'Fanduel':
320
+ player_columns = st.session_state.data_export_display.iloc[:, :6]
321
+
322
+ # Flatten the DataFrame and count unique values
323
+ value_counts = player_columns.values.flatten().tolist()
324
+ value_counts = pd.Series(value_counts).value_counts()
325
+
326
+ percentages = (value_counts / lineup_num_var * 100).round(2)
327
+
328
+ # Create a DataFrame with the results
329
+ summary_df = pd.DataFrame({
330
+ 'Player': value_counts.index,
331
+ 'Frequency': value_counts.values,
332
+ 'Percentage': percentages.values
333
+ })
334
+
335
+ # Sort by frequency in descending order
336
+ summary_df = summary_df.sort_values('Frequency', ascending=False)
337
+
338
+ # Display the table
339
+ st.write("Player Frequency Table:")
340
+ st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True)
341
+
342
+ st.download_button(
343
+ label="Export player frequency",
344
+ data=convert_df_to_csv(summary_df),
345
+ file_name='PGA_player_frequency.csv',
346
+ mime='text/csv',
347
+ )
348
+ with tab2:
349
+ if 'working_seed' in st.session_state:
350
+ if site_var1 == 'Draftkings':
351
+ player_columns = st.session_state.working_seed[:, :6]
352
+ elif site_var1 == 'Fanduel':
353
+ player_columns = st.session_state.working_seed[:, :6]
354
+
355
+ # Flatten the DataFrame and count unique values
356
+ value_counts = player_columns.flatten().tolist()
357
+ value_counts = pd.Series(value_counts).value_counts()
358
+
359
+ percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2)
360
+ # Create a DataFrame with the results
361
+ summary_df = pd.DataFrame({
362
+ 'Player': value_counts.index,
363
+ 'Frequency': value_counts.values,
364
+ 'Percentage': percentages.values
365
+ })
366
+
367
+ # Sort by frequency in descending order
368
+ summary_df = summary_df.sort_values('Frequency', ascending=False)
369
+
370
+ # Display the table
371
+ st.write("Seed Frame Frequency Table:")
372
+ st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True)
373
+
374
+ st.download_button(
375
+ label="Export seed frame frequency",
376
+ data=convert_df_to_csv(summary_df),
377
+ file_name='PGA_seed_frame_frequency.csv',
378
+ mime='text/csv',
379
+ )