Multichem commited on
Commit
d117a25
·
1 Parent(s): feb94fc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -13
app.py CHANGED
@@ -40,7 +40,7 @@ dk_player_url = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2U
40
  CSV_URL = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2USuxZbkogI_2jnxFfQVVs/edit#gid=1828092624'
41
 
42
  @st.cache_resource(ttl = 600)
43
- def load_dk_player_model():
44
  sh = gc.open_by_url(dk_player_url)
45
  worksheet = sh.get_worksheet(0)
46
  raw_display = pd.DataFrame(worksheet.get_all_records())
@@ -53,43 +53,46 @@ def load_dk_player_model():
53
  raw_display['11x%'] = raw_display['11x%'].str.replace('%', '').astype(float)/100
54
  raw_display['12x%'] = raw_display['12x%'].str.replace('%', '').astype(float)/100
55
  raw_display['LevX'] = raw_display['LevX'].str.replace('%', '').astype(float)/100
 
56
 
57
- return raw_display
58
-
59
- @st.cache_resource(ttl = 600)
60
- def grab_csv_data():
61
  sh = gc.open_by_url(CSV_URL)
62
  worksheet = sh.worksheet('Site_Info')
63
  draftkings_data = pd.DataFrame(worksheet.get_all_records())
64
  draftkings_data.rename(columns={"Name": "Player"}, inplace = True)
65
 
66
- return draftkings_data
67
-
68
- tab1, tab2 = st.tabs(["Player Overall Projections", "Optimizer"])
69
 
70
  def convert_df_to_csv(df):
71
  return df.to_csv().encode('utf-8')
72
 
73
- hold_display = load_dk_player_model()
74
- csv_data = grab_csv_data()
 
75
  csv_merge = pd.merge(csv_data, hold_display, how='left', left_on=['Player'], right_on = ['Player'])
76
  id_dict = dict(zip(csv_merge['Player'], csv_merge['Name + ID']))
77
-
78
  lineup_display = []
79
  check_list = []
80
  rand_player = 0
81
  boost_player = 0
82
  salaryCut = 0
83
 
 
 
84
  with tab1:
85
  if st.button("Reset Data", key='reset1'):
86
  # Clear values from *all* all in-memory and on-disk data caches:
87
  # i.e. clear values from both square and cube
88
  st.cache_data.clear()
89
- hold_display = load_dk_player_model()
90
- csv_data = grab_csv_data()
 
91
  csv_merge = pd.merge(csv_data, hold_display, how='left', left_on=['Player'], right_on = ['Player'])
92
  id_dict = dict(zip(csv_merge['Player'], csv_merge['Name + ID']))
 
 
 
 
 
93
  hold_container = st.empty()
94
  display = hold_display.set_index('Player')
95
  st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
 
40
  CSV_URL = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2USuxZbkogI_2jnxFfQVVs/edit#gid=1828092624'
41
 
42
  @st.cache_resource(ttl = 600)
43
+ def init_baselines():
44
  sh = gc.open_by_url(dk_player_url)
45
  worksheet = sh.get_worksheet(0)
46
  raw_display = pd.DataFrame(worksheet.get_all_records())
 
53
  raw_display['11x%'] = raw_display['11x%'].str.replace('%', '').astype(float)/100
54
  raw_display['12x%'] = raw_display['12x%'].str.replace('%', '').astype(float)/100
55
  raw_display['LevX'] = raw_display['LevX'].str.replace('%', '').astype(float)/100
56
+ roo_data = raw_display
57
 
 
 
 
 
58
  sh = gc.open_by_url(CSV_URL)
59
  worksheet = sh.worksheet('Site_Info')
60
  draftkings_data = pd.DataFrame(worksheet.get_all_records())
61
  draftkings_data.rename(columns={"Name": "Player"}, inplace = True)
62
 
63
+ return roo_data, draftkings_data
 
 
64
 
65
  def convert_df_to_csv(df):
66
  return df.to_csv().encode('utf-8')
67
 
68
+ roo_data, draftkings_data = init_baselines()
69
+ hold_display = roo_data
70
+ csv_data = draftkings_data
71
  csv_merge = pd.merge(csv_data, hold_display, how='left', left_on=['Player'], right_on = ['Player'])
72
  id_dict = dict(zip(csv_merge['Player'], csv_merge['Name + ID']))
 
73
  lineup_display = []
74
  check_list = []
75
  rand_player = 0
76
  boost_player = 0
77
  salaryCut = 0
78
 
79
+ tab1, tab2 = st.tabs(["Player Overall Projections", "Optimizer"])
80
+
81
  with tab1:
82
  if st.button("Reset Data", key='reset1'):
83
  # Clear values from *all* all in-memory and on-disk data caches:
84
  # i.e. clear values from both square and cube
85
  st.cache_data.clear()
86
+ roo_data, draftkings_data = init_baselines()
87
+ hold_display = roo_data
88
+ csv_data = draftkings_data
89
  csv_merge = pd.merge(csv_data, hold_display, how='left', left_on=['Player'], right_on = ['Player'])
90
  id_dict = dict(zip(csv_merge['Player'], csv_merge['Name + ID']))
91
+ lineup_display = []
92
+ check_list = []
93
+ rand_player = 0
94
+ boost_player = 0
95
+ salaryCut = 0
96
  hold_container = st.empty()
97
  display = hold_display.set_index('Player')
98
  st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)