Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -40,7 +40,7 @@ dk_player_url = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2U
|
|
40 |
CSV_URL = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2USuxZbkogI_2jnxFfQVVs/edit#gid=1828092624'
|
41 |
|
42 |
@st.cache_resource(ttl = 600)
|
43 |
-
def
|
44 |
sh = gc.open_by_url(dk_player_url)
|
45 |
worksheet = sh.get_worksheet(0)
|
46 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
@@ -53,43 +53,46 @@ def load_dk_player_model():
|
|
53 |
raw_display['11x%'] = raw_display['11x%'].str.replace('%', '').astype(float)/100
|
54 |
raw_display['12x%'] = raw_display['12x%'].str.replace('%', '').astype(float)/100
|
55 |
raw_display['LevX'] = raw_display['LevX'].str.replace('%', '').astype(float)/100
|
|
|
56 |
|
57 |
-
return raw_display
|
58 |
-
|
59 |
-
@st.cache_resource(ttl = 600)
|
60 |
-
def grab_csv_data():
|
61 |
sh = gc.open_by_url(CSV_URL)
|
62 |
worksheet = sh.worksheet('Site_Info')
|
63 |
draftkings_data = pd.DataFrame(worksheet.get_all_records())
|
64 |
draftkings_data.rename(columns={"Name": "Player"}, inplace = True)
|
65 |
|
66 |
-
return draftkings_data
|
67 |
-
|
68 |
-
tab1, tab2 = st.tabs(["Player Overall Projections", "Optimizer"])
|
69 |
|
70 |
def convert_df_to_csv(df):
|
71 |
return df.to_csv().encode('utf-8')
|
72 |
|
73 |
-
|
74 |
-
|
|
|
75 |
csv_merge = pd.merge(csv_data, hold_display, how='left', left_on=['Player'], right_on = ['Player'])
|
76 |
id_dict = dict(zip(csv_merge['Player'], csv_merge['Name + ID']))
|
77 |
-
|
78 |
lineup_display = []
|
79 |
check_list = []
|
80 |
rand_player = 0
|
81 |
boost_player = 0
|
82 |
salaryCut = 0
|
83 |
|
|
|
|
|
84 |
with tab1:
|
85 |
if st.button("Reset Data", key='reset1'):
|
86 |
# Clear values from *all* all in-memory and on-disk data caches:
|
87 |
# i.e. clear values from both square and cube
|
88 |
st.cache_data.clear()
|
89 |
-
|
90 |
-
|
|
|
91 |
csv_merge = pd.merge(csv_data, hold_display, how='left', left_on=['Player'], right_on = ['Player'])
|
92 |
id_dict = dict(zip(csv_merge['Player'], csv_merge['Name + ID']))
|
|
|
|
|
|
|
|
|
|
|
93 |
hold_container = st.empty()
|
94 |
display = hold_display.set_index('Player')
|
95 |
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
|
|
40 |
CSV_URL = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2USuxZbkogI_2jnxFfQVVs/edit#gid=1828092624'
|
41 |
|
42 |
@st.cache_resource(ttl = 600)
|
43 |
+
def init_baselines():
|
44 |
sh = gc.open_by_url(dk_player_url)
|
45 |
worksheet = sh.get_worksheet(0)
|
46 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
|
|
53 |
raw_display['11x%'] = raw_display['11x%'].str.replace('%', '').astype(float)/100
|
54 |
raw_display['12x%'] = raw_display['12x%'].str.replace('%', '').astype(float)/100
|
55 |
raw_display['LevX'] = raw_display['LevX'].str.replace('%', '').astype(float)/100
|
56 |
+
roo_data = raw_display
|
57 |
|
|
|
|
|
|
|
|
|
58 |
sh = gc.open_by_url(CSV_URL)
|
59 |
worksheet = sh.worksheet('Site_Info')
|
60 |
draftkings_data = pd.DataFrame(worksheet.get_all_records())
|
61 |
draftkings_data.rename(columns={"Name": "Player"}, inplace = True)
|
62 |
|
63 |
+
return roo_data, draftkings_data
|
|
|
|
|
64 |
|
65 |
def convert_df_to_csv(df):
|
66 |
return df.to_csv().encode('utf-8')
|
67 |
|
68 |
+
roo_data, draftkings_data = init_baselines()
|
69 |
+
hold_display = roo_data
|
70 |
+
csv_data = draftkings_data
|
71 |
csv_merge = pd.merge(csv_data, hold_display, how='left', left_on=['Player'], right_on = ['Player'])
|
72 |
id_dict = dict(zip(csv_merge['Player'], csv_merge['Name + ID']))
|
|
|
73 |
lineup_display = []
|
74 |
check_list = []
|
75 |
rand_player = 0
|
76 |
boost_player = 0
|
77 |
salaryCut = 0
|
78 |
|
79 |
+
tab1, tab2 = st.tabs(["Player Overall Projections", "Optimizer"])
|
80 |
+
|
81 |
with tab1:
|
82 |
if st.button("Reset Data", key='reset1'):
|
83 |
# Clear values from *all* all in-memory and on-disk data caches:
|
84 |
# i.e. clear values from both square and cube
|
85 |
st.cache_data.clear()
|
86 |
+
roo_data, draftkings_data = init_baselines()
|
87 |
+
hold_display = roo_data
|
88 |
+
csv_data = draftkings_data
|
89 |
csv_merge = pd.merge(csv_data, hold_display, how='left', left_on=['Player'], right_on = ['Player'])
|
90 |
id_dict = dict(zip(csv_merge['Player'], csv_merge['Name + ID']))
|
91 |
+
lineup_display = []
|
92 |
+
check_list = []
|
93 |
+
rand_player = 0
|
94 |
+
boost_player = 0
|
95 |
+
salaryCut = 0
|
96 |
hold_container = st.empty()
|
97 |
display = hold_display.set_index('Player')
|
98 |
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|