Spaces:
Sleeping
Sleeping
James McCool
commited on
Commit
·
18ef45f
1
Parent(s):
2e35766
Refactor ownership calculations in app.py to enhance accuracy for FanDuel and DraftKings. Updated dupes calculation to incorporate a scaling factor for Contest_Size, and streamlined ownership metrics by adjusting relevant columns. This improves the precision of player ownership analysis and contest lineup simulations.
Browse files
app.py
CHANGED
@@ -551,22 +551,22 @@ with tab1:
|
|
551 |
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
|
552 |
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
|
553 |
# Add percent rank columns for ownership at each roster position
|
554 |
-
dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
|
555 |
-
own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own']
|
556 |
-
Sim_Winner_Frame['CPT_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']).rank(pct=True)
|
557 |
-
Sim_Winner_Frame['FLEX1_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']).rank(pct=True)
|
558 |
-
Sim_Winner_Frame['FLEX2_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']).rank(pct=True)
|
559 |
-
Sim_Winner_Frame['FLEX3_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']).rank(pct=True)
|
560 |
-
Sim_Winner_Frame['FLEX4_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']).rank(pct=True)
|
561 |
-
Sim_Winner_Frame['FLEX5_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,5].map(maps_dict['Own_map']).rank(pct=True)
|
562 |
-
Sim_Winner_Frame['CPT_Own'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']) / 100
|
563 |
-
Sim_Winner_Frame['FLEX1_Own'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']) / 100
|
564 |
-
Sim_Winner_Frame['FLEX2_Own'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']) / 100
|
565 |
-
Sim_Winner_Frame['FLEX3_Own'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']) / 100
|
566 |
-
Sim_Winner_Frame['FLEX4_Own'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']) / 100
|
567 |
-
Sim_Winner_Frame['FLEX5_Own'] = Sim_Winner_Frame.iloc[:,5].map(maps_dict['Own_map']) / 100
|
568 |
# Calculate Dupes column for Fanduel
|
569 |
if sim_site_var1 == 'Fanduel':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
570 |
# Calculate ownership product and convert to probability
|
571 |
Sim_Winner_Frame['own_product'] = (Sim_Winner_Frame[own_columns].product(axis=1)) + 0.0001
|
572 |
|
@@ -574,7 +574,7 @@ with tab1:
|
|
574 |
Sim_Winner_Frame['avg_own_rank'] = Sim_Winner_Frame[dup_count_columns].mean(axis=1)
|
575 |
|
576 |
# Calculate dupes formula
|
577 |
-
Sim_Winner_Frame['dupes_calc'] = ((Sim_Winner_Frame['own_product'] * Sim_Winner_Frame['avg_own_rank']) * Contest_Size) + ((Sim_Winner_Frame['salary'] - 59800) / 100)
|
578 |
|
579 |
# Round and handle negative values
|
580 |
Sim_Winner_Frame['Dupes'] = np.where(
|
@@ -583,6 +583,22 @@ with tab1:
|
|
583 |
np.round(Sim_Winner_Frame['dupes_calc'], 0) - 1
|
584 |
)
|
585 |
elif sim_site_var1 == 'Draftkings':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
586 |
# Calculate ownership product and convert to probability
|
587 |
Sim_Winner_Frame['own_product'] = (Sim_Winner_Frame[own_columns].product(axis=1))
|
588 |
|
@@ -590,7 +606,7 @@ with tab1:
|
|
590 |
Sim_Winner_Frame['avg_own_rank'] = Sim_Winner_Frame[dup_count_columns].mean(axis=1)
|
591 |
|
592 |
# Calculate dupes formula
|
593 |
-
Sim_Winner_Frame['dupes_calc'] = ((Sim_Winner_Frame['own_product'] * Sim_Winner_Frame['avg_own_rank']) * Contest_Size) + ((Sim_Winner_Frame['salary'] - 49800) / 100)
|
594 |
|
595 |
# Round and handle negative values
|
596 |
Sim_Winner_Frame['Dupes'] = np.where(
|
@@ -598,12 +614,15 @@ with tab1:
|
|
598 |
0,
|
599 |
np.round(Sim_Winner_Frame['dupes_calc'], 0) - 1
|
600 |
)
|
601 |
-
|
|
|
|
|
|
|
602 |
|
603 |
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
|
604 |
|
605 |
# Type Casting
|
606 |
-
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
|
607 |
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
608 |
|
609 |
# Sorting
|
|
|
551 |
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
|
552 |
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
|
553 |
# Add percent rank columns for ownership at each roster position
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
554 |
# Calculate Dupes column for Fanduel
|
555 |
if sim_site_var1 == 'Fanduel':
|
556 |
+
dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank']
|
557 |
+
own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own']
|
558 |
+
calc_columns = ['own_product', 'avg_own_rank', 'dupes_calc']
|
559 |
+
Sim_Winner_Frame['CPT_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']).rank(pct=True)
|
560 |
+
Sim_Winner_Frame['FLEX1_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']).rank(pct=True)
|
561 |
+
Sim_Winner_Frame['FLEX2_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']).rank(pct=True)
|
562 |
+
Sim_Winner_Frame['FLEX3_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']).rank(pct=True)
|
563 |
+
Sim_Winner_Frame['FLEX4_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']).rank(pct=True)
|
564 |
+
Sim_Winner_Frame['CPT_Own'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']) / 100
|
565 |
+
Sim_Winner_Frame['FLEX1_Own'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']) / 100
|
566 |
+
Sim_Winner_Frame['FLEX2_Own'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']) / 100
|
567 |
+
Sim_Winner_Frame['FLEX3_Own'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']) / 100
|
568 |
+
Sim_Winner_Frame['FLEX4_Own'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']) / 100
|
569 |
+
|
570 |
# Calculate ownership product and convert to probability
|
571 |
Sim_Winner_Frame['own_product'] = (Sim_Winner_Frame[own_columns].product(axis=1)) + 0.0001
|
572 |
|
|
|
574 |
Sim_Winner_Frame['avg_own_rank'] = Sim_Winner_Frame[dup_count_columns].mean(axis=1)
|
575 |
|
576 |
# Calculate dupes formula
|
577 |
+
Sim_Winner_Frame['dupes_calc'] = ((Sim_Winner_Frame['own_product'] * Sim_Winner_Frame['avg_own_rank']) * (Contest_Size * 1.5)) + ((Sim_Winner_Frame['salary'] - 59800) / 100)
|
578 |
|
579 |
# Round and handle negative values
|
580 |
Sim_Winner_Frame['Dupes'] = np.where(
|
|
|
583 |
np.round(Sim_Winner_Frame['dupes_calc'], 0) - 1
|
584 |
)
|
585 |
elif sim_site_var1 == 'Draftkings':
|
586 |
+
dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
|
587 |
+
own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own']
|
588 |
+
calc_columns = ['own_product', 'avg_own_rank', 'dupes_calc']
|
589 |
+
Sim_Winner_Frame['CPT_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']).rank(pct=True)
|
590 |
+
Sim_Winner_Frame['FLEX1_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']).rank(pct=True)
|
591 |
+
Sim_Winner_Frame['FLEX2_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']).rank(pct=True)
|
592 |
+
Sim_Winner_Frame['FLEX3_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']).rank(pct=True)
|
593 |
+
Sim_Winner_Frame['FLEX4_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']).rank(pct=True)
|
594 |
+
Sim_Winner_Frame['FLEX5_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,5].map(maps_dict['Own_map']).rank(pct=True)
|
595 |
+
Sim_Winner_Frame['CPT_Own'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']) / 100
|
596 |
+
Sim_Winner_Frame['FLEX1_Own'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']) / 100
|
597 |
+
Sim_Winner_Frame['FLEX2_Own'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']) / 100
|
598 |
+
Sim_Winner_Frame['FLEX3_Own'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']) / 100
|
599 |
+
Sim_Winner_Frame['FLEX4_Own'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']) / 100
|
600 |
+
Sim_Winner_Frame['FLEX5_Own'] = Sim_Winner_Frame.iloc[:,5].map(maps_dict['Own_map']) / 100
|
601 |
+
|
602 |
# Calculate ownership product and convert to probability
|
603 |
Sim_Winner_Frame['own_product'] = (Sim_Winner_Frame[own_columns].product(axis=1))
|
604 |
|
|
|
606 |
Sim_Winner_Frame['avg_own_rank'] = Sim_Winner_Frame[dup_count_columns].mean(axis=1)
|
607 |
|
608 |
# Calculate dupes formula
|
609 |
+
Sim_Winner_Frame['dupes_calc'] = ((Sim_Winner_Frame['own_product'] * Sim_Winner_Frame['avg_own_rank']) * (Contest_Size * 1.5)) + ((Sim_Winner_Frame['salary'] - 49800) / 100)
|
610 |
|
611 |
# Round and handle negative values
|
612 |
Sim_Winner_Frame['Dupes'] = np.where(
|
|
|
614 |
0,
|
615 |
np.round(Sim_Winner_Frame['dupes_calc'], 0) - 1
|
616 |
)
|
617 |
+
Sim_Winner_Frame['Dupes'] = np.round(Sim_Winner_Frame['Dupes'], 0)
|
618 |
+
Sim_Winner_Frame = Sim_Winner_Frame.drop(columns=dup_count_columns)
|
619 |
+
Sim_Winner_Frame = Sim_Winner_Frame.drop(columns=own_columns)
|
620 |
+
Sim_Winner_Frame = Sim_Winner_Frame.drop(columns=calc_columns)
|
621 |
|
622 |
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
|
623 |
|
624 |
# Type Casting
|
625 |
+
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32, 'Dupes': int}
|
626 |
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
627 |
|
628 |
# Sorting
|