James McCool commited on
Commit
644d661
·
1 Parent(s): 57077e4

removed use of gspread and transferred to mongo

Browse files
Files changed (1) hide show
  1. app.py +40 -41
app.py CHANGED
@@ -58,7 +58,7 @@ fd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team
58
  @st.cache_data(ttl = 599)
59
  def init_DK_seed_frames(sport):
60
  if sport == 'NFL':
61
- db = client["testing_db"]
62
  elif sport == 'NBA':
63
  db = client["NBA_DFS"]
64
 
@@ -75,7 +75,7 @@ def init_DK_seed_frames(sport):
75
  def init_DK_secondary_seed_frames(sport):
76
 
77
  if sport == 'NFL':
78
- db = client["testing_db"]
79
  elif sport == 'NBA':
80
  db = client["NBA_DFS"]
81
 
@@ -92,7 +92,7 @@ def init_DK_secondary_seed_frames(sport):
92
  def init_FD_seed_frames(sport):
93
 
94
  if sport == 'NFL':
95
- db = client["testing_db"]
96
  elif sport == 'NBA':
97
  db = client["NBA_DFS"]
98
 
@@ -109,7 +109,7 @@ def init_FD_seed_frames(sport):
109
  def init_FD_secondary_seed_frames(sport):
110
 
111
  if sport == 'NFL':
112
- db = client["testing_db"]
113
  elif sport == 'NBA':
114
  db = client["NBA_DFS"]
115
 
@@ -125,51 +125,50 @@ def init_FD_secondary_seed_frames(sport):
125
  @st.cache_data(ttl = 599)
126
  def init_baselines(sport):
127
  if sport == 'NFL':
128
- try:
129
- sh = gcservice_account.open_by_url(NFL_Data)
130
- except:
131
- sh = gcservice_account2.open_by_url(NFL_Data)
132
-
133
- worksheet = sh.worksheet('DK_SD_ROO')
134
- load_display = pd.DataFrame(worksheet.get_all_records())
135
- load_display.replace('', np.nan, inplace=True)
136
- load_display['STDev'] = load_display['Median'] / 4
137
- load_display = load_display.drop_duplicates(subset=['Player'], keep='first')
138
 
139
- dk_raw = load_display.dropna(subset=['Median'])
140
 
141
- worksheet = sh.worksheet('FD_SD_ROO')
142
- load_display = pd.DataFrame(worksheet.get_all_records())
143
- load_display.replace('', np.nan, inplace=True)
144
- load_display['STDev'] = load_display['Median'] / 4
145
- load_display = load_display.drop_duplicates(subset=['Player'], keep='first')
 
 
146
 
147
- fd_raw = load_display.dropna(subset=['Median'])
148
 
149
  elif sport == 'NBA':
150
-
151
- try:
152
- sh = gcservice_account.open_by_url(NBA_Data)
153
- except:
154
- sh = gcservice_account2.open_by_url(NBA_Data)
155
-
156
- worksheet = sh.worksheet('Player_Level_SD_ROO')
157
- load_display = pd.DataFrame(worksheet.get_all_records())
158
- load_display.replace('', np.nan, inplace=True)
159
- load_display['STDev'] = load_display['Median'] / 4
160
- load_display = load_display[load_display['site'] == 'Draftkings']
161
- load_display = load_display.drop_duplicates(subset=['Player'], keep='first')
162
 
163
- dk_raw = load_display.dropna(subset=['Median'])
164
 
165
- worksheet = sh.worksheet('Player_Level_SD_ROO')
166
- load_display = pd.DataFrame(worksheet.get_all_records())
167
- load_display.replace('', np.nan, inplace=True)
168
- load_display['STDev'] = load_display['Median'] / 4
169
- load_display = load_display[load_display['site'] == 'Fanduel']
170
- load_display = load_display.drop_duplicates(subset=['Player'], keep='first')
 
 
171
 
172
- fd_raw = load_display.dropna(subset=['Median'])
173
 
174
  return dk_raw, fd_raw
175
 
 
58
  @st.cache_data(ttl = 599)
59
  def init_DK_seed_frames(sport):
60
  if sport == 'NFL':
61
+ db = client["NFL_Database"]
62
  elif sport == 'NBA':
63
  db = client["NBA_DFS"]
64
 
 
75
  def init_DK_secondary_seed_frames(sport):
76
 
77
  if sport == 'NFL':
78
+ db = client["NFL_Database"]
79
  elif sport == 'NBA':
80
  db = client["NBA_DFS"]
81
 
 
92
  def init_FD_seed_frames(sport):
93
 
94
  if sport == 'NFL':
95
+ db = client["NFL_Database"]
96
  elif sport == 'NBA':
97
  db = client["NBA_DFS"]
98
 
 
109
  def init_FD_secondary_seed_frames(sport):
110
 
111
  if sport == 'NFL':
112
+ db = client["NFL_Database"]
113
  elif sport == 'NBA':
114
  db = client["NBA_DFS"]
115
 
 
125
  @st.cache_data(ttl = 599)
126
  def init_baselines(sport):
127
  if sport == 'NFL':
128
+ db = client["NFL_Database"]
129
+ collection = db['DK_SD_NFL_ROO']
130
+ cursor = collection.find()
131
+
132
+ raw_display = pd.DataFrame(list(cursor))
133
+ raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
134
+ 'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
135
+ raw_display['STDev'] = raw_display['Median'] / 4
 
 
136
 
137
+ dk_raw = raw_display.dropna(subset=['Median'])
138
 
139
+ collection = db['FD_SD_NFL_ROO']
140
+ cursor = collection.find()
141
+
142
+ raw_display = pd.DataFrame(list(cursor))
143
+ raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
144
+ 'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
145
+ raw_display['STDev'] = raw_display['Median'] / 4
146
 
147
+ fd_raw = raw_display.dropna(subset=['Median'])
148
 
149
  elif sport == 'NBA':
150
+ db = client["NBA_DFS"]
151
+ collection = db['Player_SD_Range_Of_Outcomes']
152
+ cursor = collection.find()
153
+
154
+ raw_display = pd.DataFrame(list(cursor))
155
+ raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
156
+ 'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp']]
157
+ raw_display = raw_display[raw_display['site'] == 'Draftkings']
158
+ raw_display['STDev'] = raw_display['Median'] / 4
 
 
 
159
 
160
+ dk_raw = raw_display.dropna(subset=['Median'])
161
 
162
+ collection = db['Player_SD_Range_Of_Outcomes']
163
+ cursor = collection.find()
164
+
165
+ raw_display = pd.DataFrame(list(cursor))
166
+ raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
167
+ 'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp']]
168
+ raw_display = raw_display[raw_display['site'] == 'Fanduel']
169
+ raw_display['STDev'] = raw_display['Median'] / 4
170
 
171
+ fd_raw = raw_display.dropna(subset=['Median'])
172
 
173
  return dk_raw, fd_raw
174