Spaces:
Sleeping
Sleeping
James McCool
commited on
Commit
·
644d661
1
Parent(s):
57077e4
removed use of gspread and transferred to mongo
Browse files
app.py
CHANGED
@@ -58,7 +58,7 @@ fd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team
|
|
58 |
@st.cache_data(ttl = 599)
|
59 |
def init_DK_seed_frames(sport):
|
60 |
if sport == 'NFL':
|
61 |
-
db = client["
|
62 |
elif sport == 'NBA':
|
63 |
db = client["NBA_DFS"]
|
64 |
|
@@ -75,7 +75,7 @@ def init_DK_seed_frames(sport):
|
|
75 |
def init_DK_secondary_seed_frames(sport):
|
76 |
|
77 |
if sport == 'NFL':
|
78 |
-
db = client["
|
79 |
elif sport == 'NBA':
|
80 |
db = client["NBA_DFS"]
|
81 |
|
@@ -92,7 +92,7 @@ def init_DK_secondary_seed_frames(sport):
|
|
92 |
def init_FD_seed_frames(sport):
|
93 |
|
94 |
if sport == 'NFL':
|
95 |
-
db = client["
|
96 |
elif sport == 'NBA':
|
97 |
db = client["NBA_DFS"]
|
98 |
|
@@ -109,7 +109,7 @@ def init_FD_seed_frames(sport):
|
|
109 |
def init_FD_secondary_seed_frames(sport):
|
110 |
|
111 |
if sport == 'NFL':
|
112 |
-
db = client["
|
113 |
elif sport == 'NBA':
|
114 |
db = client["NBA_DFS"]
|
115 |
|
@@ -125,51 +125,50 @@ def init_FD_secondary_seed_frames(sport):
|
|
125 |
@st.cache_data(ttl = 599)
|
126 |
def init_baselines(sport):
|
127 |
if sport == 'NFL':
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
load_display['STDev'] = load_display['Median'] / 4
|
137 |
-
load_display = load_display.drop_duplicates(subset=['Player'], keep='first')
|
138 |
|
139 |
-
dk_raw =
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
146 |
|
147 |
-
fd_raw =
|
148 |
|
149 |
elif sport == 'NBA':
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
load_display['STDev'] = load_display['Median'] / 4
|
160 |
-
load_display = load_display[load_display['site'] == 'Draftkings']
|
161 |
-
load_display = load_display.drop_duplicates(subset=['Player'], keep='first')
|
162 |
|
163 |
-
dk_raw =
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
|
|
171 |
|
172 |
-
fd_raw =
|
173 |
|
174 |
return dk_raw, fd_raw
|
175 |
|
|
|
58 |
@st.cache_data(ttl = 599)
|
59 |
def init_DK_seed_frames(sport):
|
60 |
if sport == 'NFL':
|
61 |
+
db = client["NFL_Database"]
|
62 |
elif sport == 'NBA':
|
63 |
db = client["NBA_DFS"]
|
64 |
|
|
|
75 |
def init_DK_secondary_seed_frames(sport):
|
76 |
|
77 |
if sport == 'NFL':
|
78 |
+
db = client["NFL_Database"]
|
79 |
elif sport == 'NBA':
|
80 |
db = client["NBA_DFS"]
|
81 |
|
|
|
92 |
def init_FD_seed_frames(sport):
|
93 |
|
94 |
if sport == 'NFL':
|
95 |
+
db = client["NFL_Database"]
|
96 |
elif sport == 'NBA':
|
97 |
db = client["NBA_DFS"]
|
98 |
|
|
|
109 |
def init_FD_secondary_seed_frames(sport):
|
110 |
|
111 |
if sport == 'NFL':
|
112 |
+
db = client["NFL_Database"]
|
113 |
elif sport == 'NBA':
|
114 |
db = client["NBA_DFS"]
|
115 |
|
|
|
125 |
@st.cache_data(ttl = 599)
|
126 |
def init_baselines(sport):
|
127 |
if sport == 'NFL':
|
128 |
+
db = client["NFL_Database"]
|
129 |
+
collection = db['DK_SD_NFL_ROO']
|
130 |
+
cursor = collection.find()
|
131 |
+
|
132 |
+
raw_display = pd.DataFrame(list(cursor))
|
133 |
+
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
|
134 |
+
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
|
135 |
+
raw_display['STDev'] = raw_display['Median'] / 4
|
|
|
|
|
136 |
|
137 |
+
dk_raw = raw_display.dropna(subset=['Median'])
|
138 |
|
139 |
+
collection = db['FD_SD_NFL_ROO']
|
140 |
+
cursor = collection.find()
|
141 |
+
|
142 |
+
raw_display = pd.DataFrame(list(cursor))
|
143 |
+
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
|
144 |
+
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
|
145 |
+
raw_display['STDev'] = raw_display['Median'] / 4
|
146 |
|
147 |
+
fd_raw = raw_display.dropna(subset=['Median'])
|
148 |
|
149 |
elif sport == 'NBA':
|
150 |
+
db = client["NBA_DFS"]
|
151 |
+
collection = db['Player_SD_Range_Of_Outcomes']
|
152 |
+
cursor = collection.find()
|
153 |
+
|
154 |
+
raw_display = pd.DataFrame(list(cursor))
|
155 |
+
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
|
156 |
+
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp']]
|
157 |
+
raw_display = raw_display[raw_display['site'] == 'Draftkings']
|
158 |
+
raw_display['STDev'] = raw_display['Median'] / 4
|
|
|
|
|
|
|
159 |
|
160 |
+
dk_raw = raw_display.dropna(subset=['Median'])
|
161 |
|
162 |
+
collection = db['Player_SD_Range_Of_Outcomes']
|
163 |
+
cursor = collection.find()
|
164 |
+
|
165 |
+
raw_display = pd.DataFrame(list(cursor))
|
166 |
+
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
|
167 |
+
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp']]
|
168 |
+
raw_display = raw_display[raw_display['site'] == 'Fanduel']
|
169 |
+
raw_display['STDev'] = raw_display['Median'] / 4
|
170 |
|
171 |
+
fd_raw = raw_display.dropna(subset=['Median'])
|
172 |
|
173 |
return dk_raw, fd_raw
|
174 |
|