Spaces:
Sleeping
Sleeping
James McCool
commited on
Commit
·
7886731
1
Parent(s):
a6442b1
Refactor ownership calculations in app.py to improve accuracy and clarity. Adjusted the calculation of ownership products and dupes for both FanDuel and DraftKings by removing unnecessary divisions and ensuring proper grouping in the formulas. This change enhances the precision of player ownership analysis and contest lineup simulations.
Browse files
app.py
CHANGED
@@ -568,13 +568,13 @@ with tab1:
|
|
568 |
# Calculate Dupes column for Fanduel
|
569 |
if sim_site_var1 == 'Fanduel':
|
570 |
# Calculate ownership product and convert to probability
|
571 |
-
own_product = (Sim_Winner_Frame[own_columns].product(axis=1)
|
572 |
|
573 |
# Calculate average of ownership percent rank columns
|
574 |
avg_own_rank = Sim_Winner_Frame[dup_count_columns].mean(axis=1)
|
575 |
|
576 |
# Calculate dupes formula
|
577 |
-
dupes_calc = (own_product * avg_own_rank * Contest_Size) + ((Sim_Winner_Frame['salary'] - 59800) / 100)
|
578 |
|
579 |
# Round and handle negative values
|
580 |
Sim_Winner_Frame['Dupes'] = np.where(
|
@@ -584,13 +584,13 @@ with tab1:
|
|
584 |
)
|
585 |
elif sim_site_var1 == 'Draftkings':
|
586 |
# Calculate ownership product and convert to probability
|
587 |
-
own_product = (Sim_Winner_Frame[own_columns].product(axis=1)
|
588 |
|
589 |
# Calculate average of ownership percent rank columns
|
590 |
avg_own_rank = Sim_Winner_Frame[dup_count_columns].mean(axis=1)
|
591 |
|
592 |
# Calculate dupes formula
|
593 |
-
dupes_calc = (own_product * avg_own_rank * Contest_Size) + ((Sim_Winner_Frame['salary'] - 49800) / 100)
|
594 |
|
595 |
# Round and handle negative values
|
596 |
Sim_Winner_Frame['Dupes'] = np.where(
|
|
|
568 |
# Calculate Dupes column for Fanduel
|
569 |
if sim_site_var1 == 'Fanduel':
|
570 |
# Calculate ownership product and convert to probability
|
571 |
+
own_product = (Sim_Winner_Frame[own_columns].product(axis=1)) + 0.0001
|
572 |
|
573 |
# Calculate average of ownership percent rank columns
|
574 |
avg_own_rank = Sim_Winner_Frame[dup_count_columns].mean(axis=1)
|
575 |
|
576 |
# Calculate dupes formula
|
577 |
+
dupes_calc = ((own_product * avg_own_rank) * Contest_Size) + ((Sim_Winner_Frame['salary'] - 59800) / 100)
|
578 |
|
579 |
# Round and handle negative values
|
580 |
Sim_Winner_Frame['Dupes'] = np.where(
|
|
|
584 |
)
|
585 |
elif sim_site_var1 == 'Draftkings':
|
586 |
# Calculate ownership product and convert to probability
|
587 |
+
own_product = (Sim_Winner_Frame[own_columns].product(axis=1))
|
588 |
|
589 |
# Calculate average of ownership percent rank columns
|
590 |
avg_own_rank = Sim_Winner_Frame[dup_count_columns].mean(axis=1)
|
591 |
|
592 |
# Calculate dupes formula
|
593 |
+
dupes_calc = ((own_product * avg_own_rank) * Contest_Size) + ((Sim_Winner_Frame['salary'] - 49800) / 100)
|
594 |
|
595 |
# Round and handle negative values
|
596 |
Sim_Winner_Frame['Dupes'] = np.where(
|