James McCool commited on
Commit
7886731
·
1 Parent(s): a6442b1

Refactor ownership calculations in app.py to improve accuracy and clarity. Adjusted the calculation of ownership products and dupes for both FanDuel and DraftKings by removing unnecessary divisions and ensuring proper grouping in the formulas. This change enhances the precision of player ownership analysis and contest lineup simulations.

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -568,13 +568,13 @@ with tab1:
568
  # Calculate Dupes column for Fanduel
569
  if sim_site_var1 == 'Fanduel':
570
  # Calculate ownership product and convert to probability
571
- own_product = (Sim_Winner_Frame[own_columns].product(axis=1) / 100) + 0.0001
572
 
573
  # Calculate average of ownership percent rank columns
574
  avg_own_rank = Sim_Winner_Frame[dup_count_columns].mean(axis=1)
575
 
576
  # Calculate dupes formula
577
- dupes_calc = (own_product * avg_own_rank * Contest_Size) + ((Sim_Winner_Frame['salary'] - 59800) / 100)
578
 
579
  # Round and handle negative values
580
  Sim_Winner_Frame['Dupes'] = np.where(
@@ -584,13 +584,13 @@ with tab1:
584
  )
585
  elif sim_site_var1 == 'Draftkings':
586
  # Calculate ownership product and convert to probability
587
- own_product = (Sim_Winner_Frame[own_columns].product(axis=1) / 100)
588
 
589
  # Calculate average of ownership percent rank columns
590
  avg_own_rank = Sim_Winner_Frame[dup_count_columns].mean(axis=1)
591
 
592
  # Calculate dupes formula
593
- dupes_calc = (own_product * avg_own_rank * Contest_Size) + ((Sim_Winner_Frame['salary'] - 49800) / 100)
594
 
595
  # Round and handle negative values
596
  Sim_Winner_Frame['Dupes'] = np.where(
 
568
  # Calculate Dupes column for Fanduel
569
  if sim_site_var1 == 'Fanduel':
570
  # Calculate ownership product and convert to probability
571
+ own_product = (Sim_Winner_Frame[own_columns].product(axis=1)) + 0.0001
572
 
573
  # Calculate average of ownership percent rank columns
574
  avg_own_rank = Sim_Winner_Frame[dup_count_columns].mean(axis=1)
575
 
576
  # Calculate dupes formula
577
+ dupes_calc = ((own_product * avg_own_rank) * Contest_Size) + ((Sim_Winner_Frame['salary'] - 59800) / 100)
578
 
579
  # Round and handle negative values
580
  Sim_Winner_Frame['Dupes'] = np.where(
 
584
  )
585
  elif sim_site_var1 == 'Draftkings':
586
  # Calculate ownership product and convert to probability
587
+ own_product = (Sim_Winner_Frame[own_columns].product(axis=1))
588
 
589
  # Calculate average of ownership percent rank columns
590
  avg_own_rank = Sim_Winner_Frame[dup_count_columns].mean(axis=1)
591
 
592
  # Calculate dupes formula
593
+ dupes_calc = ((own_product * avg_own_rank) * Contest_Size) + ((Sim_Winner_Frame['salary'] - 49800) / 100)
594
 
595
  # Round and handle negative values
596
  Sim_Winner_Frame['Dupes'] = np.where(