Spaces:
Sleeping
Sleeping
James McCool
commited on
Commit
·
a2dd3d5
1
Parent(s):
9948927
Enhance projection calculations by adding 'cpt_Own_map' to mapping logic in app.py. Updated 'Proj Own' calculations for both 'cpt_working' and 'flex_working' DataFrames to utilize the new mapping, improving accuracy in player ownership projections.
Browse files
app.py
CHANGED
@@ -415,6 +415,7 @@ with tab1:
|
|
415 |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
416 |
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
417 |
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
|
|
|
418 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
419 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
420 |
}
|
@@ -454,6 +455,7 @@ with tab1:
|
|
454 |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
455 |
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
456 |
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
|
|
|
457 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
458 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
459 |
}
|
@@ -505,15 +507,13 @@ with tab1:
|
|
505 |
if sim_site_var1 == 'Draftkings':
|
506 |
cpt_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
|
507 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
508 |
-
cpt_own_div = 600
|
509 |
elif sim_site_var1 == 'Fanduel':
|
510 |
cpt_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
|
511 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
512 |
-
cpt_own_div = 500
|
513 |
cpt_working['Freq'] = cpt_working['Freq'].astype(int)
|
514 |
cpt_working['Position'] = cpt_working['Player'].map(maps_dict['Pos_map'])
|
515 |
cpt_working['Salary'] = cpt_working['Player'].map(maps_dict['Salary_map'])
|
516 |
-
cpt_working['Proj Own'] = cpt_working['Player'].map(maps_dict['
|
517 |
cpt_working['Exposure'] = cpt_working['Freq']/(1000)
|
518 |
cpt_working['Edge'] = cpt_working['Exposure'] - cpt_working['Proj Own']
|
519 |
cpt_working['Team'] = cpt_working['Player'].map(maps_dict['Team_map'])
|
@@ -533,7 +533,7 @@ with tab1:
|
|
533 |
flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map']) / 1.5
|
534 |
elif sim_site_var1 == 'Fanduel':
|
535 |
flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map'])
|
536 |
-
flex_working['Proj Own'] = (flex_working['Player'].map(maps_dict['Own_map']) / 100) - (flex_working['Player'].map(maps_dict['
|
537 |
flex_working['Exposure'] = flex_working['Freq']/(1000)
|
538 |
flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
|
539 |
flex_working['Team'] = flex_working['Player'].map(maps_dict['Team_map'])
|
|
|
415 |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
416 |
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
417 |
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
|
418 |
+
'cpt_Own_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_Own'])),
|
419 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
420 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
421 |
}
|
|
|
455 |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
456 |
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
457 |
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
|
458 |
+
'cpt_Own_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_Own'])),
|
459 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
460 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
461 |
}
|
|
|
507 |
if sim_site_var1 == 'Draftkings':
|
508 |
cpt_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
|
509 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
|
|
510 |
elif sim_site_var1 == 'Fanduel':
|
511 |
cpt_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
|
512 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
|
|
513 |
cpt_working['Freq'] = cpt_working['Freq'].astype(int)
|
514 |
cpt_working['Position'] = cpt_working['Player'].map(maps_dict['Pos_map'])
|
515 |
cpt_working['Salary'] = cpt_working['Player'].map(maps_dict['Salary_map'])
|
516 |
+
cpt_working['Proj Own'] = cpt_working['Player'].map(maps_dict['cpt_Own_map'])
|
517 |
cpt_working['Exposure'] = cpt_working['Freq']/(1000)
|
518 |
cpt_working['Edge'] = cpt_working['Exposure'] - cpt_working['Proj Own']
|
519 |
cpt_working['Team'] = cpt_working['Player'].map(maps_dict['Team_map'])
|
|
|
533 |
flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map']) / 1.5
|
534 |
elif sim_site_var1 == 'Fanduel':
|
535 |
flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map'])
|
536 |
+
flex_working['Proj Own'] = (flex_working['Player'].map(maps_dict['Own_map']) / 100) - (flex_working['Player'].map(maps_dict['cpt_Own_map']))
|
537 |
flex_working['Exposure'] = flex_working['Freq']/(1000)
|
538 |
flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
|
539 |
flex_working['Team'] = flex_working['Player'].map(maps_dict['Team_map'])
|