|
import streamlit as st |
|
st.set_page_config(layout="wide") |
|
|
|
for name in dir(): |
|
if not name.startswith('_'): |
|
del globals()[name] |
|
|
|
import numpy as np |
|
import pandas as pd |
|
import streamlit as st |
|
import gspread |
|
import tracemalloc |
|
|
|
tracemalloc.start() |
|
|
|
@st.cache_resource |
|
def init_conn(): |
|
scope = ['https://www.googleapis.com/auth/spreadsheets', |
|
"https://www.googleapis.com/auth/drive"] |
|
|
|
credentials = { |
|
"type": "service_account", |
|
"project_id": "sheets-api-connect-378620", |
|
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9", |
|
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n", |
|
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com", |
|
"client_id": "106625872877651920064", |
|
"auth_uri": "https://accounts.google.com/o/oauth2/auth", |
|
"token_uri": "https://oauth2.googleapis.com/token", |
|
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs", |
|
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com" |
|
} |
|
|
|
gc = gspread.service_account_from_dict(credentials) |
|
return gc |
|
|
|
gc = init_conn() |
|
|
|
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}', |
|
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'} |
|
|
|
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}', |
|
'4x%': '{:.2%}','GPP%': '{:.2%}'} |
|
|
|
freq_format = {'Proj Own': '{:.2%}', 'Exposure': '{:.2%}', 'Edge': '{:.2%}'} |
|
|
|
@st.cache_resource(ttl=600) |
|
def load_dk_player_projections(): |
|
sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348') |
|
worksheet = sh.worksheet('SD_Projections') |
|
load_display = pd.DataFrame(worksheet.get_all_records()) |
|
load_display.rename(columns={"PPR": "Median", "name": "Player"}, inplace = True) |
|
load_display['Floor'] = load_display['Median'] * .25 |
|
load_display['Ceiling'] = load_display['Median'] + (load_display['Median'] * .75) |
|
load_display.replace('', np.nan, inplace=True) |
|
raw_display = load_display.dropna(subset=['Median']) |
|
del load_display |
|
|
|
return raw_display |
|
|
|
@st.cache_resource(ttl=600) |
|
def load_fd_player_projections(): |
|
sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348') |
|
worksheet = sh.worksheet('FD_SD_Projections') |
|
load_display = pd.DataFrame(worksheet.get_all_records()) |
|
load_display.rename(columns={"Half_PPR": "Median", "name": "Player"}, inplace = True) |
|
load_display['Floor'] = load_display['Median'] * .25 |
|
load_display['Ceiling'] = load_display['Median'] + (load_display['Median'] * .75) |
|
load_display.replace('', np.nan, inplace=True) |
|
raw_display = load_display.dropna(subset=['Median']) |
|
del load_display |
|
|
|
return raw_display |
|
|
|
@st.cache_resource(ttl=600) |
|
def load_dk_player_projections_2(): |
|
sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348') |
|
worksheet = sh.worksheet('SD_Projections_2') |
|
load_display = pd.DataFrame(worksheet.get_all_records()) |
|
load_display.rename(columns={"PPR": "Median", "name": "Player"}, inplace = True) |
|
load_display['Floor'] = load_display['Median'] * .25 |
|
load_display['Ceiling'] = load_display['Median'] + (load_display['Median'] * .75) |
|
load_display.replace('', np.nan, inplace=True) |
|
raw_display = load_display.dropna(subset=['Median']) |
|
del load_display |
|
|
|
return raw_display |
|
|
|
@st.cache_resource(ttl=600) |
|
def load_fd_player_projections_2(): |
|
sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348') |
|
worksheet = sh.worksheet('FD_SD_Projections_2') |
|
load_display = pd.DataFrame(worksheet.get_all_records()) |
|
load_display.rename(columns={"Half_PPR": "Median", "name": "Player"}, inplace = True) |
|
load_display['Floor'] = load_display['Median'] * .25 |
|
load_display['Ceiling'] = load_display['Median'] + (load_display['Median'] * .75) |
|
load_display.replace('', np.nan, inplace=True) |
|
raw_display = load_display.dropna(subset=['Median']) |
|
del load_display |
|
|
|
return raw_display |
|
|
|
@st.cache_data |
|
def convert_df_to_csv(df): |
|
return df.to_csv().encode('utf-8') |
|
|
|
def run_seed_frame(seed_depth1, Strength_var, strength_grow, Teams_used, Total_Runs): |
|
RunsVar = 1 |
|
seed_depth_def = seed_depth1 |
|
Strength_var_def = Strength_var |
|
strength_grow_def = strength_grow |
|
Teams_used_def = Teams_used |
|
Total_Runs_def = Total_Runs |
|
while RunsVar <= seed_depth_def: |
|
if RunsVar <= 3: |
|
FieldStrength = Strength_var_def |
|
RandomPortfolio, maps_dict = get_correlated_portfolio_for_sim(Total_Runs_def * .1) |
|
FinalPortfolio = RandomPortfolio |
|
FinalPortfolio2, maps_dict2 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .1) |
|
FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio2], axis=0) |
|
maps_dict.update(maps_dict2) |
|
del FinalPortfolio2 |
|
del maps_dict2 |
|
elif RunsVar > 3 and RunsVar <= 4: |
|
FieldStrength += (strength_grow_def + ((30 - len(Teams_used_def)) * .001)) |
|
FinalPortfolio3, maps_dict3 = get_correlated_portfolio_for_sim(Total_Runs_def * .1) |
|
FinalPortfolio4, maps_dict4 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .1) |
|
FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio3], axis=0) |
|
FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio4], axis=0) |
|
FinalPortfolio = FinalPortfolio.drop_duplicates(subset = ['Projection', 'Own'],keep = 'last').reset_index(drop = True) |
|
maps_dict.update(maps_dict3) |
|
maps_dict.update(maps_dict4) |
|
del FinalPortfolio3 |
|
del maps_dict3 |
|
del FinalPortfolio4 |
|
del maps_dict4 |
|
elif RunsVar > 4: |
|
FieldStrength = 1 |
|
FinalPortfolio3, maps_dict3 = get_correlated_portfolio_for_sim(Total_Runs_def * .1) |
|
FinalPortfolio4, maps_dict4 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .1) |
|
FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio3], axis=0) |
|
FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio4], axis=0) |
|
FinalPortfolio = FinalPortfolio.drop_duplicates(subset = ['Projection', 'Own'],keep = 'last').reset_index(drop = True) |
|
maps_dict.update(maps_dict3) |
|
maps_dict.update(maps_dict4) |
|
del FinalPortfolio3 |
|
del maps_dict3 |
|
del FinalPortfolio4 |
|
del maps_dict4 |
|
RunsVar += 1 |
|
|
|
return FinalPortfolio, maps_dict |
|
|
|
def create_overall_dfs(pos_players, table_name, dict_name, pos): |
|
pos_players = pos_players.sort_values(by='Value', ascending=False) |
|
table_name_raw = pos_players.reset_index(drop=True) |
|
overall_table_name = table_name_raw.head(round(len(table_name_raw))) |
|
overall_table_name = overall_table_name.assign(Var = range(0,len(overall_table_name))) |
|
overall_dict_name = pd.Series(overall_table_name.Player.values, index=overall_table_name.Var).to_dict() |
|
|
|
del pos_players |
|
del table_name_raw |
|
|
|
return overall_table_name, overall_dict_name |
|
|
|
|
|
def get_overall_merged_df(): |
|
ref_dict = { |
|
'pos':['FLEX'], |
|
'pos_dfs':['FLEX_Table'], |
|
'pos_dicts':['flex_dict'] |
|
} |
|
|
|
for i in range(0,1): |
|
ref_dict['pos_dfs'][i], ref_dict['pos_dicts'][i] =\ |
|
create_overall_dfs(pos_players, ref_dict['pos_dfs'][i], ref_dict['pos_dicts'][i], ref_dict['pos'][i]) |
|
|
|
df_out = pd.concat(ref_dict['pos_dfs'], ignore_index=True) |
|
|
|
return df_out, ref_dict |
|
|
|
def create_random_portfolio(Total_Sample_Size): |
|
|
|
O_merge, full_pos_player_dict = get_overall_merged_df() |
|
Overall_Merge = O_merge[['Var', 'Player', 'Team', 'Salary', 'Median', 'Own']].copy() |
|
|
|
|
|
Overall_Merge['Floor'] = Overall_Merge['Median'] * .25 |
|
Overall_Merge['Ceiling'] = Overall_Merge['Median'] + Overall_Merge['Floor'] |
|
Overall_Merge['STDev'] = Overall_Merge['Median'] / 4 |
|
|
|
|
|
flex_range_var = len(Overall_Merge) |
|
ranges_dict = {'flex_range': flex_range_var} |
|
ranges_dict['flex_Uniques'] = list(range(0, flex_range_var)) |
|
|
|
|
|
rng = np.random.default_rng() |
|
all_choices = rng.choice(flex_range_var, size=(Total_Sample_Size, 6)) |
|
|
|
|
|
RandomPortfolio = pd.DataFrame(all_choices, columns=['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']) |
|
RandomPortfolio['User/Field'] = 0 |
|
|
|
return RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict |
|
|
|
def get_correlated_portfolio_for_sim(Total_Sample_Size): |
|
|
|
sizesplit = round(Total_Sample_Size * .50) |
|
|
|
RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict = create_random_portfolio(sizesplit) |
|
|
|
RandomPortfolio['CPT'] = pd.Series(list(RandomPortfolio['CPT'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]") |
|
RandomPortfolio['FLEX1'] = pd.Series(list(RandomPortfolio['FLEX1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]") |
|
RandomPortfolio['FLEX2'] = pd.Series(list(RandomPortfolio['FLEX2'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]") |
|
RandomPortfolio['FLEX3'] = pd.Series(list(RandomPortfolio['FLEX3'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]") |
|
RandomPortfolio['FLEX4'] = pd.Series(list(RandomPortfolio['FLEX4'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]") |
|
RandomPortfolio['FLEX5'] = pd.Series(list(RandomPortfolio['FLEX5'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]") |
|
RandomPortfolio['plyr_list'] = RandomPortfolio[RandomPortfolio.columns.values.tolist()].values.tolist() |
|
RandomPortfolio['plyr_count'] = RandomPortfolio['plyr_list'].apply(lambda x: len(set(x))) |
|
RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 7].drop(columns=['plyr_list','plyr_count']).\ |
|
reset_index(drop=True) |
|
|
|
del sizesplit |
|
del full_pos_player_dict |
|
del ranges_dict |
|
|
|
RandomPortfolio['CPTs'] = RandomPortfolio['CPT'].map(maps_dict['Salary_map']).astype(np.int32) * 1.5 |
|
RandomPortfolio['FLEX1s'] = RandomPortfolio['FLEX1'].map(maps_dict['Salary_map']).astype(np.int32) |
|
RandomPortfolio['FLEX2s'] = RandomPortfolio['FLEX2'].map(maps_dict['Salary_map']).astype(np.int32) |
|
RandomPortfolio['FLEX3s'] = RandomPortfolio['FLEX3'].map(maps_dict['Salary_map']).astype(np.int32) |
|
RandomPortfolio['FLEX4s'] = RandomPortfolio['FLEX4'].map(maps_dict['Salary_map']).astype(np.int32) |
|
RandomPortfolio['FLEX5s'] = RandomPortfolio['FLEX5'].map(maps_dict['Salary_map']).astype(np.int32) |
|
|
|
RandomPortfolio['CPTp'] = RandomPortfolio['CPT'].map(maps_dict['Projection_map']).astype(np.float16) * 1.5 |
|
RandomPortfolio['FLEX1p'] = RandomPortfolio['FLEX1'].map(maps_dict['Projection_map']).astype(np.float16) |
|
RandomPortfolio['FLEX2p'] = RandomPortfolio['FLEX2'].map(maps_dict['Projection_map']).astype(np.float16) |
|
RandomPortfolio['FLEX3p'] = RandomPortfolio['FLEX3'].map(maps_dict['Projection_map']).astype(np.float16) |
|
RandomPortfolio['FLEX4p'] = RandomPortfolio['FLEX4'].map(maps_dict['Projection_map']).astype(np.float16) |
|
RandomPortfolio['FLEX5p'] = RandomPortfolio['FLEX5'].map(maps_dict['Projection_map']).astype(np.float16) |
|
|
|
RandomPortfolio['CPTo'] = RandomPortfolio['CPT'].map(maps_dict['Own_map']).astype(np.float16) / 4 |
|
RandomPortfolio['FLEX1o'] = RandomPortfolio['FLEX1'].map(maps_dict['Own_map']).astype(np.float16) |
|
RandomPortfolio['FLEX2o'] = RandomPortfolio['FLEX2'].map(maps_dict['Own_map']).astype(np.float16) |
|
RandomPortfolio['FLEX3o'] = RandomPortfolio['FLEX3'].map(maps_dict['Own_map']).astype(np.float16) |
|
RandomPortfolio['FLEX4o'] = RandomPortfolio['FLEX4'].map(maps_dict['Own_map']).astype(np.float16) |
|
RandomPortfolio['FLEX5o'] = RandomPortfolio['FLEX5'].map(maps_dict['Own_map']).astype(np.float16) |
|
|
|
portHeaderList = RandomPortfolio.columns.values.tolist() |
|
portHeaderList.append('Salary') |
|
portHeaderList.append('Projection') |
|
portHeaderList.append('Own') |
|
|
|
RandomPortArray = RandomPortfolio.to_numpy() |
|
del RandomPortfolio |
|
|
|
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,7:13].astype(int))] |
|
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,13:19].astype(np.double))] |
|
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,19:25].astype(np.double))] |
|
|
|
RandomPortArrayOut = np.delete(RandomPortArray, np.s_[7:25], axis=1) |
|
RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'User/Field', 'Salary', 'Projection', 'Own']) |
|
RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False) |
|
del RandomPortArray |
|
del RandomPortArrayOut |
|
|
|
|
|
if insert_port == 1: |
|
CleanPortfolio['Salary'] = sum([CleanPortfolio['CPT'].map(up_dict['Salary_map']) * 1.5, |
|
CleanPortfolio['FLEX1'].map(up_dict['Salary_map']), |
|
CleanPortfolio['FLEX2'].map(up_dict['Salary_map']), |
|
CleanPortfolio['FLEX3'].map(up_dict['Salary_map']), |
|
CleanPortfolio['FLEX4'].map(up_dict['Salary_map']), |
|
CleanPortfolio['FLEX5'].map(up_dict['Salary_map']) |
|
]).astype(np.int16) |
|
if insert_port == 1: |
|
CleanPortfolio['Projection'] = sum([CleanPortfolio['CPT'].map(up_dict['Projection_map']) * 1.5, |
|
CleanPortfolio['FLEX1'].map(up_dict['Projection_map']), |
|
CleanPortfolio['FLEX2'].map(up_dict['Projection_map']), |
|
CleanPortfolio['FLEX3'].map(up_dict['Projection_map']), |
|
CleanPortfolio['FLEX4'].map(up_dict['Projection_map']), |
|
CleanPortfolio['FLEX5'].map(up_dict['Projection_map']) |
|
]).astype(np.float16) |
|
if insert_port == 1: |
|
CleanPortfolio['Own'] = sum([CleanPortfolio['CPT'].map(up_dict['Own_map']) / 4, |
|
CleanPortfolio['FLEX1'].map(up_dict['Own_map']), |
|
CleanPortfolio['FLEX2'].map(up_dict['Own_map']), |
|
CleanPortfolio['FLEX3'].map(up_dict['Own_map']), |
|
CleanPortfolio['FLEX4'].map(up_dict['Own_map']), |
|
CleanPortfolio['FLEX5'].map(up_dict['Own_map']) |
|
]).astype(np.float16) |
|
|
|
if site_var1 == 'Draftkings': |
|
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 50000].reset_index(drop=True) |
|
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= 49500 - (FieldStrength * 1000)].reset_index(drop=True) |
|
elif site_var1 == 'Fanduel': |
|
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 60000].reset_index(drop=True) |
|
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= 59500 - (FieldStrength * 1000)].reset_index(drop=True) |
|
|
|
RandomPortfolio = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False) |
|
|
|
RandomPortfolio = RandomPortfolio[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'User/Field', 'Salary', 'Projection', 'Own']] |
|
|
|
return RandomPortfolio, maps_dict |
|
|
|
def get_uncorrelated_portfolio_for_sim(Total_Sample_Size): |
|
|
|
sizesplit = round(Total_Sample_Size * .50) |
|
|
|
RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict = create_random_portfolio(sizesplit) |
|
|
|
RandomPortfolio['CPT'] = pd.Series(list(RandomPortfolio['CPT'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]") |
|
RandomPortfolio['FLEX1'] = pd.Series(list(RandomPortfolio['FLEX1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]") |
|
RandomPortfolio['FLEX2'] = pd.Series(list(RandomPortfolio['FLEX2'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]") |
|
RandomPortfolio['FLEX3'] = pd.Series(list(RandomPortfolio['FLEX3'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]") |
|
RandomPortfolio['FLEX4'] = pd.Series(list(RandomPortfolio['FLEX4'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]") |
|
RandomPortfolio['FLEX5'] = pd.Series(list(RandomPortfolio['FLEX5'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]") |
|
RandomPortfolio['plyr_list'] = RandomPortfolio[RandomPortfolio.columns.values.tolist()].values.tolist() |
|
RandomPortfolio['plyr_count'] = RandomPortfolio['plyr_list'].apply(lambda x: len(set(x))) |
|
RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 7].drop(columns=['plyr_list','plyr_count']).\ |
|
reset_index(drop=True) |
|
|
|
del sizesplit |
|
del full_pos_player_dict |
|
del ranges_dict |
|
|
|
RandomPortfolio['CPTs'] = RandomPortfolio['CPT'].map(maps_dict['Salary_map']).astype(np.int32) * 1.5 |
|
RandomPortfolio['FLEX1s'] = RandomPortfolio['FLEX1'].map(maps_dict['Salary_map']).astype(np.int32) |
|
RandomPortfolio['FLEX2s'] = RandomPortfolio['FLEX2'].map(maps_dict['Salary_map']).astype(np.int32) |
|
RandomPortfolio['FLEX3s'] = RandomPortfolio['FLEX3'].map(maps_dict['Salary_map']).astype(np.int32) |
|
RandomPortfolio['FLEX4s'] = RandomPortfolio['FLEX4'].map(maps_dict['Salary_map']).astype(np.int32) |
|
RandomPortfolio['FLEX5s'] = RandomPortfolio['FLEX5'].map(maps_dict['Salary_map']).astype(np.int32) |
|
|
|
RandomPortfolio['CPTp'] = RandomPortfolio['CPT'].map(maps_dict['Projection_map']).astype(np.float16) * 1.5 |
|
RandomPortfolio['FLEX1p'] = RandomPortfolio['FLEX1'].map(maps_dict['Projection_map']).astype(np.float16) |
|
RandomPortfolio['FLEX2p'] = RandomPortfolio['FLEX2'].map(maps_dict['Projection_map']).astype(np.float16) |
|
RandomPortfolio['FLEX3p'] = RandomPortfolio['FLEX3'].map(maps_dict['Projection_map']).astype(np.float16) |
|
RandomPortfolio['FLEX4p'] = RandomPortfolio['FLEX4'].map(maps_dict['Projection_map']).astype(np.float16) |
|
RandomPortfolio['FLEX5p'] = RandomPortfolio['FLEX5'].map(maps_dict['Projection_map']).astype(np.float16) |
|
|
|
RandomPortfolio['CPTo'] = RandomPortfolio['CPT'].map(maps_dict['Own_map']).astype(np.float16) / 4 |
|
RandomPortfolio['FLEX1o'] = RandomPortfolio['FLEX1'].map(maps_dict['Own_map']).astype(np.float16) |
|
RandomPortfolio['FLEX2o'] = RandomPortfolio['FLEX2'].map(maps_dict['Own_map']).astype(np.float16) |
|
RandomPortfolio['FLEX3o'] = RandomPortfolio['FLEX3'].map(maps_dict['Own_map']).astype(np.float16) |
|
RandomPortfolio['FLEX4o'] = RandomPortfolio['FLEX4'].map(maps_dict['Own_map']).astype(np.float16) |
|
RandomPortfolio['FLEX5o'] = RandomPortfolio['FLEX5'].map(maps_dict['Own_map']).astype(np.float16) |
|
|
|
portHeaderList = RandomPortfolio.columns.values.tolist() |
|
portHeaderList.append('Salary') |
|
portHeaderList.append('Projection') |
|
portHeaderList.append('Own') |
|
|
|
RandomPortArray = RandomPortfolio.to_numpy() |
|
del RandomPortfolio |
|
|
|
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,7:13].astype(int))] |
|
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,13:19].astype(np.double))] |
|
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,19:25].astype(np.double))] |
|
|
|
RandomPortArrayOut = np.delete(RandomPortArray, np.s_[7:25], axis=1) |
|
RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'User/Field', 'Salary', 'Projection', 'Own']) |
|
RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False) |
|
del RandomPortArray |
|
del RandomPortArrayOut |
|
|
|
|
|
if insert_port == 1: |
|
CleanPortfolio['Salary'] = sum([CleanPortfolio['CPT'].map(up_dict['Salary_map']) * 1.5, |
|
CleanPortfolio['FLEX1'].map(up_dict['Salary_map']), |
|
CleanPortfolio['FLEX2'].map(up_dict['Salary_map']), |
|
CleanPortfolio['FLEX3'].map(up_dict['Salary_map']), |
|
CleanPortfolio['FLEX4'].map(up_dict['Salary_map']), |
|
CleanPortfolio['FLEX5'].map(up_dict['Salary_map']) |
|
]).astype(np.int16) |
|
if insert_port == 1: |
|
CleanPortfolio['Projection'] = sum([CleanPortfolio['CPT'].map(up_dict['Projection_map']) * 1.5, |
|
CleanPortfolio['FLEX1'].map(up_dict['Projection_map']), |
|
CleanPortfolio['FLEX2'].map(up_dict['Projection_map']), |
|
CleanPortfolio['FLEX3'].map(up_dict['Projection_map']), |
|
CleanPortfolio['FLEX4'].map(up_dict['Projection_map']), |
|
CleanPortfolio['FLEX5'].map(up_dict['Projection_map']) |
|
]).astype(np.float16) |
|
if insert_port == 1: |
|
CleanPortfolio['Own'] = sum([CleanPortfolio['CPT'].map(up_dict['Own_map']) / 4, |
|
CleanPortfolio['FLEX1'].map(up_dict['Own_map']), |
|
CleanPortfolio['FLEX2'].map(up_dict['Own_map']), |
|
CleanPortfolio['FLEX3'].map(up_dict['Own_map']), |
|
CleanPortfolio['FLEX4'].map(up_dict['Own_map']), |
|
CleanPortfolio['FLEX5'].map(up_dict['Own_map']) |
|
]).astype(np.float16) |
|
|
|
if site_var1 == 'Draftkings': |
|
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 50000].reset_index(drop=True) |
|
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= 49500 - (FieldStrength * 1000)].reset_index(drop=True) |
|
elif site_var1 == 'Fanduel': |
|
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 60000].reset_index(drop=True) |
|
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= 59500 - (FieldStrength * 1000)].reset_index(drop=True) |
|
|
|
RandomPortfolio = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False) |
|
|
|
RandomPortfolio = RandomPortfolio[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'User/Field', 'Salary', 'Projection', 'Own']] |
|
|
|
return RandomPortfolio, maps_dict |
|
|
|
dk_roo_raw = load_dk_player_projections() |
|
dk_roo_raw_2 = load_dk_player_projections_2() |
|
fd_roo_raw = load_fd_player_projections() |
|
fd_roo_raw_2 = load_fd_player_projections_2() |
|
|
|
static_exposure = pd.DataFrame(columns=['Player', 'count']) |
|
overall_exposure = pd.DataFrame(columns=['Player', 'count']) |
|
|
|
tab1, tab2 = st.tabs(['Uploads', 'Contest Sim']) |
|
|
|
with tab1: |
|
with st.container(): |
|
st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'. Upload your projections first to avoid an error message.") |
|
col1, col2 = st.columns([3, 3]) |
|
|
|
with col1: |
|
proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader') |
|
|
|
if proj_file is not None: |
|
try: |
|
proj_dataframe = pd.read_csv(proj_file) |
|
proj_dataframe = proj_dataframe.dropna(subset='Median') |
|
except: |
|
proj_dataframe = pd.read_excel(proj_file) |
|
proj_dataframe = proj_dataframe.dropna(subset='Median') |
|
|
|
player_salary_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Salary)) |
|
player_proj_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Median)) |
|
player_own_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Own)) |
|
player_team_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Team)) |
|
|
|
with col2: |
|
portfolio_file = st.file_uploader("Upload Portfolio File", key = 'portfolio_uploader') |
|
|
|
if portfolio_file is not None: |
|
try: |
|
portfolio_dataframe = pd.read_csv(portfolio_file) |
|
except: |
|
portfolio_dataframe = pd.read_excel(portfolio_file) |
|
try: |
|
try: |
|
portfolio_dataframe.columns=["CPT", "FLEX1", "FLEX2", "FLEX3", "FLEX4", "FLEX5"] |
|
split_portfolio = portfolio_dataframe |
|
split_portfolio[['CPT', 'CPT_ID']] = split_portfolio.CPT.str.split("(", n=1, expand = True) |
|
split_portfolio[['FLEX1', 'FLEX1_ID']] = split_portfolio.FLEX1.str.split("(", n=1, expand = True) |
|
split_portfolio[['FLEX2', 'FLEX2_ID']] = split_portfolio.FLEX2.str.split("(", n=1, expand = True) |
|
split_portfolio[['FLEX3', 'FLEX3_ID']] = split_portfolio.FLEX3.str.split("(", n=1, expand = True) |
|
split_portfolio[['FLEX4', 'FLEX4_ID']] = split_portfolio.FLEX4.str.split("(", n=1, expand = True) |
|
split_portfolio[['FLEX5', 'FLEX5_ID']] = split_portfolio.FLEX5.str.split("(", n=1, expand = True) |
|
|
|
split_portfolio['CPT'] = split_portfolio['CPT'].str.strip() |
|
split_portfolio['FLEX1'] = split_portfolio['FLEX1'].str.strip() |
|
split_portfolio['FLEX2'] = split_portfolio['FLEX2'].str.strip() |
|
split_portfolio['FLEX3'] = split_portfolio['FLEX3'].str.strip() |
|
split_portfolio['FLEX4'] = split_portfolio['FLEX4'].str.strip() |
|
split_portfolio['FLEX5'] = split_portfolio['FLEX5'].str.strip() |
|
|
|
CPT_dict = dict(zip(split_portfolio.CPT, split_portfolio.CPT_ID)) |
|
FLEX1_dict = dict(zip(split_portfolio.FLEX1, split_portfolio.FLEX1_ID)) |
|
FLEX2_dict = dict(zip(split_portfolio.FLEX2, split_portfolio.FLEX2_ID)) |
|
FLEX3_dict = dict(zip(split_portfolio.FLEX3, split_portfolio.FLEX3_ID)) |
|
FLEX4_dict = dict(zip(split_portfolio.FLEX4, split_portfolio.FLEX4_ID)) |
|
FLEX5_dict = dict(zip(split_portfolio.FLEX5, split_portfolio.FLEX5_ID)) |
|
|
|
split_portfolio['Salary'] = sum([split_portfolio['CPT'].map(player_salary_dict) * 1.5, |
|
split_portfolio['FLEX1'].map(player_salary_dict), |
|
split_portfolio['FLEX2'].map(player_salary_dict), |
|
split_portfolio['FLEX3'].map(player_salary_dict), |
|
split_portfolio['FLEX4'].map(player_salary_dict), |
|
split_portfolio['FLEX5'].map(player_salary_dict)]) |
|
|
|
del player_salary_dict |
|
|
|
split_portfolio['Projection'] = sum([split_portfolio['CPT'].map(player_proj_dict) * 1.5, |
|
split_portfolio['FLEX1'].map(player_proj_dict), |
|
split_portfolio['FLEX2'].map(player_proj_dict), |
|
split_portfolio['FLEX3'].map(player_proj_dict), |
|
split_portfolio['FLEX4'].map(player_proj_dict), |
|
split_portfolio['FLEX5'].map(player_proj_dict)]) |
|
|
|
del player_proj_dict |
|
|
|
split_portfolio['Ownership'] = sum([split_portfolio['CPT'].map(player_own_dict) / 4, |
|
split_portfolio['FLEX1'].map(player_own_dict), |
|
split_portfolio['FLEX2'].map(player_own_dict), |
|
split_portfolio['FLEX3'].map(player_own_dict), |
|
split_portfolio['FLEX4'].map(player_own_dict), |
|
split_portfolio['FLEX5'].map(player_own_dict)]) |
|
|
|
del player_own_dict |
|
|
|
split_portfolio['CPT_team'] = split_portfolio['CPT'].map(player_team_dict) |
|
split_portfolio['FLEX1_team'] = split_portfolio['FLEX1'].map(player_team_dict) |
|
split_portfolio['FLEX2_team'] = split_portfolio['FLEX2'].map(player_team_dict) |
|
split_portfolio['FLEX3_team'] = split_portfolio['FLEX3'].map(player_team_dict) |
|
split_portfolio['FLEX4_team'] = split_portfolio['FLEX4'].map(player_team_dict) |
|
split_portfolio['FLEX5_team'] = split_portfolio['FLEX5'].map(player_team_dict) |
|
|
|
split_portfolio = split_portfolio[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'Salary', 'Projection', 'Ownership', 'CPT_team', |
|
'FLEX1_team', 'FLEX2_team', 'FLEX3_team', 'FLEX4_team', 'FLEX5_team']] |
|
|
|
split_portfolio['Main_Stack'] = 0 |
|
split_portfolio['Main_Stack_Size'] = 0 |
|
split_portfolio['Main_Stack_Size'] = 0 |
|
except: |
|
portfolio_dataframe.columns=["CPT", "FLEX1", "FLEX2", "FLEX3", "FLEX4", "FLEX5"] |
|
split_portfolio = portfolio_dataframe |
|
split_portfolio[['CPT_ID', 'CPT']] = split_portfolio.CPT.str.split(":", n=1, expand = True) |
|
split_portfolio[['FLEX1_ID', 'FLEX1']] = split_portfolio.FLEX1.str.split(":", n=1, expand = True) |
|
split_portfolio[['FLEX2_ID', 'FLEX2']] = split_portfolio.FLEX2.str.split(":", n=1, expand = True) |
|
split_portfolio[['FLEX3_ID', 'FLEX3']] = split_portfolio.FLEX3.str.split(":", n=1, expand = True) |
|
split_portfolio[['FLEX4_ID', 'FLEX4']] = split_portfolio.FLEX4.str.split(":", n=1, expand = True) |
|
split_portfolio[['FLEX5_ID', 'FLEX5']] = split_portfolio.FLEX5.str.split(":", n=1, expand = True) |
|
|
|
split_portfolio['CPT'] = split_portfolio['CPT'].str.strip() |
|
split_portfolio['FLEX1'] = split_portfolio['FLEX1'].str.strip() |
|
split_portfolio['FLEX2'] = split_portfolio['FLEX2'].str.strip() |
|
split_portfolio['FLEX3'] = split_portfolio['FLEX3'].str.strip() |
|
split_portfolio['FLEX4'] = split_portfolio['FLEX4'].str.strip() |
|
split_portfolio['FLEX5'] = split_portfolio['FLEX5'].str.strip() |
|
|
|
CPT_dict = dict(zip(split_portfolio.CPT, split_portfolio.CPT_ID)) |
|
FLEX1_dict = dict(zip(split_portfolio.FLEX1, split_portfolio.FLEX1_ID)) |
|
FLEX2_dict = dict(zip(split_portfolio.FLEX2, split_portfolio.FLEX2_ID)) |
|
FLEX3_dict = dict(zip(split_portfolio.FLEX3, split_portfolio.FLEX3_ID)) |
|
FLEX4_dict = dict(zip(split_portfolio.FLEX4, split_portfolio.FLEX4_ID)) |
|
FLEX5_dict = dict(zip(split_portfolio.FLEX5, split_portfolio.FLEX5_ID)) |
|
|
|
split_portfolio['Salary'] = sum([split_portfolio['CPT'].map(player_salary_dict), |
|
split_portfolio['FLEX1'].map(player_salary_dict), |
|
split_portfolio['FLEX2'].map(player_salary_dict), |
|
split_portfolio['FLEX3'].map(player_salary_dict), |
|
split_portfolio['FLEX4'].map(player_salary_dict), |
|
split_portfolio['FLEX5'].map(player_salary_dict)]) |
|
|
|
del player_salary_dict |
|
|
|
split_portfolio['Projection'] = sum([split_portfolio['CPT'].map(player_proj_dict) * 1.5, |
|
split_portfolio['FLEX1'].map(player_proj_dict), |
|
split_portfolio['FLEX2'].map(player_proj_dict), |
|
split_portfolio['FLEX3'].map(player_proj_dict), |
|
split_portfolio['FLEX4'].map(player_proj_dict), |
|
split_portfolio['FLEX5'].map(player_proj_dict)]) |
|
|
|
del player_proj_dict |
|
|
|
split_portfolio['Ownership'] = sum([split_portfolio['CPT'].map(player_own_dict) / 4, |
|
split_portfolio['FLEX1'].map(player_own_dict), |
|
split_portfolio['FLEX2'].map(player_own_dict), |
|
split_portfolio['FLEX3'].map(player_own_dict), |
|
split_portfolio['FLEX4'].map(player_own_dict), |
|
split_portfolio['FLEX5'].map(player_own_dict)]) |
|
|
|
del player_own_dict |
|
|
|
split_portfolio['CPT_team'] = split_portfolio['CPT'].map(player_team_dict) |
|
split_portfolio['FLEX1_team'] = split_portfolio['FLEX1'].map(player_team_dict) |
|
split_portfolio['FLEX2_team'] = split_portfolio['FLEX2'].map(player_team_dict) |
|
split_portfolio['FLEX3_team'] = split_portfolio['FLEX3'].map(player_team_dict) |
|
split_portfolio['FLEX4_team'] = split_portfolio['FLEX4'].map(player_team_dict) |
|
split_portfolio['FLEX5_team'] = split_portfolio['FLEX5'].map(player_team_dict) |
|
|
|
split_portfolio = split_portfolio[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'Salary', 'Projection', 'Ownership', 'CPT_team', |
|
'FLEX1_team', 'FLEX2_team', 'FLEX3_team', 'FLEX4_team', 'FLEX5_team']] |
|
|
|
split_portfolio['Main_Stack'] = 0 |
|
split_portfolio['Main_Stack_Size'] = 0 |
|
split_portfolio['Main_Stack_Size'] = 0 |
|
except: |
|
split_portfolio = portfolio_dataframe |
|
|
|
split_portfolio['CPT'] = split_portfolio['CPT'].str[:-6] |
|
split_portfolio['FLEX1'] = split_portfolio['FLEX1'].str[:-6] |
|
split_portfolio['FLEX2'] = split_portfolio['FLEX2'].str[:-6] |
|
split_portfolio['FLEX3'] = split_portfolio['FLEX3'].str[:-6] |
|
split_portfolio['FLEX4'] = split_portfolio['FLEX4'].str[:-6] |
|
split_portfolio['FLEX5'] = split_portfolio['FLEX5'].str[:-6] |
|
|
|
split_portfolio['CPT'] = split_portfolio['CPT'].str.strip() |
|
split_portfolio['FLEX1'] = split_portfolio['FLEX1'].str.strip() |
|
split_portfolio['FLEX2'] = split_portfolio['FLEX2'].str.strip() |
|
split_portfolio['FLEX3'] = split_portfolio['FLEX3'].str.strip() |
|
split_portfolio['FLEX4'] = split_portfolio['FLEX4'].str.strip() |
|
split_portfolio['FLEX5'] = split_portfolio['FLEX5'].str.strip() |
|
|
|
split_portfolio['Salary'] = sum([split_portfolio['CPT'].map(player_salary_dict) * 1.5, |
|
split_portfolio['FLEX1'].map(player_salary_dict), |
|
split_portfolio['FLEX2'].map(player_salary_dict), |
|
split_portfolio['FLEX3'].map(player_salary_dict), |
|
split_portfolio['FLEX4'].map(player_salary_dict), |
|
split_portfolio['FLEX5'].map(player_salary_dict)]) |
|
|
|
del player_salary_dict |
|
|
|
split_portfolio['Projection'] = sum([split_portfolio['CPT'].map(player_proj_dict) * 1.5, |
|
split_portfolio['FLEX1'].map(player_proj_dict), |
|
split_portfolio['FLEX2'].map(player_proj_dict), |
|
split_portfolio['FLEX3'].map(player_proj_dict), |
|
split_portfolio['FLEX4'].map(player_proj_dict), |
|
split_portfolio['FLEX5'].map(player_proj_dict)]) |
|
|
|
del player_proj_dict |
|
|
|
split_portfolio['Ownership'] = sum([split_portfolio['CPT'].map(player_own_dict) / 4, |
|
split_portfolio['FLEX1'].map(player_own_dict), |
|
split_portfolio['FLEX2'].map(player_own_dict), |
|
split_portfolio['FLEX3'].map(player_own_dict), |
|
split_portfolio['FLEX4'].map(player_own_dict), |
|
split_portfolio['FLEX5'].map(player_own_dict)]) |
|
|
|
del player_own_dict |
|
|
|
split_portfolio['CPT_team'] = split_portfolio['CPT'].map(player_team_dict) |
|
split_portfolio['FLEX1_team'] = split_portfolio['FLEX1'].map(player_team_dict) |
|
split_portfolio['FLEX2_team'] = split_portfolio['FLEX2'].map(player_team_dict) |
|
split_portfolio['FLEX3_team'] = split_portfolio['FLEX3'].map(player_team_dict) |
|
split_portfolio['FLEX4_team'] = split_portfolio['FLEX4'].map(player_team_dict) |
|
split_portfolio['FLEX5_team'] = split_portfolio['FLEX5'].map(player_team_dict) |
|
|
|
split_portfolio = split_portfolio[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'Salary', 'Projection', 'Ownership', 'CPT_team', |
|
'FLEX1_team', 'FLEX2_team', 'FLEX3_team', 'FLEX4_team', 'FLEX5_team']] |
|
|
|
split_portfolio['Main_Stack'] = 0 |
|
split_portfolio['Main_Stack_Size'] = 0 |
|
split_portfolio['Main_Stack_Size'] = 0 |
|
|
|
for player_cols in split_portfolio.iloc[:, 0:6]: |
|
static_col_raw = split_portfolio[player_cols].value_counts() |
|
static_col = static_col_raw.to_frame() |
|
static_col.reset_index(inplace=True) |
|
static_col.columns = ['Player', 'count'] |
|
static_exposure = pd.concat([static_exposure, static_col], ignore_index=True) |
|
static_exposure['Exposure'] = static_exposure['count'] / len(split_portfolio) |
|
static_exposure = static_exposure[['Player', 'Exposure']] |
|
|
|
del static_col_raw |
|
del static_col |
|
with st.container(): |
|
col1, col2 = st.columns([3, 3]) |
|
|
|
if portfolio_file is not None: |
|
with col1: |
|
st.write(len(portfolio_dataframe)) |
|
team_split_var1 = st.radio("Are you wanting to isolate any lineups with specific main stacks?", ('Full Portfolio', 'Specific Stacks')) |
|
if team_split_var1 == 'Specific Stacks': |
|
team_var1 = st.multiselect('Which main stacks would you like to include in the Portfolio?', options = split_portfolio['Main_Stack'].unique()) |
|
elif team_split_var1 == 'Full Portfolio': |
|
team_var1 = split_portfolio.Main_Stack.values.tolist() |
|
with col2: |
|
player_split_var1 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players')) |
|
if player_split_var1 == 'Specific Players': |
|
find_var1 = st.multiselect('Which players must be included in the lineups?', options = static_exposure['Player'].unique()) |
|
elif player_split_var1 == 'Full Players': |
|
find_var1 = static_exposure.Player.values.tolist() |
|
|
|
split_portfolio = split_portfolio[split_portfolio['Main_Stack'].isin(team_var1)] |
|
if player_split_var1 == 'Specific Players': |
|
split_portfolio = split_portfolio[np.equal.outer(split_portfolio.to_numpy(copy=False), find_var1).any(axis=1).all(axis=1)] |
|
elif player_split_var1 == 'Full Players': |
|
split_portfolio = split_portfolio |
|
|
|
for player_cols in split_portfolio.iloc[:, 0:6]: |
|
exposure_col_raw = split_portfolio[player_cols].value_counts() |
|
exposure_col = exposure_col_raw.to_frame() |
|
exposure_col.reset_index(inplace=True) |
|
exposure_col.columns = ['Player', 'count'] |
|
overall_exposure = pd.concat([overall_exposure, exposure_col], ignore_index=True) |
|
overall_exposure['Exposure'] = overall_exposure['count'] / len(split_portfolio) |
|
overall_exposure = overall_exposure.groupby('Player').sum() |
|
overall_exposure.reset_index(inplace=True) |
|
overall_exposure = overall_exposure[['Player', 'Exposure']] |
|
overall_exposure = overall_exposure.set_index('Player') |
|
overall_exposure = overall_exposure.sort_values(by='Exposure', ascending=False) |
|
overall_exposure['Exposure'] = overall_exposure['Exposure'].astype(float).map(lambda n: '{:.2%}'.format(n)) |
|
|
|
with st.container(): |
|
col1, col2 = st.columns([1, 6]) |
|
|
|
with col1: |
|
if portfolio_file is not None: |
|
st.header('Exposure View') |
|
st.dataframe(overall_exposure) |
|
|
|
with col2: |
|
if portfolio_file is not None: |
|
st.header('Portfolio View') |
|
split_portfolio = split_portfolio.reset_index() |
|
split_portfolio['Lineup'] = split_portfolio['index'] + 1 |
|
display_portfolio = split_portfolio[['Lineup', 'CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'Salary', 'Main_Stack', 'Main_Stack_Size', 'Projection', 'Ownership']] |
|
hold_display = display_portfolio |
|
display_portfolio = display_portfolio.set_index('Lineup') |
|
st.dataframe(display_portfolio.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Ownership']).format(precision=2)) |
|
del split_portfolio |
|
del exposure_col_raw |
|
del exposure_col |
|
with tab2: |
|
col1, col2 = st.columns([1, 5]) |
|
with col1: |
|
if st.button("Load/Reset Data", key='reset1'): |
|
st.cache_data.clear() |
|
dk_roo_raw = load_dk_player_projections() |
|
dk_roo_raw_2 = load_dk_player_projections_2() |
|
fd_roo_raw = load_fd_player_projections() |
|
fd_roo_raw_2 = load_fd_player_projections_2() |
|
|
|
slate_var1 = st.radio("Which data are you loading?", ('Paydirt (Main)', 'Paydirt (Secondary)', 'User')) |
|
site_var1 = 'Draftkings' |
|
if site_var1 == 'Draftkings': |
|
if slate_var1 == 'User': |
|
raw_baselines = proj_dataframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']] |
|
elif slate_var1 == 'Paydirt (Main)': |
|
raw_baselines = dk_roo_raw |
|
elif slate_var1 == 'Paydirt (Secondary)': |
|
raw_baselines = dk_roo_raw_2 |
|
elif site_var1 == 'Fanduel': |
|
if slate_var1 == 'User': |
|
raw_baselines = proj_dataframe |
|
elif slate_var1 == 'Paydirt (Main)': |
|
raw_baselines = dk_roo_raw |
|
elif slate_var1 == 'Paydirt (Secondary)': |
|
raw_baselines = dk_roo_raw_2 |
|
del dk_roo_raw |
|
del dk_roo_raw_2 |
|
del fd_roo_raw |
|
del fd_roo_raw_2 |
|
st.info("If you are uploading a portfolio, note that there is an adjustments to projections and deviation mapping to prevent 'Projection Bias' and create a fair simulation") |
|
insert_port1 = st.selectbox("Are you uploading a portfolio?", ('No', 'Yes')) |
|
if insert_port1 == 'Yes': |
|
insert_port = 1 |
|
elif insert_port1 == 'No': |
|
insert_port = 0 |
|
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large')) |
|
if contest_var1 == 'Small': |
|
Contest_Size = 500 |
|
elif contest_var1 == 'Medium': |
|
Contest_Size = 2500 |
|
elif contest_var1 == 'Large': |
|
Contest_Size = 10000 |
|
linenum_var1 = 1000 |
|
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Not Very', 'Average', 'Very')) |
|
if strength_var1 == 'Not Very': |
|
Strength_var = 1 |
|
scaling_var = 5 |
|
elif strength_var1 == 'Average': |
|
Strength_var = .75 |
|
scaling_var = 10 |
|
elif strength_var1 == 'Very': |
|
Strength_var = .5 |
|
scaling_var = 15 |
|
|
|
with col2: |
|
with st.container(): |
|
if st.button("Simulate Contest", key='sim1'): |
|
try: |
|
del dst_freq |
|
del flex_freq |
|
del te_freq |
|
del wr_freq |
|
del rb_freq |
|
del qb_freq |
|
del player_freq |
|
del Sim_Winner_Export |
|
del Sim_Winner_Frame |
|
except: |
|
pass |
|
with st.container(): |
|
st.write('Contest Simulation Starting') |
|
Total_Runs = 1000000 |
|
seed_depth1 = 5 |
|
Total_Runs = 2500000 |
|
if Contest_Size <= 1000: |
|
strength_grow = .01 |
|
elif Contest_Size > 1000 and Contest_Size <= 2500: |
|
strength_grow = .025 |
|
elif Contest_Size > 2500 and Contest_Size <= 5000: |
|
strength_grow = .05 |
|
elif Contest_Size > 5000 and Contest_Size <= 20000: |
|
strength_grow = .075 |
|
elif Contest_Size > 20000: |
|
strength_grow = .1 |
|
|
|
field_growth = 100 * strength_grow |
|
|
|
Sort_function = 'Median' |
|
if Sort_function == 'Median': |
|
Sim_function = 'Projection' |
|
elif Sort_function == 'Own': |
|
Sim_function = 'Own' |
|
|
|
if slate_var1 == 'User': |
|
OwnFrame = proj_dataframe |
|
if contest_var1 == 'Large': |
|
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (10 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own']) |
|
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%']) |
|
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%']) |
|
OwnFrame['Own'] = OwnFrame['Own%'] * (500 / OwnFrame['Own%'].sum()) |
|
if contest_var1 == 'Medium': |
|
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (6 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own']) |
|
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%']) |
|
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%']) |
|
OwnFrame['Own'] = OwnFrame['Own%'] * (500 / OwnFrame['Own%'].sum()) |
|
if contest_var1 == 'Small': |
|
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own']) |
|
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (1.5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%']) |
|
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%']) |
|
OwnFrame['Own'] = OwnFrame['Own%'] * (500 / OwnFrame['Own%'].sum()) |
|
Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']] |
|
|
|
del OwnFrame |
|
|
|
elif slate_var1 != 'User': |
|
initial_proj = raw_baselines |
|
drop_frame = initial_proj.drop_duplicates(subset = 'Player',keep = 'first') |
|
OwnFrame = drop_frame[['Player', 'Team', 'Position', 'Median', 'Own', 'Floor', 'Ceiling', 'Salary']] |
|
if contest_var1 == 'Large': |
|
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (10 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own']) |
|
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%']) |
|
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%']) |
|
OwnFrame['Own'] = OwnFrame['Own%'] * (500 / OwnFrame['Own%'].sum()) |
|
if contest_var1 == 'Medium': |
|
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (6 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own']) |
|
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%']) |
|
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%']) |
|
OwnFrame['Own'] = OwnFrame['Own%'] * (500 / OwnFrame['Own%'].sum()) |
|
if contest_var1 == 'Small': |
|
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own']) |
|
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (1.5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%']) |
|
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%']) |
|
OwnFrame['Own'] = OwnFrame['Own%'] * (500 / OwnFrame['Own%'].sum()) |
|
Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Floor', 'Ceiling', 'Salary']] |
|
|
|
del initial_proj |
|
del drop_frame |
|
del OwnFrame |
|
|
|
if insert_port == 1: |
|
UserPortfolio = portfolio_dataframe[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']] |
|
elif insert_port == 0: |
|
UserPortfolio = pd.DataFrame(columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']) |
|
|
|
Overall_Proj.replace('', np.nan, inplace=True) |
|
Overall_Proj = Overall_Proj.dropna(subset=['Median']) |
|
Overall_Proj = Overall_Proj.assign(Value=lambda x: (x.Median / (x.Salary / 1000))) |
|
Overall_Proj['Sort_var'] = (Overall_Proj['Median'].rank(ascending=False) + Overall_Proj['Value'].rank(ascending=False)) / 2 |
|
Overall_Proj = Overall_Proj.sort_values(by='Sort_var', ascending=False) |
|
Overall_Proj['Own'] = np.where((Overall_Proj['Median'] > 0) & (Overall_Proj['Own'] == 0), 1, Overall_Proj['Own']) |
|
Overall_Proj = Overall_Proj.loc[Overall_Proj['Own'] > 0] |
|
|
|
Overall_Proj['Floor'] = np.where(Overall_Proj['Position'] == 'QB', Overall_Proj['Median'] * .5, Overall_Proj['Median'] * .25) |
|
Overall_Proj['Ceiling'] = np.where(Overall_Proj['Position'] == 'WR', Overall_Proj['Median'] + Overall_Proj['Median'], Overall_Proj['Median'] + Overall_Proj['Floor']) |
|
Overall_Proj['STDev'] = Overall_Proj['Median'] / 4 |
|
|
|
Teams_used = Overall_Proj['Team'].drop_duplicates().reset_index(drop=True) |
|
Teams_used = Teams_used.reset_index() |
|
Teams_used['team_item'] = Teams_used['index'] + 1 |
|
Teams_used = Teams_used.drop(columns=['index']) |
|
Teams_used_dictraw = Teams_used.drop(columns=['team_item']) |
|
Teams_used_dict = Teams_used_dictraw.to_dict() |
|
|
|
del Teams_used_dictraw |
|
|
|
team_list = Teams_used['Team'].to_list() |
|
item_list = Teams_used['team_item'].to_list() |
|
|
|
FieldStrength_raw = Strength_var + ((30 - len(Teams_used)) * .01) |
|
FieldStrength = FieldStrength_raw - (FieldStrength_raw * (20000 / Contest_Size)) |
|
|
|
del FieldStrength_raw |
|
|
|
if FieldStrength < 0: |
|
FieldStrength = Strength_var |
|
field_split = Strength_var |
|
|
|
for checkVar in range(len(team_list)): |
|
Overall_Proj['Team'] = Overall_Proj['Team'].replace(team_list, item_list) |
|
|
|
flex_raw = Overall_Proj |
|
flex_raw.dropna(subset=['Median']).reset_index(drop=True) |
|
flex_raw = flex_raw.reset_index(drop=True) |
|
flex_raw = flex_raw.sort_values(by='Own', ascending=False) |
|
|
|
pos_players = flex_raw |
|
pos_players.dropna(subset=['Median']).reset_index(drop=True) |
|
pos_players = pos_players.reset_index(drop=True) |
|
|
|
del flex_raw |
|
|
|
if insert_port == 1: |
|
try: |
|
|
|
Raw_Portfolio = pd.DataFrame() |
|
|
|
|
|
columns_to_process = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'] |
|
for col in columns_to_process: |
|
temp_df = UserPortfolio[col].str.split("(", n=1, expand=True) |
|
temp_df.columns = [col, 'Drop'] |
|
Raw_Portfolio = pd.concat([Raw_Portfolio, temp_df], axis=1) |
|
|
|
|
|
keep_vars = columns_to_process |
|
CleanPortfolio = Raw_Portfolio[keep_vars] |
|
CleanPortfolio = CleanPortfolio.apply(lambda x: x.str.strip()) |
|
|
|
|
|
CleanPortfolio.reset_index(inplace=True) |
|
CleanPortfolio['User/Field'] = CleanPortfolio['index'] + 1 |
|
CleanPortfolio.drop(columns=['index'], inplace=True) |
|
CleanPortfolio.replace('', np.nan, inplace=True) |
|
CleanPortfolio.dropna(subset=['CPT'], inplace=True) |
|
|
|
|
|
unique_vals, counts = np.unique(CleanPortfolio.iloc[:, 0:6].values, return_counts=True) |
|
cleaport_players = pd.DataFrame(np.column_stack([unique_vals, counts]), columns=['Player', 'Freq']).astype({'Freq': int}).sort_values('Freq', ascending=False).reset_index(drop=True) |
|
|
|
|
|
nerf_frame = pd.merge(cleaport_players, Overall_Proj, on='Player', how='left') |
|
nerf_frame[['Median', 'Floor', 'Ceiling', 'STDev']] *= 1 |
|
|
|
del Raw_Portfolio |
|
except: |
|
|
|
CleanPortfolio = UserPortfolio.reset_index(drop=True) |
|
CleanPortfolio['User/Field'] = CleanPortfolio.index + 1 |
|
CleanPortfolio.replace('', np.nan, inplace=True) |
|
CleanPortfolio.dropna(subset=['CPT'], inplace=True) |
|
|
|
|
|
unique_vals, counts = np.unique(CleanPortfolio.iloc[:, 0:6].values, return_counts=True) |
|
cleaport_players = pd.DataFrame({'Player': unique_vals, 'Freq': counts}).sort_values('Freq', ascending=False).reset_index(drop=True).astype({'Freq': int}) |
|
|
|
|
|
nerf_frame = pd.merge(cleaport_players, Overall_Proj, on='Player', how='left') |
|
nerf_frame[['Median', 'Floor', 'Ceiling', 'STDev']] *= 1 |
|
|
|
st.table(nerf_frame) |
|
|
|
elif insert_port == 0: |
|
CleanPortfolio = UserPortfolio |
|
cleaport_players = pd.DataFrame(np.column_stack(np.unique(CleanPortfolio.iloc[:,0:6].values, return_counts=True)), |
|
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) |
|
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int) |
|
nerf_frame = Overall_Proj |
|
|
|
ref_dict = { |
|
'pos':['FLEX'], |
|
'pos_dfs':['FLEX_Table'], |
|
'pos_dicts':['flex_dict'] |
|
} |
|
|
|
maps_dict = { |
|
'Floor_map':dict(zip(Overall_Proj.Player,Overall_Proj.Floor)), |
|
'Projection_map':dict(zip(Overall_Proj.Player,Overall_Proj.Median)), |
|
'Ceiling_map':dict(zip(Overall_Proj.Player,Overall_Proj.Ceiling)), |
|
'Salary_map':dict(zip(Overall_Proj.Player,Overall_Proj.Salary)), |
|
'Pos_map':dict(zip(Overall_Proj.Player,Overall_Proj.Position)), |
|
'Own_map':dict(zip(Overall_Proj.Player,Overall_Proj.Own)), |
|
'Team_map':dict(zip(Overall_Proj.Player,Overall_Proj.Team)), |
|
'STDev_map':dict(zip(Overall_Proj.Player,Overall_Proj.STDev)), |
|
'team_check_map':dict(zip(Overall_Proj.Player,Overall_Proj.Team)) |
|
} |
|
|
|
up_dict = { |
|
'Floor_map':dict(zip(cleaport_players.Player,nerf_frame.Floor)), |
|
'Projection_map':dict(zip(cleaport_players.Player,nerf_frame.Median)), |
|
'Ceiling_map':dict(zip(cleaport_players.Player,nerf_frame.Ceiling)), |
|
'Salary_map':dict(zip(cleaport_players.Player,nerf_frame.Salary)), |
|
'Pos_map':dict(zip(cleaport_players.Player,nerf_frame.Position)), |
|
'Own_map':dict(zip(cleaport_players.Player,nerf_frame.Own)), |
|
'Team_map':dict(zip(cleaport_players.Player,nerf_frame.Team)), |
|
'STDev_map':dict(zip(cleaport_players.Player,nerf_frame.STDev)), |
|
'team_check_map':dict(zip(cleaport_players.Player,nerf_frame.Team)) |
|
} |
|
|
|
del Overall_Proj |
|
del nerf_frame |
|
|
|
RunsVar = 1 |
|
st.write('Seed frame creation') |
|
FinalPortfolio, maps_dict = run_seed_frame(seed_depth1, Strength_var, strength_grow, Teams_used, Total_Runs) |
|
|
|
Sim_size = linenum_var1 |
|
SimVar = 1 |
|
Sim_Winners = [] |
|
fp_array = FinalPortfolio.values |
|
|
|
if insert_port == 1: |
|
up_array = CleanPortfolio.values |
|
|
|
|
|
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__) |
|
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__) |
|
|
|
if insert_port == 1: |
|
vec_up_projection_map = np.vectorize(up_dict['Projection_map'].__getitem__) |
|
vec_up_stdev_map = np.vectorize(up_dict['STDev_map'].__getitem__) |
|
st.write('Simulating contest on frames') |
|
while SimVar <= Sim_size: |
|
|
|
if insert_port == 1: |
|
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size-len(CleanPortfolio))] |
|
elif insert_port == 0: |
|
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)] |
|
|
|
sample_arrays1 = np.c_[ |
|
fp_random, |
|
np.sum(np.random.normal( |
|
loc=vec_projection_map(fp_random[:, :-5]), |
|
scale=vec_stdev_map(fp_random[:, :-5])), |
|
axis=1) |
|
] |
|
|
|
if insert_port == 1: |
|
sample_arrays2 = np.c_[ |
|
up_array, |
|
np.sum(np.random.normal( |
|
loc=vec_up_projection_map(up_array[:, :-5]), |
|
scale=vec_up_stdev_map(up_array[:, :-5])), |
|
axis=1) |
|
] |
|
sample_arrays = np.vstack((sample_arrays1, sample_arrays2)) |
|
else: |
|
sample_arrays = sample_arrays1 |
|
|
|
final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]] |
|
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]] |
|
Sim_Winners.append(best_lineup) |
|
SimVar += 1 |
|
st.write('Contest simulation complete') |
|
|
|
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=FinalPortfolio.columns.tolist() + ['Fantasy']) |
|
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['Projection'] + Sim_Winner_Frame['Fantasy']) / 2 |
|
Sim_Winner_Frame['Salary'] = Sim_Winner_Frame['Salary'].astype(int) |
|
Sim_Winner_Frame['Projection'] = Sim_Winner_Frame['Projection'].astype(np.float16) |
|
Sim_Winner_Frame['Fantasy'] = Sim_Winner_Frame['Fantasy'].astype(np.float16) |
|
Sim_Winner_Frame['GPP_Proj'] = Sim_Winner_Frame['GPP_Proj'].astype(np.float16) |
|
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by='GPP_Proj', ascending=False) |
|
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy() |
|
|
|
del Sim_Winner_Frame |
|
|
|
player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,0:6].values, return_counts=True)), |
|
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) |
|
player_freq['Freq'] = player_freq['Freq'].astype(int) |
|
player_freq['Position'] = player_freq['Player'].map(maps_dict['Pos_map']) |
|
player_freq['Salary'] = player_freq['Player'].map(maps_dict['Salary_map']) |
|
player_freq['Proj Own'] = (player_freq['Player'].map(maps_dict['Own_map']) / 100) |
|
player_freq['Exposure'] = player_freq['Freq']/(Sim_size) |
|
player_freq['Edge'] = player_freq['Exposure'] - player_freq['Proj Own'] |
|
player_freq['Team'] = player_freq['Player'].map(maps_dict['Team_map']) |
|
for checkVar in range(len(team_list)): |
|
player_freq['Team'] = player_freq['Team'].replace(item_list, team_list) |
|
|
|
player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge']] |
|
|
|
cpt_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,0:1].values, return_counts=True)), |
|
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) |
|
cpt_freq['Freq'] = cpt_freq['Freq'].astype(int) |
|
cpt_freq['Position'] = cpt_freq['Player'].map(maps_dict['Pos_map']) |
|
cpt_freq['Salary'] = cpt_freq['Player'].map(maps_dict['Salary_map']) |
|
cpt_freq['Proj Own'] = (cpt_freq['Player'].map(maps_dict['Own_map']) / 4) / 100 |
|
cpt_freq['Exposure'] = cpt_freq['Freq']/(Sim_size) |
|
cpt_freq['Edge'] = cpt_freq['Exposure'] - cpt_freq['Proj Own'] |
|
cpt_freq['Team'] = cpt_freq['Player'].map(maps_dict['Team_map']) |
|
for checkVar in range(len(team_list)): |
|
cpt_freq['Team'] = cpt_freq['Team'].replace(item_list, team_list) |
|
|
|
cpt_freq = cpt_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge']] |
|
|
|
flex_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,[1, 2, 3, 4, 5]].values, return_counts=True)), |
|
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) |
|
flex_freq['Freq'] = flex_freq['Freq'].astype(int) |
|
flex_freq['Position'] = flex_freq['Player'].map(maps_dict['Pos_map']) |
|
flex_freq['Salary'] = flex_freq['Player'].map(maps_dict['Salary_map']) |
|
flex_freq['Proj Own'] = (flex_freq['Player'].map(maps_dict['Own_map']) / 100) - ((flex_freq['Player'].map(maps_dict['Own_map']) / 4) / 100) |
|
flex_freq['Exposure'] = flex_freq['Freq']/(Sim_size) |
|
flex_freq['Edge'] = flex_freq['Exposure'] - flex_freq['Proj Own'] |
|
flex_freq['Team'] = flex_freq['Player'].map(maps_dict['Team_map']) |
|
for checkVar in range(len(team_list)): |
|
flex_freq['Team'] = flex_freq['Team'].replace(item_list, team_list) |
|
|
|
flex_freq = flex_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge']] |
|
|
|
del fp_random |
|
del sample_arrays |
|
del final_array |
|
del fp_array |
|
try: |
|
del up_array |
|
except: |
|
pass |
|
del best_lineup |
|
del CleanPortfolio |
|
del FinalPortfolio |
|
del maps_dict |
|
del team_list |
|
del item_list |
|
del Sim_size |
|
|
|
with st.container(): |
|
simulate_container = st.empty() |
|
if 'player_freq' in st.session_state: |
|
player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2') |
|
if player_split_var2 == 'Specific Players': |
|
find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique()) |
|
elif player_split_var2 == 'Full Players': |
|
find_var2 = st.session_state.player_freq.Player.values.tolist() |
|
|
|
if player_split_var2 == 'Specific Players': |
|
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(copy=False), find_var2).any(axis=1).all(axis=1)] |
|
if player_split_var2 == 'Full Players': |
|
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame |
|
if 'Sim_Winner_Display' in st.session_state: |
|
st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Own']).format(precision=2), use_container_width = True) |
|
if 'Sim_Winner_Export' in st.session_state: |
|
st.download_button( |
|
label="Export Tables", |
|
data=convert_df_to_csv(st.session_state.Sim_Winner_Export), |
|
file_name='NFL_consim_export.csv', |
|
mime='text/csv', |
|
) |
|
|
|
with st.container(): |
|
tab1, tab2, tab3 = st.tabs(['Overall Exposures', 'CPT Exposures', 'FLEX Exposures']) |
|
with tab1: |
|
st.dataframe(player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True) |
|
st.download_button( |
|
label="Export Exposures", |
|
data=convert_df_to_csv(player_freq), |
|
file_name='player_freq_export.csv', |
|
mime='text/csv', |
|
) |
|
with tab2: |
|
st.dataframe(cpt_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True) |
|
st.download_button( |
|
label="Export Exposures", |
|
data=convert_df_to_csv(cpt_freq), |
|
file_name='cpt_freq_export.csv', |
|
mime='text/csv', |
|
) |
|
with tab3: |
|
st.dataframe(flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True) |
|
st.download_button( |
|
label="Export Exposures", |
|
data=convert_df_to_csv(flex_freq), |
|
file_name='flex_freq_export.csv', |
|
mime='text/csv', |
|
) |