Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,8 @@ import numpy as np
|
|
9 |
import pandas as pd
|
10 |
import streamlit as st
|
11 |
import gspread
|
|
|
|
|
12 |
|
13 |
@st.cache_resource
|
14 |
def init_conn():
|
@@ -28,22 +30,17 @@ def init_conn():
|
|
28 |
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
|
29 |
}
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
gc = init_conn()
|
35 |
-
|
36 |
-
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
|
37 |
-
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
|
38 |
|
39 |
-
|
40 |
-
'4x%': '{:.2%}','GPP%': '{:.2%}'}
|
41 |
|
42 |
freq_format = {'Proj Own': '{:.2%}', 'Exposure': '{:.2%}', 'Edge': '{:.2%}'}
|
43 |
|
44 |
@st.cache_resource(ttl=600)
|
45 |
def load_dk_player_projections():
|
46 |
-
sh =
|
47 |
worksheet = sh.worksheet('SD_Projections')
|
48 |
load_display = pd.DataFrame(worksheet.get_all_records())
|
49 |
load_display.rename(columns={"PPR": "Median", "name": "Player"}, inplace = True)
|
@@ -51,13 +48,12 @@ def load_dk_player_projections():
|
|
51 |
load_display['Ceiling'] = load_display['Median'] + (load_display['Median'] * .75)
|
52 |
load_display.replace('', np.nan, inplace=True)
|
53 |
raw_display = load_display.dropna(subset=['Median'])
|
54 |
-
del load_display
|
55 |
|
56 |
return raw_display
|
57 |
|
58 |
@st.cache_resource(ttl=600)
|
59 |
def load_fd_player_projections():
|
60 |
-
sh =
|
61 |
worksheet = sh.worksheet('FD_SD_Projections')
|
62 |
load_display = pd.DataFrame(worksheet.get_all_records())
|
63 |
load_display.rename(columns={"Half_PPR": "Median", "name": "Player"}, inplace = True)
|
@@ -65,13 +61,12 @@ def load_fd_player_projections():
|
|
65 |
load_display['Ceiling'] = load_display['Median'] + (load_display['Median'] * .75)
|
66 |
load_display.replace('', np.nan, inplace=True)
|
67 |
raw_display = load_display.dropna(subset=['Median'])
|
68 |
-
del load_display
|
69 |
|
70 |
return raw_display
|
71 |
|
72 |
@st.cache_resource(ttl=600)
|
73 |
def load_dk_player_projections_2():
|
74 |
-
sh =
|
75 |
worksheet = sh.worksheet('SD_Projections_2')
|
76 |
load_display = pd.DataFrame(worksheet.get_all_records())
|
77 |
load_display.rename(columns={"PPR": "Median", "name": "Player"}, inplace = True)
|
@@ -79,13 +74,12 @@ def load_dk_player_projections_2():
|
|
79 |
load_display['Ceiling'] = load_display['Median'] + (load_display['Median'] * .75)
|
80 |
load_display.replace('', np.nan, inplace=True)
|
81 |
raw_display = load_display.dropna(subset=['Median'])
|
82 |
-
del load_display
|
83 |
|
84 |
return raw_display
|
85 |
|
86 |
@st.cache_resource(ttl=600)
|
87 |
def load_fd_player_projections_2():
|
88 |
-
sh =
|
89 |
worksheet = sh.worksheet('FD_SD_Projections_2')
|
90 |
load_display = pd.DataFrame(worksheet.get_all_records())
|
91 |
load_display.rename(columns={"Half_PPR": "Median", "name": "Player"}, inplace = True)
|
@@ -93,60 +87,106 @@ def load_fd_player_projections_2():
|
|
93 |
load_display['Ceiling'] = load_display['Median'] + (load_display['Median'] * .75)
|
94 |
load_display.replace('', np.nan, inplace=True)
|
95 |
raw_display = load_display.dropna(subset=['Median'])
|
96 |
-
del load_display
|
97 |
|
98 |
return raw_display
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
103 |
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
RunsVar = 1
|
106 |
seed_depth_def = seed_depth1
|
107 |
Strength_var_def = Strength_var
|
108 |
strength_grow_def = strength_grow
|
109 |
Teams_used_def = Teams_used
|
110 |
Total_Runs_def = Total_Runs
|
|
|
|
|
|
|
111 |
while RunsVar <= seed_depth_def:
|
112 |
if RunsVar <= 3:
|
113 |
FieldStrength = Strength_var_def
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio2], axis=0)
|
118 |
maps_dict.update(maps_dict2)
|
119 |
-
del FinalPortfolio2
|
120 |
-
del maps_dict2
|
121 |
elif RunsVar > 3 and RunsVar <= 4:
|
122 |
FieldStrength += (strength_grow_def + ((30 - len(Teams_used_def)) * .001))
|
123 |
-
FinalPortfolio3, maps_dict3 = get_correlated_portfolio_for_sim(Total_Runs_def * .
|
124 |
-
FinalPortfolio4, maps_dict4 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
maps_dict.update(maps_dict3)
|
129 |
maps_dict.update(maps_dict4)
|
130 |
-
del FinalPortfolio3
|
131 |
-
del maps_dict3
|
132 |
-
del FinalPortfolio4
|
133 |
-
del maps_dict4
|
134 |
elif RunsVar > 4:
|
135 |
FieldStrength = 1
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
maps_dict.update(
|
142 |
-
maps_dict.update(
|
143 |
-
del FinalPortfolio3
|
144 |
-
del maps_dict3
|
145 |
-
del FinalPortfolio4
|
146 |
-
del maps_dict4
|
147 |
RunsVar += 1
|
148 |
-
|
149 |
-
return
|
150 |
|
151 |
def create_overall_dfs(pos_players, table_name, dict_name, pos):
|
152 |
pos_players = pos_players.sort_values(by='Value', ascending=False)
|
@@ -155,9 +195,6 @@ def create_overall_dfs(pos_players, table_name, dict_name, pos):
|
|
155 |
overall_table_name = overall_table_name.assign(Var = range(0,len(overall_table_name)))
|
156 |
overall_dict_name = pd.Series(overall_table_name.Player.values, index=overall_table_name.Var).to_dict()
|
157 |
|
158 |
-
del pos_players
|
159 |
-
del table_name_raw
|
160 |
-
|
161 |
return overall_table_name, overall_dict_name
|
162 |
|
163 |
|
@@ -176,7 +213,7 @@ def get_overall_merged_df():
|
|
176 |
|
177 |
return df_out, ref_dict
|
178 |
|
179 |
-
def create_random_portfolio(Total_Sample_Size):
|
180 |
|
181 |
O_merge, full_pos_player_dict = get_overall_merged_df()
|
182 |
Overall_Merge = O_merge[['Var', 'Player', 'Team', 'Salary', 'Median', 'Own']].copy()
|
@@ -201,11 +238,11 @@ def create_random_portfolio(Total_Sample_Size):
|
|
201 |
|
202 |
return RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict
|
203 |
|
204 |
-
def get_correlated_portfolio_for_sim(Total_Sample_Size):
|
205 |
|
206 |
-
sizesplit = round(Total_Sample_Size *
|
207 |
|
208 |
-
RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict = create_random_portfolio(sizesplit)
|
209 |
|
210 |
RandomPortfolio['CPT'] = pd.Series(list(RandomPortfolio['CPT'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
211 |
RandomPortfolio['FLEX1'] = pd.Series(list(RandomPortfolio['FLEX1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
@@ -218,10 +255,6 @@ def get_correlated_portfolio_for_sim(Total_Sample_Size):
|
|
218 |
RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 7].drop(columns=['plyr_list','plyr_count']).\
|
219 |
reset_index(drop=True)
|
220 |
|
221 |
-
del sizesplit
|
222 |
-
del full_pos_player_dict
|
223 |
-
del ranges_dict
|
224 |
-
|
225 |
RandomPortfolio['CPTs'] = RandomPortfolio['CPT'].map(maps_dict['Salary_map']).astype(np.int32) * 1.5
|
226 |
RandomPortfolio['FLEX1s'] = RandomPortfolio['FLEX1'].map(maps_dict['Salary_map']).astype(np.int32)
|
227 |
RandomPortfolio['FLEX2s'] = RandomPortfolio['FLEX2'].map(maps_dict['Salary_map']).astype(np.int32)
|
@@ -249,7 +282,6 @@ def get_correlated_portfolio_for_sim(Total_Sample_Size):
|
|
249 |
portHeaderList.append('Own')
|
250 |
|
251 |
RandomPortArray = RandomPortfolio.to_numpy()
|
252 |
-
del RandomPortfolio
|
253 |
|
254 |
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,7:13].astype(int))]
|
255 |
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,13:19].astype(np.double))]
|
@@ -258,9 +290,6 @@ def get_correlated_portfolio_for_sim(Total_Sample_Size):
|
|
258 |
RandomPortArrayOut = np.delete(RandomPortArray, np.s_[7:25], axis=1)
|
259 |
RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'User/Field', 'Salary', 'Projection', 'Own'])
|
260 |
RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
261 |
-
del RandomPortArray
|
262 |
-
del RandomPortArrayOut
|
263 |
-
# st.table(RandomPortfolioDF.head(50))
|
264 |
|
265 |
if insert_port == 1:
|
266 |
CleanPortfolio['Salary'] = sum([CleanPortfolio['CPT'].map(up_dict['Salary_map']) * 1.5,
|
@@ -300,11 +329,11 @@ def get_correlated_portfolio_for_sim(Total_Sample_Size):
|
|
300 |
|
301 |
return RandomPortfolio, maps_dict
|
302 |
|
303 |
-
def get_uncorrelated_portfolio_for_sim(Total_Sample_Size):
|
304 |
|
305 |
-
sizesplit = round(Total_Sample_Size *
|
306 |
|
307 |
-
RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict = create_random_portfolio(sizesplit)
|
308 |
|
309 |
RandomPortfolio['CPT'] = pd.Series(list(RandomPortfolio['CPT'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
310 |
RandomPortfolio['FLEX1'] = pd.Series(list(RandomPortfolio['FLEX1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
@@ -317,10 +346,6 @@ def get_uncorrelated_portfolio_for_sim(Total_Sample_Size):
|
|
317 |
RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 7].drop(columns=['plyr_list','plyr_count']).\
|
318 |
reset_index(drop=True)
|
319 |
|
320 |
-
del sizesplit
|
321 |
-
del full_pos_player_dict
|
322 |
-
del ranges_dict
|
323 |
-
|
324 |
RandomPortfolio['CPTs'] = RandomPortfolio['CPT'].map(maps_dict['Salary_map']).astype(np.int32) * 1.5
|
325 |
RandomPortfolio['FLEX1s'] = RandomPortfolio['FLEX1'].map(maps_dict['Salary_map']).astype(np.int32)
|
326 |
RandomPortfolio['FLEX2s'] = RandomPortfolio['FLEX2'].map(maps_dict['Salary_map']).astype(np.int32)
|
@@ -348,7 +373,6 @@ def get_uncorrelated_portfolio_for_sim(Total_Sample_Size):
|
|
348 |
portHeaderList.append('Own')
|
349 |
|
350 |
RandomPortArray = RandomPortfolio.to_numpy()
|
351 |
-
del RandomPortfolio
|
352 |
|
353 |
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,7:13].astype(int))]
|
354 |
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,13:19].astype(np.double))]
|
@@ -357,9 +381,6 @@ def get_uncorrelated_portfolio_for_sim(Total_Sample_Size):
|
|
357 |
RandomPortArrayOut = np.delete(RandomPortArray, np.s_[7:25], axis=1)
|
358 |
RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'User/Field', 'Salary', 'Projection', 'Own'])
|
359 |
RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
360 |
-
del RandomPortArray
|
361 |
-
del RandomPortArrayOut
|
362 |
-
# st.table(RandomPortfolioDF.head(50))
|
363 |
|
364 |
if insert_port == 1:
|
365 |
CleanPortfolio['Salary'] = sum([CleanPortfolio['CPT'].map(up_dict['Salary_map']) * 1.5,
|
@@ -399,14 +420,6 @@ def get_uncorrelated_portfolio_for_sim(Total_Sample_Size):
|
|
399 |
|
400 |
return RandomPortfolio, maps_dict
|
401 |
|
402 |
-
dk_roo_raw = load_dk_player_projections()
|
403 |
-
dk_roo_raw_2 = load_dk_player_projections_2()
|
404 |
-
fd_roo_raw = load_fd_player_projections()
|
405 |
-
fd_roo_raw_2 = load_fd_player_projections_2()
|
406 |
-
|
407 |
-
static_exposure = pd.DataFrame(columns=['Player', 'count'])
|
408 |
-
overall_exposure = pd.DataFrame(columns=['Player', 'count'])
|
409 |
-
|
410 |
tab1, tab2 = st.tabs(['Uploads', 'Contest Sim'])
|
411 |
|
412 |
with tab1:
|
@@ -470,8 +483,6 @@ with tab1:
|
|
470 |
split_portfolio['FLEX4'].map(player_salary_dict),
|
471 |
split_portfolio['FLEX5'].map(player_salary_dict)])
|
472 |
|
473 |
-
del player_salary_dict
|
474 |
-
|
475 |
split_portfolio['Projection'] = sum([split_portfolio['CPT'].map(player_proj_dict) * 1.5,
|
476 |
split_portfolio['FLEX1'].map(player_proj_dict),
|
477 |
split_portfolio['FLEX2'].map(player_proj_dict),
|
@@ -479,8 +490,6 @@ with tab1:
|
|
479 |
split_portfolio['FLEX4'].map(player_proj_dict),
|
480 |
split_portfolio['FLEX5'].map(player_proj_dict)])
|
481 |
|
482 |
-
del player_proj_dict
|
483 |
-
|
484 |
split_portfolio['Ownership'] = sum([split_portfolio['CPT'].map(player_own_dict) / 4,
|
485 |
split_portfolio['FLEX1'].map(player_own_dict),
|
486 |
split_portfolio['FLEX2'].map(player_own_dict),
|
@@ -488,21 +497,6 @@ with tab1:
|
|
488 |
split_portfolio['FLEX4'].map(player_own_dict),
|
489 |
split_portfolio['FLEX5'].map(player_own_dict)])
|
490 |
|
491 |
-
del player_own_dict
|
492 |
-
|
493 |
-
split_portfolio['CPT_team'] = split_portfolio['CPT'].map(player_team_dict)
|
494 |
-
split_portfolio['FLEX1_team'] = split_portfolio['FLEX1'].map(player_team_dict)
|
495 |
-
split_portfolio['FLEX2_team'] = split_portfolio['FLEX2'].map(player_team_dict)
|
496 |
-
split_portfolio['FLEX3_team'] = split_portfolio['FLEX3'].map(player_team_dict)
|
497 |
-
split_portfolio['FLEX4_team'] = split_portfolio['FLEX4'].map(player_team_dict)
|
498 |
-
split_portfolio['FLEX5_team'] = split_portfolio['FLEX5'].map(player_team_dict)
|
499 |
-
|
500 |
-
split_portfolio = split_portfolio[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'Salary', 'Projection', 'Ownership', 'CPT_team',
|
501 |
-
'FLEX1_team', 'FLEX2_team', 'FLEX3_team', 'FLEX4_team', 'FLEX5_team']]
|
502 |
-
|
503 |
-
split_portfolio['Main_Stack'] = 0
|
504 |
-
split_portfolio['Main_Stack_Size'] = 0
|
505 |
-
split_portfolio['Main_Stack_Size'] = 0
|
506 |
except:
|
507 |
portfolio_dataframe.columns=["CPT", "FLEX1", "FLEX2", "FLEX3", "FLEX4", "FLEX5"]
|
508 |
split_portfolio = portfolio_dataframe
|
@@ -534,8 +528,6 @@ with tab1:
|
|
534 |
split_portfolio['FLEX4'].map(player_salary_dict),
|
535 |
split_portfolio['FLEX5'].map(player_salary_dict)])
|
536 |
|
537 |
-
del player_salary_dict
|
538 |
-
|
539 |
split_portfolio['Projection'] = sum([split_portfolio['CPT'].map(player_proj_dict) * 1.5,
|
540 |
split_portfolio['FLEX1'].map(player_proj_dict),
|
541 |
split_portfolio['FLEX2'].map(player_proj_dict),
|
@@ -543,8 +535,6 @@ with tab1:
|
|
543 |
split_portfolio['FLEX4'].map(player_proj_dict),
|
544 |
split_portfolio['FLEX5'].map(player_proj_dict)])
|
545 |
|
546 |
-
del player_proj_dict
|
547 |
-
|
548 |
split_portfolio['Ownership'] = sum([split_portfolio['CPT'].map(player_own_dict) / 4,
|
549 |
split_portfolio['FLEX1'].map(player_own_dict),
|
550 |
split_portfolio['FLEX2'].map(player_own_dict),
|
@@ -552,21 +542,6 @@ with tab1:
|
|
552 |
split_portfolio['FLEX4'].map(player_own_dict),
|
553 |
split_portfolio['FLEX5'].map(player_own_dict)])
|
554 |
|
555 |
-
del player_own_dict
|
556 |
-
|
557 |
-
split_portfolio['CPT_team'] = split_portfolio['CPT'].map(player_team_dict)
|
558 |
-
split_portfolio['FLEX1_team'] = split_portfolio['FLEX1'].map(player_team_dict)
|
559 |
-
split_portfolio['FLEX2_team'] = split_portfolio['FLEX2'].map(player_team_dict)
|
560 |
-
split_portfolio['FLEX3_team'] = split_portfolio['FLEX3'].map(player_team_dict)
|
561 |
-
split_portfolio['FLEX4_team'] = split_portfolio['FLEX4'].map(player_team_dict)
|
562 |
-
split_portfolio['FLEX5_team'] = split_portfolio['FLEX5'].map(player_team_dict)
|
563 |
-
|
564 |
-
split_portfolio = split_portfolio[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'Salary', 'Projection', 'Ownership', 'CPT_team',
|
565 |
-
'FLEX1_team', 'FLEX2_team', 'FLEX3_team', 'FLEX4_team', 'FLEX5_team']]
|
566 |
-
|
567 |
-
split_portfolio['Main_Stack'] = 0
|
568 |
-
split_portfolio['Main_Stack_Size'] = 0
|
569 |
-
split_portfolio['Main_Stack_Size'] = 0
|
570 |
except:
|
571 |
split_portfolio = portfolio_dataframe
|
572 |
|
@@ -591,8 +566,6 @@ with tab1:
|
|
591 |
split_portfolio['FLEX4'].map(player_salary_dict),
|
592 |
split_portfolio['FLEX5'].map(player_salary_dict)])
|
593 |
|
594 |
-
del player_salary_dict
|
595 |
-
|
596 |
split_portfolio['Projection'] = sum([split_portfolio['CPT'].map(player_proj_dict) * 1.5,
|
597 |
split_portfolio['FLEX1'].map(player_proj_dict),
|
598 |
split_portfolio['FLEX2'].map(player_proj_dict),
|
@@ -600,8 +573,6 @@ with tab1:
|
|
600 |
split_portfolio['FLEX4'].map(player_proj_dict),
|
601 |
split_portfolio['FLEX5'].map(player_proj_dict)])
|
602 |
|
603 |
-
del player_proj_dict
|
604 |
-
|
605 |
split_portfolio['Ownership'] = sum([split_portfolio['CPT'].map(player_own_dict) / 4,
|
606 |
split_portfolio['FLEX1'].map(player_own_dict),
|
607 |
split_portfolio['FLEX2'].map(player_own_dict),
|
@@ -609,96 +580,16 @@ with tab1:
|
|
609 |
split_portfolio['FLEX4'].map(player_own_dict),
|
610 |
split_portfolio['FLEX5'].map(player_own_dict)])
|
611 |
|
612 |
-
del player_own_dict
|
613 |
-
|
614 |
-
split_portfolio['CPT_team'] = split_portfolio['CPT'].map(player_team_dict)
|
615 |
-
split_portfolio['FLEX1_team'] = split_portfolio['FLEX1'].map(player_team_dict)
|
616 |
-
split_portfolio['FLEX2_team'] = split_portfolio['FLEX2'].map(player_team_dict)
|
617 |
-
split_portfolio['FLEX3_team'] = split_portfolio['FLEX3'].map(player_team_dict)
|
618 |
-
split_portfolio['FLEX4_team'] = split_portfolio['FLEX4'].map(player_team_dict)
|
619 |
-
split_portfolio['FLEX5_team'] = split_portfolio['FLEX5'].map(player_team_dict)
|
620 |
-
|
621 |
-
split_portfolio = split_portfolio[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'Salary', 'Projection', 'Ownership', 'CPT_team',
|
622 |
-
'FLEX1_team', 'FLEX2_team', 'FLEX3_team', 'FLEX4_team', 'FLEX5_team']]
|
623 |
-
|
624 |
-
split_portfolio['Main_Stack'] = 0
|
625 |
-
split_portfolio['Main_Stack_Size'] = 0
|
626 |
-
split_portfolio['Main_Stack_Size'] = 0
|
627 |
|
628 |
-
|
629 |
-
static_col_raw = split_portfolio[player_cols].value_counts()
|
630 |
-
static_col = static_col_raw.to_frame()
|
631 |
-
static_col.reset_index(inplace=True)
|
632 |
-
static_col.columns = ['Player', 'count']
|
633 |
-
static_exposure = pd.concat([static_exposure, static_col], ignore_index=True)
|
634 |
-
static_exposure['Exposure'] = static_exposure['count'] / len(split_portfolio)
|
635 |
-
static_exposure = static_exposure[['Player', 'Exposure']]
|
636 |
|
637 |
-
del static_col_raw
|
638 |
-
del static_col
|
639 |
-
with st.container():
|
640 |
-
col1, col2 = st.columns([3, 3])
|
641 |
-
|
642 |
-
if portfolio_file is not None:
|
643 |
-
with col1:
|
644 |
-
st.write(len(portfolio_dataframe))
|
645 |
-
team_split_var1 = st.radio("Are you wanting to isolate any lineups with specific main stacks?", ('Full Portfolio', 'Specific Stacks'))
|
646 |
-
if team_split_var1 == 'Specific Stacks':
|
647 |
-
team_var1 = st.multiselect('Which main stacks would you like to include in the Portfolio?', options = split_portfolio['Main_Stack'].unique())
|
648 |
-
elif team_split_var1 == 'Full Portfolio':
|
649 |
-
team_var1 = split_portfolio.Main_Stack.values.tolist()
|
650 |
-
with col2:
|
651 |
-
player_split_var1 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'))
|
652 |
-
if player_split_var1 == 'Specific Players':
|
653 |
-
find_var1 = st.multiselect('Which players must be included in the lineups?', options = static_exposure['Player'].unique())
|
654 |
-
elif player_split_var1 == 'Full Players':
|
655 |
-
find_var1 = static_exposure.Player.values.tolist()
|
656 |
-
|
657 |
-
split_portfolio = split_portfolio[split_portfolio['Main_Stack'].isin(team_var1)]
|
658 |
-
if player_split_var1 == 'Specific Players':
|
659 |
-
split_portfolio = split_portfolio[np.equal.outer(split_portfolio.to_numpy(copy=False), find_var1).any(axis=1).all(axis=1)]
|
660 |
-
elif player_split_var1 == 'Full Players':
|
661 |
-
split_portfolio = split_portfolio
|
662 |
-
|
663 |
-
for player_cols in split_portfolio.iloc[:, 0:6]:
|
664 |
-
exposure_col_raw = split_portfolio[player_cols].value_counts()
|
665 |
-
exposure_col = exposure_col_raw.to_frame()
|
666 |
-
exposure_col.reset_index(inplace=True)
|
667 |
-
exposure_col.columns = ['Player', 'count']
|
668 |
-
overall_exposure = pd.concat([overall_exposure, exposure_col], ignore_index=True)
|
669 |
-
overall_exposure['Exposure'] = overall_exposure['count'] / len(split_portfolio)
|
670 |
-
overall_exposure = overall_exposure.groupby('Player').sum()
|
671 |
-
overall_exposure.reset_index(inplace=True)
|
672 |
-
overall_exposure = overall_exposure[['Player', 'Exposure']]
|
673 |
-
overall_exposure = overall_exposure.set_index('Player')
|
674 |
-
overall_exposure = overall_exposure.sort_values(by='Exposure', ascending=False)
|
675 |
-
overall_exposure['Exposure'] = overall_exposure['Exposure'].astype(float).map(lambda n: '{:.2%}'.format(n))
|
676 |
-
|
677 |
-
with st.container():
|
678 |
-
col1, col2 = st.columns([1, 6])
|
679 |
-
|
680 |
-
with col1:
|
681 |
-
if portfolio_file is not None:
|
682 |
-
st.header('Exposure View')
|
683 |
-
st.dataframe(overall_exposure)
|
684 |
-
|
685 |
-
with col2:
|
686 |
-
if portfolio_file is not None:
|
687 |
-
st.header('Portfolio View')
|
688 |
-
split_portfolio = split_portfolio.reset_index()
|
689 |
-
split_portfolio['Lineup'] = split_portfolio['index'] + 1
|
690 |
-
display_portfolio = split_portfolio[['Lineup', 'CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'Salary', 'Main_Stack', 'Main_Stack_Size', 'Projection', 'Ownership']]
|
691 |
-
hold_display = display_portfolio
|
692 |
-
display_portfolio = display_portfolio.set_index('Lineup')
|
693 |
-
st.dataframe(display_portfolio.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Ownership']).format(precision=2))
|
694 |
-
del split_portfolio
|
695 |
-
del exposure_col_raw
|
696 |
-
del exposure_col
|
697 |
with tab2:
|
698 |
-
col1, col2 = st.columns([1,
|
699 |
with col1:
|
700 |
if st.button("Load/Reset Data", key='reset1'):
|
701 |
st.cache_data.clear()
|
|
|
|
|
702 |
dk_roo_raw = load_dk_player_projections()
|
703 |
dk_roo_raw_2 = load_dk_player_projections_2()
|
704 |
fd_roo_raw = load_fd_player_projections()
|
@@ -720,10 +611,7 @@ with tab2:
|
|
720 |
raw_baselines = dk_roo_raw
|
721 |
elif slate_var1 == 'Paydirt (Secondary)':
|
722 |
raw_baselines = dk_roo_raw_2
|
723 |
-
|
724 |
-
del dk_roo_raw_2
|
725 |
-
del fd_roo_raw
|
726 |
-
del fd_roo_raw_2
|
727 |
st.info("If you are uploading a portfolio, note that there is an adjustments to projections and deviation mapping to prevent 'Projection Bias' and create a fair simulation")
|
728 |
insert_port1 = st.selectbox("Are you uploading a portfolio?", ('No', 'Yes'))
|
729 |
if insert_port1 == 'Yes':
|
@@ -736,103 +624,92 @@ with tab2:
|
|
736 |
elif contest_var1 == 'Medium':
|
737 |
Contest_Size = 2500
|
738 |
elif contest_var1 == 'Large':
|
739 |
-
Contest_Size =
|
740 |
-
linenum_var1 = 1000
|
741 |
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Not Very', 'Average', 'Very'))
|
742 |
if strength_var1 == 'Not Very':
|
743 |
-
|
|
|
744 |
scaling_var = 5
|
745 |
elif strength_var1 == 'Average':
|
746 |
-
|
|
|
747 |
scaling_var = 10
|
748 |
elif strength_var1 == 'Very':
|
749 |
-
|
|
|
750 |
scaling_var = 15
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
751 |
|
752 |
with col2:
|
753 |
with st.container():
|
754 |
if st.button("Simulate Contest", key='sim1'):
|
755 |
-
try:
|
756 |
-
del dst_freq
|
757 |
-
del flex_freq
|
758 |
-
del te_freq
|
759 |
-
del wr_freq
|
760 |
-
del rb_freq
|
761 |
-
del qb_freq
|
762 |
-
del player_freq
|
763 |
-
del Sim_Winner_Export
|
764 |
-
del Sim_Winner_Frame
|
765 |
-
except:
|
766 |
-
pass
|
767 |
with st.container():
|
768 |
-
st.
|
769 |
-
|
770 |
-
seed_depth1 = 5
|
771 |
-
Total_Runs = 2500000
|
772 |
-
if Contest_Size <= 1000:
|
773 |
-
strength_grow = .01
|
774 |
-
elif Contest_Size > 1000 and Contest_Size <= 2500:
|
775 |
-
strength_grow = .025
|
776 |
-
elif Contest_Size > 2500 and Contest_Size <= 5000:
|
777 |
-
strength_grow = .05
|
778 |
-
elif Contest_Size > 5000 and Contest_Size <= 20000:
|
779 |
-
strength_grow = .075
|
780 |
-
elif Contest_Size > 20000:
|
781 |
-
strength_grow = .1
|
782 |
-
|
783 |
-
field_growth = 100 * strength_grow
|
784 |
-
|
785 |
-
Sort_function = 'Median'
|
786 |
-
if Sort_function == 'Median':
|
787 |
-
Sim_function = 'Projection'
|
788 |
-
elif Sort_function == 'Own':
|
789 |
-
Sim_function = 'Own'
|
790 |
|
791 |
if slate_var1 == 'User':
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
-
|
807 |
-
|
808 |
-
|
|
|
|
|
809 |
|
810 |
-
|
|
|
811 |
|
812 |
elif slate_var1 != 'User':
|
813 |
-
|
814 |
-
|
815 |
-
OwnFrame = drop_frame[['Player', 'Team', 'Position', 'Median', 'Own', 'Floor', 'Ceiling', 'Salary']]
|
816 |
-
if contest_var1 == 'Large':
|
817 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (10 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
818 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
819 |
-
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
820 |
-
OwnFrame['Own'] = OwnFrame['Own%'] * (500 / OwnFrame['Own%'].sum())
|
821 |
-
if contest_var1 == 'Medium':
|
822 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (6 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
823 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
824 |
-
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
825 |
-
OwnFrame['Own'] = OwnFrame['Own%'] * (500 / OwnFrame['Own%'].sum())
|
826 |
-
if contest_var1 == 'Small':
|
827 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
828 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (1.5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
829 |
-
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
830 |
-
OwnFrame['Own'] = OwnFrame['Own%'] * (500 / OwnFrame['Own%'].sum())
|
831 |
-
Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Floor', 'Ceiling', 'Salary']]
|
832 |
|
833 |
-
|
834 |
-
|
835 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
836 |
|
837 |
if insert_port == 1:
|
838 |
UserPortfolio = portfolio_dataframe[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']]
|
@@ -856,9 +733,6 @@ with tab2:
|
|
856 |
Teams_used['team_item'] = Teams_used['index'] + 1
|
857 |
Teams_used = Teams_used.drop(columns=['index'])
|
858 |
Teams_used_dictraw = Teams_used.drop(columns=['team_item'])
|
859 |
-
Teams_used_dict = Teams_used_dictraw.to_dict()
|
860 |
-
|
861 |
-
del Teams_used_dictraw
|
862 |
|
863 |
team_list = Teams_used['Team'].to_list()
|
864 |
item_list = Teams_used['team_item'].to_list()
|
@@ -866,8 +740,6 @@ with tab2:
|
|
866 |
FieldStrength_raw = Strength_var + ((30 - len(Teams_used)) * .01)
|
867 |
FieldStrength = FieldStrength_raw - (FieldStrength_raw * (20000 / Contest_Size))
|
868 |
|
869 |
-
del FieldStrength_raw
|
870 |
-
|
871 |
if FieldStrength < 0:
|
872 |
FieldStrength = Strength_var
|
873 |
field_split = Strength_var
|
@@ -883,8 +755,6 @@ with tab2:
|
|
883 |
pos_players = flex_raw
|
884 |
pos_players.dropna(subset=['Median']).reset_index(drop=True)
|
885 |
pos_players = pos_players.reset_index(drop=True)
|
886 |
-
|
887 |
-
del flex_raw
|
888 |
|
889 |
if insert_port == 1:
|
890 |
try:
|
@@ -916,7 +786,7 @@ with tab2:
|
|
916 |
|
917 |
# Merge and update nerf_frame DataFrame
|
918 |
nerf_frame = pd.merge(cleaport_players, Overall_Proj, on='Player', how='left')
|
919 |
-
nerf_frame[['Median', 'Floor', 'Ceiling', 'STDev']] *=
|
920 |
|
921 |
del Raw_Portfolio
|
922 |
except:
|
@@ -932,7 +802,7 @@ with tab2:
|
|
932 |
|
933 |
# Merge and update nerf_frame DataFrame
|
934 |
nerf_frame = pd.merge(cleaport_players, Overall_Proj, on='Player', how='left')
|
935 |
-
nerf_frame[['Median', 'Floor', 'Ceiling', 'STDev']] *=
|
936 |
|
937 |
st.table(nerf_frame)
|
938 |
|
@@ -973,133 +843,71 @@ with tab2:
|
|
973 |
'team_check_map':dict(zip(cleaport_players.Player,nerf_frame.Team))
|
974 |
}
|
975 |
|
976 |
-
|
977 |
-
del nerf_frame
|
978 |
|
979 |
-
|
980 |
-
st.write('Seed frame creation')
|
981 |
-
FinalPortfolio, maps_dict = run_seed_frame(seed_depth1, Strength_var, strength_grow, Teams_used, Total_Runs)
|
982 |
|
983 |
-
|
984 |
-
|
985 |
-
|
986 |
-
|
|
|
987 |
|
988 |
-
|
989 |
-
|
|
|
990 |
|
991 |
-
|
992 |
-
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
993 |
-
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
|
994 |
|
995 |
-
|
996 |
-
|
997 |
-
|
998 |
-
|
999 |
-
|
1000 |
-
|
1001 |
-
if insert_port == 1:
|
1002 |
-
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size-len(CleanPortfolio))]
|
1003 |
-
elif insert_port == 0:
|
1004 |
-
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
|
1005 |
-
|
1006 |
-
sample_arrays1 = np.c_[
|
1007 |
-
fp_random,
|
1008 |
-
np.sum(np.random.normal(
|
1009 |
-
loc=vec_projection_map(fp_random[:, :-5]),
|
1010 |
-
scale=vec_stdev_map(fp_random[:, :-5])),
|
1011 |
-
axis=1)
|
1012 |
-
]
|
1013 |
-
|
1014 |
-
if insert_port == 1:
|
1015 |
-
sample_arrays2 = np.c_[
|
1016 |
-
up_array,
|
1017 |
-
np.sum(np.random.normal(
|
1018 |
-
loc=vec_up_projection_map(up_array[:, :-5]),
|
1019 |
-
scale=vec_up_stdev_map(up_array[:, :-5])),
|
1020 |
-
axis=1)
|
1021 |
-
]
|
1022 |
-
sample_arrays = np.vstack((sample_arrays1, sample_arrays2))
|
1023 |
-
else:
|
1024 |
-
sample_arrays = sample_arrays1
|
1025 |
-
|
1026 |
-
final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
|
1027 |
-
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
|
1028 |
-
Sim_Winners.append(best_lineup)
|
1029 |
-
SimVar += 1
|
1030 |
-
st.write('Contest simulation complete')
|
1031 |
-
|
1032 |
-
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=FinalPortfolio.columns.tolist() + ['Fantasy'])
|
1033 |
-
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['Projection'] + Sim_Winner_Frame['Fantasy']) / 2
|
1034 |
-
Sim_Winner_Frame['Salary'] = Sim_Winner_Frame['Salary'].astype(int)
|
1035 |
-
Sim_Winner_Frame['Projection'] = Sim_Winner_Frame['Projection'].astype(np.float16)
|
1036 |
-
Sim_Winner_Frame['Fantasy'] = Sim_Winner_Frame['Fantasy'].astype(np.float16)
|
1037 |
-
Sim_Winner_Frame['GPP_Proj'] = Sim_Winner_Frame['GPP_Proj'].astype(np.float16)
|
1038 |
-
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by='GPP_Proj', ascending=False)
|
1039 |
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
1040 |
|
1041 |
-
|
|
|
1042 |
|
1043 |
-
|
|
|
|
|
1044 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1045 |
-
player_freq['Freq'] = player_freq['Freq'].astype(int)
|
1046 |
-
player_freq['Position'] = player_freq['Player'].map(maps_dict['Pos_map'])
|
1047 |
-
player_freq['Salary'] = player_freq['Player'].map(maps_dict['Salary_map'])
|
1048 |
-
player_freq['Proj Own'] =
|
1049 |
-
player_freq['Exposure'] = player_freq['Freq']/(
|
1050 |
-
player_freq['Edge'] = player_freq['Exposure'] - player_freq['Proj Own']
|
1051 |
-
player_freq['Team'] = player_freq['Player'].map(maps_dict['Team_map'])
|
1052 |
for checkVar in range(len(team_list)):
|
1053 |
-
player_freq['Team'] = player_freq['Team'].replace(item_list, team_list)
|
1054 |
-
|
1055 |
-
st.session_state.player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1056 |
|
1057 |
-
cpt_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.
|
1058 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1059 |
-
cpt_freq['Freq'] = cpt_freq['Freq'].astype(int)
|
1060 |
-
cpt_freq['Position'] = cpt_freq['Player'].map(maps_dict['Pos_map'])
|
1061 |
-
cpt_freq['Salary'] = cpt_freq['Player'].map(maps_dict['Salary_map'])
|
1062 |
-
cpt_freq['Proj Own'] = (cpt_freq['Player'].map(maps_dict['Own_map']) / 4) / 100
|
1063 |
-
cpt_freq['Exposure'] = cpt_freq['Freq']/
|
1064 |
-
cpt_freq['Edge'] = cpt_freq['Exposure'] - cpt_freq['Proj Own']
|
1065 |
-
cpt_freq['Team'] = cpt_freq['Player'].map(maps_dict['Team_map'])
|
1066 |
for checkVar in range(len(team_list)):
|
1067 |
-
cpt_freq['Team'] = cpt_freq['Team'].replace(item_list, team_list)
|
1068 |
-
|
1069 |
-
st.session_state.cpt_freq = cpt_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1070 |
|
1071 |
-
flex_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.
|
1072 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1073 |
-
flex_freq['Freq'] = flex_freq['Freq'].astype(int)
|
1074 |
-
flex_freq['Position'] = flex_freq['Player'].map(maps_dict['Pos_map'])
|
1075 |
-
flex_freq['Salary'] = flex_freq['Player'].map(maps_dict['Salary_map'])
|
1076 |
-
flex_freq['Proj Own'] = (flex_freq['Player'].map(maps_dict['Own_map']) / 100) - ((flex_freq['Player'].map(maps_dict['Own_map']) / 4) / 100)
|
1077 |
-
flex_freq['Exposure'] = flex_freq['Freq']/
|
1078 |
-
flex_freq['Edge'] = flex_freq['Exposure'] - flex_freq['Proj Own']
|
1079 |
-
flex_freq['Team'] = flex_freq['Player'].map(maps_dict['Team_map'])
|
1080 |
for checkVar in range(len(team_list)):
|
1081 |
-
flex_freq['Team'] = flex_freq['Team'].replace(item_list, team_list)
|
1082 |
-
|
1083 |
-
st.session_state.flex_freq = flex_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1084 |
-
|
1085 |
-
del fp_random
|
1086 |
-
del sample_arrays
|
1087 |
-
del final_array
|
1088 |
-
del fp_array
|
1089 |
-
try:
|
1090 |
-
del up_array
|
1091 |
-
except:
|
1092 |
-
pass
|
1093 |
-
del best_lineup
|
1094 |
-
del CleanPortfolio
|
1095 |
-
del FinalPortfolio
|
1096 |
-
del maps_dict
|
1097 |
-
del team_list
|
1098 |
-
del item_list
|
1099 |
-
del Sim_size
|
1100 |
|
1101 |
with st.container():
|
1102 |
-
simulate_container = st.empty()
|
1103 |
if 'player_freq' in st.session_state:
|
1104 |
player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
|
1105 |
if player_split_var2 == 'Specific Players':
|
@@ -1114,12 +922,12 @@ with tab2:
|
|
1114 |
if 'Sim_Winner_Display' in st.session_state:
|
1115 |
st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Own']).format(precision=2), use_container_width = True)
|
1116 |
if 'Sim_Winner_Export' in st.session_state:
|
1117 |
-
|
1118 |
-
|
1119 |
-
|
1120 |
-
|
1121 |
-
|
1122 |
-
|
1123 |
|
1124 |
with st.container():
|
1125 |
tab1, tab2, tab3 = st.tabs(['Overall Exposures', 'CPT Exposures', 'FLEX Exposures'])
|
@@ -1128,7 +936,7 @@ with tab2:
|
|
1128 |
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1129 |
st.download_button(
|
1130 |
label="Export Exposures",
|
1131 |
-
data=
|
1132 |
file_name='player_freq_export.csv',
|
1133 |
mime='text/csv',
|
1134 |
)
|
@@ -1137,7 +945,7 @@ with tab2:
|
|
1137 |
st.dataframe(st.session_state.cpt_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1138 |
st.download_button(
|
1139 |
label="Export Exposures",
|
1140 |
-
data=
|
1141 |
file_name='cpt_freq_export.csv',
|
1142 |
mime='text/csv',
|
1143 |
)
|
@@ -1146,7 +954,15 @@ with tab2:
|
|
1146 |
st.dataframe(st.session_state.flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1147 |
st.download_button(
|
1148 |
label="Export Exposures",
|
1149 |
-
data=
|
1150 |
file_name='flex_freq_export.csv',
|
1151 |
mime='text/csv',
|
1152 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
import pandas as pd
|
10 |
import streamlit as st
|
11 |
import gspread
|
12 |
+
import random
|
13 |
+
import gc
|
14 |
|
15 |
@st.cache_resource
|
16 |
def init_conn():
|
|
|
30 |
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
|
31 |
}
|
32 |
|
33 |
+
gc_con = gspread.service_account_from_dict(credentials)
|
34 |
+
|
35 |
+
return gc_con
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
gcservice_account = init_conn()
|
|
|
38 |
|
39 |
freq_format = {'Proj Own': '{:.2%}', 'Exposure': '{:.2%}', 'Edge': '{:.2%}'}
|
40 |
|
41 |
@st.cache_resource(ttl=600)
|
42 |
def load_dk_player_projections():
|
43 |
+
sh = gcservice_account.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
|
44 |
worksheet = sh.worksheet('SD_Projections')
|
45 |
load_display = pd.DataFrame(worksheet.get_all_records())
|
46 |
load_display.rename(columns={"PPR": "Median", "name": "Player"}, inplace = True)
|
|
|
48 |
load_display['Ceiling'] = load_display['Median'] + (load_display['Median'] * .75)
|
49 |
load_display.replace('', np.nan, inplace=True)
|
50 |
raw_display = load_display.dropna(subset=['Median'])
|
|
|
51 |
|
52 |
return raw_display
|
53 |
|
54 |
@st.cache_resource(ttl=600)
|
55 |
def load_fd_player_projections():
|
56 |
+
sh = gcservice_account.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
|
57 |
worksheet = sh.worksheet('FD_SD_Projections')
|
58 |
load_display = pd.DataFrame(worksheet.get_all_records())
|
59 |
load_display.rename(columns={"Half_PPR": "Median", "name": "Player"}, inplace = True)
|
|
|
61 |
load_display['Ceiling'] = load_display['Median'] + (load_display['Median'] * .75)
|
62 |
load_display.replace('', np.nan, inplace=True)
|
63 |
raw_display = load_display.dropna(subset=['Median'])
|
|
|
64 |
|
65 |
return raw_display
|
66 |
|
67 |
@st.cache_resource(ttl=600)
|
68 |
def load_dk_player_projections_2():
|
69 |
+
sh = gcservice_account.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
|
70 |
worksheet = sh.worksheet('SD_Projections_2')
|
71 |
load_display = pd.DataFrame(worksheet.get_all_records())
|
72 |
load_display.rename(columns={"PPR": "Median", "name": "Player"}, inplace = True)
|
|
|
74 |
load_display['Ceiling'] = load_display['Median'] + (load_display['Median'] * .75)
|
75 |
load_display.replace('', np.nan, inplace=True)
|
76 |
raw_display = load_display.dropna(subset=['Median'])
|
|
|
77 |
|
78 |
return raw_display
|
79 |
|
80 |
@st.cache_resource(ttl=600)
|
81 |
def load_fd_player_projections_2():
|
82 |
+
sh = gcservice_account.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
|
83 |
worksheet = sh.worksheet('FD_SD_Projections_2')
|
84 |
load_display = pd.DataFrame(worksheet.get_all_records())
|
85 |
load_display.rename(columns={"Half_PPR": "Median", "name": "Player"}, inplace = True)
|
|
|
87 |
load_display['Ceiling'] = load_display['Median'] + (load_display['Median'] * .75)
|
88 |
load_display.replace('', np.nan, inplace=True)
|
89 |
raw_display = load_display.dropna(subset=['Median'])
|
|
|
90 |
|
91 |
return raw_display
|
92 |
|
93 |
+
dk_roo_raw = load_dk_player_projections()
|
94 |
+
dk_roo_raw_2 = load_dk_player_projections_2()
|
95 |
+
fd_roo_raw = load_fd_player_projections()
|
96 |
+
fd_roo_raw_2 = load_fd_player_projections_2()
|
97 |
|
98 |
+
static_exposure = pd.DataFrame(columns=['Player', 'count'])
|
99 |
+
overall_exposure = pd.DataFrame(columns=['Player', 'count'])
|
100 |
+
|
101 |
+
def sim_contest(Sim_size, FinalPortfolio, CleanPortfolio, maps_dict, up_dict, insert_port):
|
102 |
+
SimVar = 1
|
103 |
+
Sim_Winners = []
|
104 |
+
fp_array = FinalPortfolio.values
|
105 |
+
|
106 |
+
if insert_port == 1:
|
107 |
+
up_array = CleanPortfolio.values
|
108 |
+
|
109 |
+
# Pre-vectorize functions
|
110 |
+
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
111 |
+
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
|
112 |
+
|
113 |
+
if insert_port == 1:
|
114 |
+
vec_up_projection_map = np.vectorize(up_dict['Projection_map'].__getitem__)
|
115 |
+
vec_up_stdev_map = np.vectorize(up_dict['STDev_map'].__getitem__)
|
116 |
+
|
117 |
+
st.write('Simulating contest on frames')
|
118 |
+
|
119 |
+
while SimVar <= Sim_size:
|
120 |
+
if insert_port == 1:
|
121 |
+
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size-len(CleanPortfolio))]
|
122 |
+
elif insert_port == 0:
|
123 |
+
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
|
124 |
+
|
125 |
+
sample_arrays1 = np.c_[
|
126 |
+
fp_random,
|
127 |
+
np.sum(np.random.normal(
|
128 |
+
loc=vec_projection_map(fp_random[:, :-5]),
|
129 |
+
scale=vec_stdev_map(fp_random[:, :-5])),
|
130 |
+
axis=1)
|
131 |
+
]
|
132 |
+
|
133 |
+
if insert_port == 1:
|
134 |
+
sample_arrays2 = np.c_[
|
135 |
+
up_array,
|
136 |
+
np.sum(np.random.normal(
|
137 |
+
loc=vec_up_projection_map(up_array[:, :-5]),
|
138 |
+
scale=vec_up_stdev_map(up_array[:, :-5])),
|
139 |
+
axis=1)
|
140 |
+
]
|
141 |
+
sample_arrays = np.vstack((sample_arrays1, sample_arrays2))
|
142 |
+
else:
|
143 |
+
sample_arrays = sample_arrays1
|
144 |
+
|
145 |
+
final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
|
146 |
+
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
|
147 |
+
Sim_Winners.append(best_lineup)
|
148 |
+
SimVar += 1
|
149 |
+
|
150 |
+
return Sim_Winners
|
151 |
+
|
152 |
+
def run_seed_frame(seed_depth1, Strength_var, strength_grow, Teams_used, Total_Runs, field_growth):
|
153 |
RunsVar = 1
|
154 |
seed_depth_def = seed_depth1
|
155 |
Strength_var_def = Strength_var
|
156 |
strength_grow_def = strength_grow
|
157 |
Teams_used_def = Teams_used
|
158 |
Total_Runs_def = Total_Runs
|
159 |
+
|
160 |
+
st.write('Creating Seed Frames')
|
161 |
+
|
162 |
while RunsVar <= seed_depth_def:
|
163 |
if RunsVar <= 3:
|
164 |
FieldStrength = Strength_var_def
|
165 |
+
FinalPortfolio, maps_dict = get_correlated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
|
166 |
+
FinalPortfolio2, maps_dict2 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
|
167 |
+
FinalPortfolio_init = pd.concat([FinalPortfolio, FinalPortfolio2], axis=0)
|
|
|
168 |
maps_dict.update(maps_dict2)
|
|
|
|
|
169 |
elif RunsVar > 3 and RunsVar <= 4:
|
170 |
FieldStrength += (strength_grow_def + ((30 - len(Teams_used_def)) * .001))
|
171 |
+
FinalPortfolio3, maps_dict3 = get_correlated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
|
172 |
+
FinalPortfolio4, maps_dict4 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
|
173 |
+
FinalPortfolio_merge_3 = pd.concat([FinalPortfolio_init, FinalPortfolio3], axis=0)
|
174 |
+
FinalPortfolio_merge_4 = pd.concat([FinalPortfolio_merge_3, FinalPortfolio4], axis=0)
|
175 |
+
FinalPortfolio_step_2 = FinalPortfolio_merge_4.drop_duplicates(subset = ['Projection', 'Own'],keep = 'last').reset_index(drop = True)
|
176 |
maps_dict.update(maps_dict3)
|
177 |
maps_dict.update(maps_dict4)
|
|
|
|
|
|
|
|
|
178 |
elif RunsVar > 4:
|
179 |
FieldStrength = 1
|
180 |
+
FinalPortfolio5, maps_dict5 = get_correlated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
|
181 |
+
FinalPortfolio6, maps_dict6 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
|
182 |
+
FinalPortfolio_merge_5 = pd.concat([FinalPortfolio_step_2, FinalPortfolio5], axis=0)
|
183 |
+
FinalPortfolio_merge_6 = pd.concat([FinalPortfolio_merge_5, FinalPortfolio6], axis=0)
|
184 |
+
FinalPortfolio_export = FinalPortfolio_merge_6.drop_duplicates(subset = ['Projection', 'Own'],keep = 'last').reset_index(drop = True)
|
185 |
+
maps_dict.update(maps_dict5)
|
186 |
+
maps_dict.update(maps_dict6)
|
|
|
|
|
|
|
|
|
187 |
RunsVar += 1
|
188 |
+
|
189 |
+
return FinalPortfolio_export, maps_dict
|
190 |
|
191 |
def create_overall_dfs(pos_players, table_name, dict_name, pos):
|
192 |
pos_players = pos_players.sort_values(by='Value', ascending=False)
|
|
|
195 |
overall_table_name = overall_table_name.assign(Var = range(0,len(overall_table_name)))
|
196 |
overall_dict_name = pd.Series(overall_table_name.Player.values, index=overall_table_name.Var).to_dict()
|
197 |
|
|
|
|
|
|
|
198 |
return overall_table_name, overall_dict_name
|
199 |
|
200 |
|
|
|
213 |
|
214 |
return df_out, ref_dict
|
215 |
|
216 |
+
def create_random_portfolio(Total_Sample_Size, raw_baselines, field_growth):
|
217 |
|
218 |
O_merge, full_pos_player_dict = get_overall_merged_df()
|
219 |
Overall_Merge = O_merge[['Var', 'Player', 'Team', 'Salary', 'Median', 'Own']].copy()
|
|
|
238 |
|
239 |
return RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict
|
240 |
|
241 |
+
def get_correlated_portfolio_for_sim(Total_Sample_Size, sharp_split, field_growth):
|
242 |
|
243 |
+
sizesplit = round(Total_Sample_Size * sharp_split)
|
244 |
|
245 |
+
RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict = create_random_portfolio(sizesplit, raw_baselines, field_growth)
|
246 |
|
247 |
RandomPortfolio['CPT'] = pd.Series(list(RandomPortfolio['CPT'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
248 |
RandomPortfolio['FLEX1'] = pd.Series(list(RandomPortfolio['FLEX1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
|
|
255 |
RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 7].drop(columns=['plyr_list','plyr_count']).\
|
256 |
reset_index(drop=True)
|
257 |
|
|
|
|
|
|
|
|
|
258 |
RandomPortfolio['CPTs'] = RandomPortfolio['CPT'].map(maps_dict['Salary_map']).astype(np.int32) * 1.5
|
259 |
RandomPortfolio['FLEX1s'] = RandomPortfolio['FLEX1'].map(maps_dict['Salary_map']).astype(np.int32)
|
260 |
RandomPortfolio['FLEX2s'] = RandomPortfolio['FLEX2'].map(maps_dict['Salary_map']).astype(np.int32)
|
|
|
282 |
portHeaderList.append('Own')
|
283 |
|
284 |
RandomPortArray = RandomPortfolio.to_numpy()
|
|
|
285 |
|
286 |
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,7:13].astype(int))]
|
287 |
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,13:19].astype(np.double))]
|
|
|
290 |
RandomPortArrayOut = np.delete(RandomPortArray, np.s_[7:25], axis=1)
|
291 |
RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'User/Field', 'Salary', 'Projection', 'Own'])
|
292 |
RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
|
|
|
|
|
|
293 |
|
294 |
if insert_port == 1:
|
295 |
CleanPortfolio['Salary'] = sum([CleanPortfolio['CPT'].map(up_dict['Salary_map']) * 1.5,
|
|
|
329 |
|
330 |
return RandomPortfolio, maps_dict
|
331 |
|
332 |
+
def get_uncorrelated_portfolio_for_sim(Total_Sample_Size, sharp_split, field_growth):
|
333 |
|
334 |
+
sizesplit = round(Total_Sample_Size * (1-sharp_split))
|
335 |
|
336 |
+
RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict = create_random_portfolio(sizesplit, raw_baselines, field_growth)
|
337 |
|
338 |
RandomPortfolio['CPT'] = pd.Series(list(RandomPortfolio['CPT'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
339 |
RandomPortfolio['FLEX1'] = pd.Series(list(RandomPortfolio['FLEX1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
|
|
346 |
RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 7].drop(columns=['plyr_list','plyr_count']).\
|
347 |
reset_index(drop=True)
|
348 |
|
|
|
|
|
|
|
|
|
349 |
RandomPortfolio['CPTs'] = RandomPortfolio['CPT'].map(maps_dict['Salary_map']).astype(np.int32) * 1.5
|
350 |
RandomPortfolio['FLEX1s'] = RandomPortfolio['FLEX1'].map(maps_dict['Salary_map']).astype(np.int32)
|
351 |
RandomPortfolio['FLEX2s'] = RandomPortfolio['FLEX2'].map(maps_dict['Salary_map']).astype(np.int32)
|
|
|
373 |
portHeaderList.append('Own')
|
374 |
|
375 |
RandomPortArray = RandomPortfolio.to_numpy()
|
|
|
376 |
|
377 |
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,7:13].astype(int))]
|
378 |
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,13:19].astype(np.double))]
|
|
|
381 |
RandomPortArrayOut = np.delete(RandomPortArray, np.s_[7:25], axis=1)
|
382 |
RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'User/Field', 'Salary', 'Projection', 'Own'])
|
383 |
RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
|
|
|
|
|
|
384 |
|
385 |
if insert_port == 1:
|
386 |
CleanPortfolio['Salary'] = sum([CleanPortfolio['CPT'].map(up_dict['Salary_map']) * 1.5,
|
|
|
420 |
|
421 |
return RandomPortfolio, maps_dict
|
422 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
423 |
tab1, tab2 = st.tabs(['Uploads', 'Contest Sim'])
|
424 |
|
425 |
with tab1:
|
|
|
483 |
split_portfolio['FLEX4'].map(player_salary_dict),
|
484 |
split_portfolio['FLEX5'].map(player_salary_dict)])
|
485 |
|
|
|
|
|
486 |
split_portfolio['Projection'] = sum([split_portfolio['CPT'].map(player_proj_dict) * 1.5,
|
487 |
split_portfolio['FLEX1'].map(player_proj_dict),
|
488 |
split_portfolio['FLEX2'].map(player_proj_dict),
|
|
|
490 |
split_portfolio['FLEX4'].map(player_proj_dict),
|
491 |
split_portfolio['FLEX5'].map(player_proj_dict)])
|
492 |
|
|
|
|
|
493 |
split_portfolio['Ownership'] = sum([split_portfolio['CPT'].map(player_own_dict) / 4,
|
494 |
split_portfolio['FLEX1'].map(player_own_dict),
|
495 |
split_portfolio['FLEX2'].map(player_own_dict),
|
|
|
497 |
split_portfolio['FLEX4'].map(player_own_dict),
|
498 |
split_portfolio['FLEX5'].map(player_own_dict)])
|
499 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
500 |
except:
|
501 |
portfolio_dataframe.columns=["CPT", "FLEX1", "FLEX2", "FLEX3", "FLEX4", "FLEX5"]
|
502 |
split_portfolio = portfolio_dataframe
|
|
|
528 |
split_portfolio['FLEX4'].map(player_salary_dict),
|
529 |
split_portfolio['FLEX5'].map(player_salary_dict)])
|
530 |
|
|
|
|
|
531 |
split_portfolio['Projection'] = sum([split_portfolio['CPT'].map(player_proj_dict) * 1.5,
|
532 |
split_portfolio['FLEX1'].map(player_proj_dict),
|
533 |
split_portfolio['FLEX2'].map(player_proj_dict),
|
|
|
535 |
split_portfolio['FLEX4'].map(player_proj_dict),
|
536 |
split_portfolio['FLEX5'].map(player_proj_dict)])
|
537 |
|
|
|
|
|
538 |
split_portfolio['Ownership'] = sum([split_portfolio['CPT'].map(player_own_dict) / 4,
|
539 |
split_portfolio['FLEX1'].map(player_own_dict),
|
540 |
split_portfolio['FLEX2'].map(player_own_dict),
|
|
|
542 |
split_portfolio['FLEX4'].map(player_own_dict),
|
543 |
split_portfolio['FLEX5'].map(player_own_dict)])
|
544 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
545 |
except:
|
546 |
split_portfolio = portfolio_dataframe
|
547 |
|
|
|
566 |
split_portfolio['FLEX4'].map(player_salary_dict),
|
567 |
split_portfolio['FLEX5'].map(player_salary_dict)])
|
568 |
|
|
|
|
|
569 |
split_portfolio['Projection'] = sum([split_portfolio['CPT'].map(player_proj_dict) * 1.5,
|
570 |
split_portfolio['FLEX1'].map(player_proj_dict),
|
571 |
split_portfolio['FLEX2'].map(player_proj_dict),
|
|
|
573 |
split_portfolio['FLEX4'].map(player_proj_dict),
|
574 |
split_portfolio['FLEX5'].map(player_proj_dict)])
|
575 |
|
|
|
|
|
576 |
split_portfolio['Ownership'] = sum([split_portfolio['CPT'].map(player_own_dict) / 4,
|
577 |
split_portfolio['FLEX1'].map(player_own_dict),
|
578 |
split_portfolio['FLEX2'].map(player_own_dict),
|
|
|
580 |
split_portfolio['FLEX4'].map(player_own_dict),
|
581 |
split_portfolio['FLEX5'].map(player_own_dict)])
|
582 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
583 |
|
584 |
+
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
585 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
586 |
with tab2:
|
587 |
+
col1, col2 = st.columns([1, 7])
|
588 |
with col1:
|
589 |
if st.button("Load/Reset Data", key='reset1'):
|
590 |
st.cache_data.clear()
|
591 |
+
for key in st.session_state.keys():
|
592 |
+
del st.session_state[key]
|
593 |
dk_roo_raw = load_dk_player_projections()
|
594 |
dk_roo_raw_2 = load_dk_player_projections_2()
|
595 |
fd_roo_raw = load_fd_player_projections()
|
|
|
611 |
raw_baselines = dk_roo_raw
|
612 |
elif slate_var1 == 'Paydirt (Secondary)':
|
613 |
raw_baselines = dk_roo_raw_2
|
614 |
+
|
|
|
|
|
|
|
615 |
st.info("If you are uploading a portfolio, note that there is an adjustments to projections and deviation mapping to prevent 'Projection Bias' and create a fair simulation")
|
616 |
insert_port1 = st.selectbox("Are you uploading a portfolio?", ('No', 'Yes'))
|
617 |
if insert_port1 == 'Yes':
|
|
|
624 |
elif contest_var1 == 'Medium':
|
625 |
Contest_Size = 2500
|
626 |
elif contest_var1 == 'Large':
|
627 |
+
Contest_Size = 5000
|
|
|
628 |
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Not Very', 'Average', 'Very'))
|
629 |
if strength_var1 == 'Not Very':
|
630 |
+
sharp_split = .33
|
631 |
+
Strength_var = .50
|
632 |
scaling_var = 5
|
633 |
elif strength_var1 == 'Average':
|
634 |
+
sharp_split = .50
|
635 |
+
Strength_var = .25
|
636 |
scaling_var = 10
|
637 |
elif strength_var1 == 'Very':
|
638 |
+
sharp_split = .75
|
639 |
+
Strength_var = .01
|
640 |
scaling_var = 15
|
641 |
+
|
642 |
+
Sort_function = 'Median'
|
643 |
+
Sim_function = 'Projection'
|
644 |
+
|
645 |
+
if Contest_Size <= 1000:
|
646 |
+
strength_grow = .01
|
647 |
+
elif Contest_Size > 1000 and Contest_Size <= 2500:
|
648 |
+
strength_grow = .025
|
649 |
+
elif Contest_Size > 2500 and Contest_Size <= 5000:
|
650 |
+
strength_grow = .05
|
651 |
+
elif Contest_Size > 5000 and Contest_Size <= 20000:
|
652 |
+
strength_grow = .075
|
653 |
+
elif Contest_Size > 20000:
|
654 |
+
strength_grow = .1
|
655 |
+
|
656 |
+
field_growth = 100 * strength_grow
|
657 |
|
658 |
with col2:
|
659 |
with st.container():
|
660 |
if st.button("Simulate Contest", key='sim1'):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
661 |
with st.container():
|
662 |
+
for key in st.session_state.keys():
|
663 |
+
del st.session_state[key]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
664 |
|
665 |
if slate_var1 == 'User':
|
666 |
+
initial_proj = proj_dataframe[['Player', 'Team', 'Position', 'Median', 'Own', 'Floor', 'Ceiling', 'Salary']]
|
667 |
+
|
668 |
+
# Define the calculation to be applied
|
669 |
+
def calculate_own(position, own, mean_own, factor, max_own=75):
|
670 |
+
return np.where((position == 'QB') & (own - mean_own >= 0),
|
671 |
+
own * (factor * (own - mean_own) / 100) + mean_own,
|
672 |
+
own)
|
673 |
+
|
674 |
+
# Set the factors based on the contest_var1
|
675 |
+
factor_qb, factor_other = {
|
676 |
+
'Small': (10, 5),
|
677 |
+
'Medium': (6, 3),
|
678 |
+
'Large': (3, 1.5),
|
679 |
+
}[contest_var1]
|
680 |
+
|
681 |
+
# Apply the calculation to the DataFrame
|
682 |
+
initial_proj['Own%'] = initial_proj.apply(lambda row: calculate_own(row['Position'], row['Own'], initial_proj.loc[initial_proj['Position'] == row['Position'], 'Own'].mean(), factor_qb if row['Position'] == 'QB' else factor_other), axis=1)
|
683 |
+
initial_proj['Own%'] = initial_proj['Own%'].clip(upper=75)
|
684 |
+
initial_proj['Own'] = initial_proj['Own%'] * (500 / initial_proj['Own%'].sum())
|
685 |
|
686 |
+
# Drop unnecessary columns and create the final DataFrame
|
687 |
+
Overall_Proj = initial_proj[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
688 |
|
689 |
elif slate_var1 != 'User':
|
690 |
+
# Copy only the necessary columns
|
691 |
+
initial_proj = raw_baselines[['Player', 'Team', 'Position', 'Median', 'Own', 'Floor', 'Ceiling', 'Salary']]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
692 |
|
693 |
+
# Define the calculation to be applied
|
694 |
+
def calculate_own(position, own, mean_own, factor, max_own=75):
|
695 |
+
return np.where((position == 'QB') & (own - mean_own >= 0),
|
696 |
+
own * (factor * (own - mean_own) / 100) + mean_own,
|
697 |
+
own)
|
698 |
+
|
699 |
+
# Set the factors based on the contest_var1
|
700 |
+
factor_qb, factor_other = {
|
701 |
+
'Small': (10, 5),
|
702 |
+
'Medium': (6, 3),
|
703 |
+
'Large': (3, 1.5),
|
704 |
+
}[contest_var1]
|
705 |
+
|
706 |
+
# Apply the calculation to the DataFrame
|
707 |
+
initial_proj['Own%'] = initial_proj.apply(lambda row: calculate_own(row['Position'], row['Own'], initial_proj.loc[initial_proj['Position'] == row['Position'], 'Own'].mean(), factor_qb if row['Position'] == 'QB' else factor_other), axis=1)
|
708 |
+
initial_proj['Own%'] = initial_proj['Own%'].clip(upper=75)
|
709 |
+
initial_proj['Own'] = initial_proj['Own%'] * (500 / initial_proj['Own%'].sum())
|
710 |
+
|
711 |
+
# Drop unnecessary columns and create the final DataFrame
|
712 |
+
Overall_Proj = initial_proj[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
713 |
|
714 |
if insert_port == 1:
|
715 |
UserPortfolio = portfolio_dataframe[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']]
|
|
|
733 |
Teams_used['team_item'] = Teams_used['index'] + 1
|
734 |
Teams_used = Teams_used.drop(columns=['index'])
|
735 |
Teams_used_dictraw = Teams_used.drop(columns=['team_item'])
|
|
|
|
|
|
|
736 |
|
737 |
team_list = Teams_used['Team'].to_list()
|
738 |
item_list = Teams_used['team_item'].to_list()
|
|
|
740 |
FieldStrength_raw = Strength_var + ((30 - len(Teams_used)) * .01)
|
741 |
FieldStrength = FieldStrength_raw - (FieldStrength_raw * (20000 / Contest_Size))
|
742 |
|
|
|
|
|
743 |
if FieldStrength < 0:
|
744 |
FieldStrength = Strength_var
|
745 |
field_split = Strength_var
|
|
|
755 |
pos_players = flex_raw
|
756 |
pos_players.dropna(subset=['Median']).reset_index(drop=True)
|
757 |
pos_players = pos_players.reset_index(drop=True)
|
|
|
|
|
758 |
|
759 |
if insert_port == 1:
|
760 |
try:
|
|
|
786 |
|
787 |
# Merge and update nerf_frame DataFrame
|
788 |
nerf_frame = pd.merge(cleaport_players, Overall_Proj, on='Player', how='left')
|
789 |
+
nerf_frame[['Median', 'Floor', 'Ceiling', 'STDev']] *= .9
|
790 |
|
791 |
del Raw_Portfolio
|
792 |
except:
|
|
|
802 |
|
803 |
# Merge and update nerf_frame DataFrame
|
804 |
nerf_frame = pd.merge(cleaport_players, Overall_Proj, on='Player', how='left')
|
805 |
+
nerf_frame[['Median', 'Floor', 'Ceiling', 'STDev']] *= .9
|
806 |
|
807 |
st.table(nerf_frame)
|
808 |
|
|
|
843 |
'team_check_map':dict(zip(cleaport_players.Player,nerf_frame.Team))
|
844 |
}
|
845 |
|
846 |
+
FinalPortfolio, maps_dict = run_seed_frame(5, Strength_var, strength_grow, Teams_used, 1000000, field_growth)
|
|
|
847 |
|
848 |
+
Sim_Winners = sim_contest(5000, FinalPortfolio, CleanPortfolio, maps_dict, up_dict, insert_port)
|
|
|
|
|
849 |
|
850 |
+
# Initial setup
|
851 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=FinalPortfolio.columns.tolist() + ['Fantasy'])
|
852 |
+
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['Projection'] + Sim_Winner_Frame['Fantasy']) / 2
|
853 |
+
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['Projection'].astype(str) + Sim_Winner_Frame['Salary'].astype(str) + Sim_Winner_Frame['Own'].astype(str)
|
854 |
+
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
|
855 |
|
856 |
+
# Type Casting
|
857 |
+
type_cast_dict = {'Salary': int, 'Projection': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32}
|
858 |
+
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
859 |
|
860 |
+
del FinalPortfolio, insert_port, type_cast_dict
|
|
|
|
|
861 |
|
862 |
+
# Sorting
|
863 |
+
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
|
864 |
+
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
|
865 |
+
|
866 |
+
# Data Copying
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
867 |
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
868 |
|
869 |
+
# Data Copying
|
870 |
+
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
871 |
|
872 |
+
del Sim_Winner_Frame, Sim_Winners
|
873 |
+
|
874 |
+
st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:6].values, return_counts=True)),
|
875 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
876 |
+
st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
|
877 |
+
st.session_state.player_freq['Position'] = st.session_state.player_freq['Player'].map(maps_dict['Pos_map'])
|
878 |
+
st.session_state.player_freq['Salary'] = st.session_state.player_freq['Player'].map(maps_dict['Salary_map'])
|
879 |
+
st.session_state.player_freq['Proj Own'] = st.session_state.player_freq['Player'].map(maps_dict['Own_map']) / 100
|
880 |
+
st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(5000)
|
881 |
+
st.session_state.player_freq['Edge'] = st.session_state.player_freq['Exposure'] - st.session_state.player_freq['Proj Own']
|
882 |
+
st.session_state.player_freq['Team'] = st.session_state.player_freq['Player'].map(maps_dict['Team_map'])
|
883 |
for checkVar in range(len(team_list)):
|
884 |
+
st.session_state.player_freq['Team'] = st.session_state.player_freq['Team'].replace(item_list, team_list)
|
|
|
|
|
885 |
|
886 |
+
st.session_state.cpt_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:1].values, return_counts=True)),
|
887 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
888 |
+
st.session_state.cpt_freq['Freq'] = st.session_state.cpt_freq['Freq'].astype(int)
|
889 |
+
st.session_state.cpt_freq['Position'] = st.session_state.cpt_freq['Player'].map(maps_dict['Pos_map'])
|
890 |
+
st.session_state.cpt_freq['Salary'] = st.session_state.cpt_freq['Player'].map(maps_dict['Salary_map'])
|
891 |
+
st.session_state.cpt_freq['Proj Own'] = (st.session_state.cpt_freq['Player'].map(maps_dict['Own_map']) / 4) / 100
|
892 |
+
st.session_state.cpt_freq['Exposure'] = st.session_state.cpt_freq['Freq']/5000
|
893 |
+
st.session_state.cpt_freq['Edge'] = st.session_state.cpt_freq['Exposure'] - st.session_state.cpt_freq['Proj Own']
|
894 |
+
st.session_state.cpt_freq['Team'] = st.session_state.cpt_freq['Player'].map(maps_dict['Team_map'])
|
895 |
for checkVar in range(len(team_list)):
|
896 |
+
st.session_state.cpt_freq['Team'] = st.session_state.cpt_freq['Team'].replace(item_list, team_list)
|
|
|
|
|
897 |
|
898 |
+
st.session_state.flex_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,[1, 2, 3, 4, 5]].values, return_counts=True)),
|
899 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
900 |
+
st.session_state.flex_freq['Freq'] = st.session_state.flex_freq['Freq'].astype(int)
|
901 |
+
st.session_state.flex_freq['Position'] = st.session_state.flex_freq['Player'].map(maps_dict['Pos_map'])
|
902 |
+
st.session_state.flex_freq['Salary'] = st.session_state.flex_freq['Player'].map(maps_dict['Salary_map'])
|
903 |
+
st.session_state.flex_freq['Proj Own'] = (st.session_state.flex_freq['Player'].map(maps_dict['Own_map']) / 100) - ((st.session_state.flex_freq['Player'].map(maps_dict['Own_map']) / 4) / 100)
|
904 |
+
st.session_state.flex_freq['Exposure'] = st.session_state.flex_freq['Freq']/5000
|
905 |
+
st.session_state.flex_freq['Edge'] = st.session_state.flex_freq['Exposure'] - st.session_state.flex_freq['Proj Own']
|
906 |
+
st.session_state.flex_freq['Team'] = st.session_state.flex_freq['Player'].map(maps_dict['Team_map'])
|
907 |
for checkVar in range(len(team_list)):
|
908 |
+
st.session_state.flex_freq['Team'] = st.session_state.flex_freq['Team'].replace(item_list, team_list)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
909 |
|
910 |
with st.container():
|
|
|
911 |
if 'player_freq' in st.session_state:
|
912 |
player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
|
913 |
if player_split_var2 == 'Specific Players':
|
|
|
922 |
if 'Sim_Winner_Display' in st.session_state:
|
923 |
st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Own']).format(precision=2), use_container_width = True)
|
924 |
if 'Sim_Winner_Export' in st.session_state:
|
925 |
+
st.download_button(
|
926 |
+
label="Export Full Frame",
|
927 |
+
data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
|
928 |
+
file_name='NFL_consim_export.csv',
|
929 |
+
mime='text/csv',
|
930 |
+
)
|
931 |
|
932 |
with st.container():
|
933 |
tab1, tab2, tab3 = st.tabs(['Overall Exposures', 'CPT Exposures', 'FLEX Exposures'])
|
|
|
936 |
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
937 |
st.download_button(
|
938 |
label="Export Exposures",
|
939 |
+
data=st.session_state.player_freq.to_csv().encode('utf-8'),
|
940 |
file_name='player_freq_export.csv',
|
941 |
mime='text/csv',
|
942 |
)
|
|
|
945 |
st.dataframe(st.session_state.cpt_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
946 |
st.download_button(
|
947 |
label="Export Exposures",
|
948 |
+
data=st.session_state.cpt_freq.to_csv().encode('utf-8'),
|
949 |
file_name='cpt_freq_export.csv',
|
950 |
mime='text/csv',
|
951 |
)
|
|
|
954 |
st.dataframe(st.session_state.flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
955 |
st.download_button(
|
956 |
label="Export Exposures",
|
957 |
+
data=st.session_state.flex_freq.to_csv().encode('utf-8'),
|
958 |
file_name='flex_freq_export.csv',
|
959 |
mime='text/csv',
|
960 |
+
)
|
961 |
+
del gcservice_account
|
962 |
+
del dk_roo_raw, dk_roo_raw_2, fd_roo_raw, fd_roo_raw_2
|
963 |
+
del static_exposure, overall_exposure
|
964 |
+
del insert_port1, Contest_Size, sharp_split, Strength_var, scaling_var, Sort_function, Sim_function, strength_grow, field_growth
|
965 |
+
del raw_baselines
|
966 |
+
del freq_format
|
967 |
+
|
968 |
+
gc.collect()
|