James McCool
commited on
Commit
·
ad70227
1
Parent(s):
d57ad87
Refactor app.py to support NBA data integration and enhance functionality for both NFL and NBA sports. Added new functions for initializing seed frames and updated existing functions to handle sport-specific data. Improved data handling for ownership calculations and adjusted data structures for better performance. Updated user interface elements to allow sport selection and corresponding data loading.
Browse files
app.py
CHANGED
@@ -38,68 +38,191 @@ def init_conn():
|
|
38 |
|
39 |
uri = st.secrets['mongo_uri']
|
40 |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
41 |
-
db = client["testing_db"]
|
42 |
|
43 |
NFL_Data = st.secrets['NFL_Data']
|
44 |
|
|
|
|
|
45 |
gc = gspread.service_account_from_dict(credentials)
|
46 |
gc2 = gspread.service_account_from_dict(credentials2)
|
47 |
|
48 |
-
return gc, gc2,
|
49 |
|
50 |
-
gcservice_account, gcservice_account2,
|
51 |
|
52 |
percentages_format = {'Exposure': '{:.2%}'}
|
53 |
freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
|
54 |
-
dk_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']
|
55 |
-
fd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']
|
56 |
|
57 |
@st.cache_data(ttl = 599)
|
58 |
-
def init_DK_seed_frames():
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
61 |
cursor = collection.find()
|
62 |
|
63 |
raw_display = pd.DataFrame(list(cursor))
|
64 |
-
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']]
|
65 |
DK_seed = raw_display.to_numpy()
|
66 |
|
67 |
return DK_seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
@st.cache_data(ttl = 599)
|
70 |
-
def init_FD_seed_frames():
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
collection = db["
|
73 |
cursor = collection.find()
|
74 |
|
75 |
raw_display = pd.DataFrame(list(cursor))
|
76 |
-
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']]
|
77 |
FD_seed = raw_display.to_numpy()
|
78 |
|
79 |
return FD_seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
@st.cache_data(ttl = 599)
|
82 |
-
def
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
load_display.replace('', np.nan, inplace=True)
|
91 |
-
load_display['STDev'] = load_display['Median'] / 4
|
92 |
-
load_display = load_display.drop_duplicates(subset=['Player'], keep='first')
|
93 |
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
return dk_raw, fd_raw
|
105 |
|
@@ -130,7 +253,9 @@ def sim_contest(Sim_size, seed_frame, maps_dict, sharp_split, Contest_Size):
|
|
130 |
|
131 |
# Pre-vectorize functions
|
132 |
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
|
|
133 |
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
|
|
|
134 |
|
135 |
st.write('Simulating contest on frames')
|
136 |
|
@@ -138,10 +263,16 @@ def sim_contest(Sim_size, seed_frame, maps_dict, sharp_split, Contest_Size):
|
|
138 |
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
|
139 |
|
140 |
sample_arrays1 = np.c_[
|
141 |
-
fp_random,
|
142 |
np.sum(np.random.normal(
|
143 |
-
loc=
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
axis=1)
|
146 |
]
|
147 |
|
@@ -154,10 +285,6 @@ def sim_contest(Sim_size, seed_frame, maps_dict, sharp_split, Contest_Size):
|
|
154 |
|
155 |
return Sim_Winners
|
156 |
|
157 |
-
DK_seed = init_DK_seed_frames()
|
158 |
-
FD_seed = init_FD_seed_frames()
|
159 |
-
dk_raw, fd_raw = init_baselines()
|
160 |
-
|
161 |
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
|
162 |
with tab2:
|
163 |
col1, col2 = st.columns([1, 7])
|
@@ -166,13 +293,32 @@ with tab2:
|
|
166 |
st.cache_data.clear()
|
167 |
for key in st.session_state.keys():
|
168 |
del st.session_state[key]
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
slate_var1 = st.radio("Which data are you loading?", ('Showdown', '
|
174 |
-
|
|
|
175 |
if site_var1 == 'Draftkings':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
raw_baselines = dk_raw
|
177 |
column_names = dk_columns
|
178 |
|
@@ -189,6 +335,24 @@ with tab2:
|
|
189 |
stack_var2 = [5, 4, 3, 2, 1, 0]
|
190 |
|
191 |
elif site_var1 == 'Fanduel':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
raw_baselines = fd_raw
|
193 |
column_names = fd_columns
|
194 |
|
@@ -207,6 +371,7 @@ with tab2:
|
|
207 |
|
208 |
if st.button("Prepare data export", key='data_export'):
|
209 |
data_export = st.session_state.working_seed.copy()
|
|
|
210 |
st.download_button(
|
211 |
label="Export optimals set",
|
212 |
data=convert_df(data_export),
|
@@ -249,27 +414,68 @@ with tab1:
|
|
249 |
st.cache_data.clear()
|
250 |
for key in st.session_state.keys():
|
251 |
del st.session_state[key]
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
sim_slate_var1 = st.radio("Which data are you loading?", ('
|
256 |
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
|
257 |
if sim_site_var1 == 'Draftkings':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
raw_baselines = dk_raw
|
259 |
column_names = dk_columns
|
260 |
elif sim_site_var1 == 'Fanduel':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
raw_baselines = fd_raw
|
262 |
column_names = fd_columns
|
263 |
|
264 |
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
|
265 |
if contest_var1 == 'Small':
|
266 |
Contest_Size = 1000
|
|
|
|
|
|
|
267 |
elif contest_var1 == 'Medium':
|
268 |
Contest_Size = 5000
|
|
|
269 |
elif contest_var1 == 'Large':
|
270 |
Contest_Size = 10000
|
|
|
271 |
elif contest_var1 == 'Custom':
|
272 |
-
Contest_Size = st.number_input("Insert contest size", value=100,
|
273 |
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
|
274 |
if strength_var1 == 'Not Very':
|
275 |
sharp_split = 500000
|
@@ -288,11 +494,14 @@ with tab1:
|
|
288 |
if 'working_seed' in st.session_state:
|
289 |
maps_dict = {
|
290 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
|
|
291 |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
292 |
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
293 |
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
|
|
|
294 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
295 |
-
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
|
|
296 |
}
|
297 |
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, sharp_split, Contest_Size)
|
298 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
@@ -306,7 +515,7 @@ with tab1:
|
|
306 |
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
|
307 |
|
308 |
# Type Casting
|
309 |
-
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32}
|
310 |
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
311 |
|
312 |
# Sorting
|
@@ -326,11 +535,14 @@ with tab1:
|
|
326 |
st.session_state.working_seed = FD_seed.copy()
|
327 |
maps_dict = {
|
328 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
|
|
329 |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
330 |
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
331 |
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
|
|
|
332 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
333 |
-
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
|
|
334 |
}
|
335 |
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, sharp_split, Contest_Size)
|
336 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
@@ -341,10 +553,86 @@ with tab1:
|
|
341 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
|
342 |
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
|
343 |
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
|
345 |
|
346 |
# Type Casting
|
347 |
-
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32}
|
348 |
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
349 |
|
350 |
# Sorting
|
@@ -353,6 +641,7 @@ with tab1:
|
|
353 |
|
354 |
# Data Copying
|
355 |
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
|
|
356 |
|
357 |
# Data Copying
|
358 |
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
@@ -366,7 +655,13 @@ with tab1:
|
|
366 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
367 |
freq_working['Freq'] = freq_working['Freq'].astype(int)
|
368 |
freq_working['Position'] = freq_working['Player'].map(maps_dict['Pos_map'])
|
369 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
freq_working['Proj Own'] = freq_working['Player'].map(maps_dict['Own_map']) / 100
|
371 |
freq_working['Exposure'] = freq_working['Freq']/(1000)
|
372 |
freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
|
@@ -381,8 +676,11 @@ with tab1:
|
|
381 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
382 |
cpt_working['Freq'] = cpt_working['Freq'].astype(int)
|
383 |
cpt_working['Position'] = cpt_working['Player'].map(maps_dict['Pos_map'])
|
384 |
-
|
385 |
-
|
|
|
|
|
|
|
386 |
cpt_working['Exposure'] = cpt_working['Freq']/(1000)
|
387 |
cpt_working['Edge'] = cpt_working['Exposure'] - cpt_working['Proj Own']
|
388 |
cpt_working['Team'] = cpt_working['Player'].map(maps_dict['Team_map'])
|
@@ -391,13 +689,21 @@ with tab1:
|
|
391 |
if sim_site_var1 == 'Draftkings':
|
392 |
flex_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:6].values, return_counts=True)),
|
393 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
|
|
394 |
elif sim_site_var1 == 'Fanduel':
|
395 |
flex_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:5].values, return_counts=True)),
|
396 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
|
|
397 |
flex_working['Freq'] = flex_working['Freq'].astype(int)
|
398 |
flex_working['Position'] = flex_working['Player'].map(maps_dict['Pos_map'])
|
399 |
-
|
400 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
401 |
flex_working['Exposure'] = flex_working['Freq']/(1000)
|
402 |
flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
|
403 |
flex_working['Team'] = flex_working['Player'].map(maps_dict['Team_map'])
|
@@ -412,16 +718,6 @@ with tab1:
|
|
412 |
team_working['Freq'] = team_working['Freq'].astype(int)
|
413 |
team_working['Exposure'] = team_working['Freq']/(1000)
|
414 |
st.session_state.team_freq = team_working.copy()
|
415 |
-
|
416 |
-
if sim_site_var1 == 'Draftkings':
|
417 |
-
stack_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,10:11].values, return_counts=True)),
|
418 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
419 |
-
elif sim_site_var1 == 'Fanduel':
|
420 |
-
stack_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,9:10].values, return_counts=True)),
|
421 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
422 |
-
stack_working['Freq'] = stack_working['Freq'].astype(int)
|
423 |
-
stack_working['Exposure'] = stack_working['Freq']/(1000)
|
424 |
-
st.session_state.stack_freq = stack_working.copy()
|
425 |
|
426 |
with st.container():
|
427 |
if st.button("Reset Sim", key='reset_sim'):
|
|
|
38 |
|
39 |
uri = st.secrets['mongo_uri']
|
40 |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
|
|
41 |
|
42 |
NFL_Data = st.secrets['NFL_Data']
|
43 |
|
44 |
+
NBA_Data = st.secrets['NBA_Data']
|
45 |
+
|
46 |
gc = gspread.service_account_from_dict(credentials)
|
47 |
gc2 = gspread.service_account_from_dict(credentials2)
|
48 |
|
49 |
+
return gc, gc2, client, NFL_Data, NBA_Data
|
50 |
|
51 |
+
gcservice_account, gcservice_account2, client, NFL_Data, NBA_Data = init_conn()
|
52 |
|
53 |
percentages_format = {'Exposure': '{:.2%}'}
|
54 |
freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
|
55 |
+
dk_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
56 |
+
fd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
57 |
|
58 |
@st.cache_data(ttl = 599)
|
59 |
+
def init_DK_seed_frames(sport):
|
60 |
+
if sport == 'NFL':
|
61 |
+
db = client["NFL_Database"]
|
62 |
+
elif sport == 'NBA':
|
63 |
+
db = client["NBA_DFS"]
|
64 |
+
|
65 |
+
collection = db[f"DK_{sport}_SD_seed_frame"]
|
66 |
cursor = collection.find()
|
67 |
|
68 |
raw_display = pd.DataFrame(list(cursor))
|
69 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
70 |
DK_seed = raw_display.to_numpy()
|
71 |
|
72 |
return DK_seed
|
73 |
+
|
74 |
+
@st.cache_data(ttl = 599)
|
75 |
+
def init_DK_secondary_seed_frames(sport):
|
76 |
+
|
77 |
+
if sport == 'NFL':
|
78 |
+
db = client["NFL_Database"]
|
79 |
+
elif sport == 'NBA':
|
80 |
+
db = client["NBA_DFS"]
|
81 |
+
|
82 |
+
collection = db[f"DK_{sport}_Secondary_SD_seed_frame"]
|
83 |
+
cursor = collection.find()
|
84 |
+
|
85 |
+
raw_display = pd.DataFrame(list(cursor))
|
86 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
87 |
+
DK_second_seed = raw_display.to_numpy()
|
88 |
|
89 |
+
return DK_second_seed
|
90 |
+
|
91 |
+
@st.cache_data(ttl = 599)
|
92 |
+
def init_DK_auxiliary_seed_frames(sport):
|
93 |
+
|
94 |
+
if sport == 'NFL':
|
95 |
+
db = client["NFL_Database"]
|
96 |
+
elif sport == 'NBA':
|
97 |
+
db = client["NBA_DFS"]
|
98 |
+
|
99 |
+
collection = db[f"DK_{sport}_Auxiliary_SD_seed_frame"]
|
100 |
+
cursor = collection.find()
|
101 |
+
|
102 |
+
raw_display = pd.DataFrame(list(cursor))
|
103 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
104 |
+
DK_auxiliary_seed = raw_display.to_numpy()
|
105 |
+
|
106 |
+
return DK_auxiliary_seed
|
107 |
+
|
108 |
@st.cache_data(ttl = 599)
|
109 |
+
def init_FD_seed_frames(sport):
|
110 |
+
|
111 |
+
if sport == 'NFL':
|
112 |
+
db = client["NFL_Database"]
|
113 |
+
elif sport == 'NBA':
|
114 |
+
db = client["NBA_DFS"]
|
115 |
|
116 |
+
collection = db[f"FD_{sport}_SD_seed_frame"]
|
117 |
cursor = collection.find()
|
118 |
|
119 |
raw_display = pd.DataFrame(list(cursor))
|
120 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
121 |
FD_seed = raw_display.to_numpy()
|
122 |
|
123 |
return FD_seed
|
124 |
+
|
125 |
+
@st.cache_data(ttl = 599)
|
126 |
+
def init_FD_secondary_seed_frames(sport):
|
127 |
+
|
128 |
+
if sport == 'NFL':
|
129 |
+
db = client["NFL_Database"]
|
130 |
+
elif sport == 'NBA':
|
131 |
+
db = client["NBA_DFS"]
|
132 |
+
|
133 |
+
collection = db[f"FD_{sport}_Secondary_SD_seed_frame"]
|
134 |
+
cursor = collection.find()
|
135 |
+
|
136 |
+
raw_display = pd.DataFrame(list(cursor))
|
137 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
138 |
+
FD_second_seed = raw_display.to_numpy()
|
139 |
+
|
140 |
+
return FD_second_seed
|
141 |
|
142 |
@st.cache_data(ttl = 599)
|
143 |
+
def init_FD_auxiliary_seed_frames(sport):
|
144 |
+
|
145 |
+
if sport == 'NFL':
|
146 |
+
db = client["NFL_Database"]
|
147 |
+
elif sport == 'NBA':
|
148 |
+
db = client["NBA_DFS"]
|
149 |
|
150 |
+
collection = db[f"FD_{sport}_Auxiliary_SD_seed_frame"]
|
151 |
+
cursor = collection.find()
|
|
|
|
|
|
|
152 |
|
153 |
+
raw_display = pd.DataFrame(list(cursor))
|
154 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
155 |
+
FD_auxiliary_seed = raw_display.to_numpy()
|
156 |
+
|
157 |
+
return FD_auxiliary_seed
|
158 |
+
|
159 |
+
@st.cache_data(ttl = 599)
|
160 |
+
def init_baselines(sport):
|
161 |
+
if sport == 'NFL':
|
162 |
+
db = client["NFL_Database"]
|
163 |
+
collection = db['DK_SD_NFL_ROO']
|
164 |
+
cursor = collection.find()
|
165 |
|
166 |
+
raw_display = pd.DataFrame(list(cursor))
|
167 |
+
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
|
168 |
+
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
|
169 |
+
raw_display['Small_Field_Own'] = raw_display['Large_Field_Own']
|
170 |
+
raw_display['small_CPT_Own_raw'] = (raw_display['Small_Field_Own'] / 2) * ((100 - (100-raw_display['Small_Field_Own']))/100)
|
171 |
+
small_cpt_own_var = 300 / raw_display['small_CPT_Own_raw'].sum()
|
172 |
+
raw_display['small_CPT_Own'] = raw_display['small_CPT_Own_raw'] * small_cpt_own_var
|
173 |
+
raw_display['cpt_Median'] = raw_display['Median'] * 1.25
|
174 |
+
raw_display['STDev'] = raw_display['Median'] / 4
|
175 |
+
raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4
|
176 |
+
|
177 |
+
dk_raw = raw_display.dropna(subset=['Median'])
|
178 |
+
|
179 |
+
collection = db['FD_SD_NFL_ROO']
|
180 |
+
cursor = collection.find()
|
181 |
+
|
182 |
+
raw_display = pd.DataFrame(list(cursor))
|
183 |
+
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
|
184 |
+
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
|
185 |
+
raw_display['Small_Field_Own'] = raw_display['Large_Field_Own']
|
186 |
+
raw_display['small_CPT_Own'] = raw_display['CPT_Own']
|
187 |
+
raw_display['cpt_Median'] = raw_display['Median']
|
188 |
+
raw_display['STDev'] = raw_display['Median'] / 4
|
189 |
+
raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4
|
190 |
+
|
191 |
+
fd_raw = raw_display.dropna(subset=['Median'])
|
192 |
+
|
193 |
+
elif sport == 'NBA':
|
194 |
+
db = client["NBA_DFS"]
|
195 |
+
collection = db['Player_SD_Range_Of_Outcomes']
|
196 |
+
cursor = collection.find()
|
197 |
|
198 |
+
raw_display = pd.DataFrame(list(cursor))
|
199 |
+
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
|
200 |
+
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_id']]
|
201 |
+
raw_display = raw_display[raw_display['site'] == 'Draftkings']
|
202 |
+
raw_display['Small_Field_Own'] = raw_display['Small_Own']
|
203 |
+
raw_display['small_CPT_Own_raw'] = (raw_display['Small_Field_Own'] / 2) * ((100 - (100-raw_display['Small_Field_Own']))/100)
|
204 |
+
small_cpt_own_var = 300 / raw_display['small_CPT_Own_raw'].sum()
|
205 |
+
raw_display['small_CPT_Own'] = raw_display['small_CPT_Own_raw'] * small_cpt_own_var
|
206 |
+
raw_display['cpt_Median'] = raw_display['Median'] * 1.25
|
207 |
+
raw_display['STDev'] = raw_display['Median'] / 4
|
208 |
+
raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4
|
209 |
+
|
210 |
+
dk_raw = raw_display.dropna(subset=['Median'])
|
211 |
+
|
212 |
+
collection = db['Player_SD_Range_Of_Outcomes']
|
213 |
+
cursor = collection.find()
|
214 |
+
|
215 |
+
raw_display = pd.DataFrame(list(cursor))
|
216 |
+
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
|
217 |
+
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_id']]
|
218 |
+
raw_display = raw_display[raw_display['site'] == 'Fanduel']
|
219 |
+
raw_display['Small_Field_Own'] = raw_display['Large_Own']
|
220 |
+
raw_display['small_CPT_Own'] = raw_display['CPT_Own']
|
221 |
+
raw_display['cpt_Median'] = raw_display['Median']
|
222 |
+
raw_display['STDev'] = raw_display['Median'] / 4
|
223 |
+
raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4
|
224 |
+
|
225 |
+
fd_raw = raw_display.dropna(subset=['Median'])
|
226 |
|
227 |
return dk_raw, fd_raw
|
228 |
|
|
|
253 |
|
254 |
# Pre-vectorize functions
|
255 |
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
256 |
+
vec_cpt_projection_map = np.vectorize(maps_dict['cpt_projection_map'].__getitem__)
|
257 |
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
|
258 |
+
vec_cpt_stdev_map = np.vectorize(maps_dict['cpt_STDev_map'].__getitem__)
|
259 |
|
260 |
st.write('Simulating contest on frames')
|
261 |
|
|
|
263 |
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
|
264 |
|
265 |
sample_arrays1 = np.c_[
|
266 |
+
fp_random,
|
267 |
np.sum(np.random.normal(
|
268 |
+
loc=np.concatenate([
|
269 |
+
vec_cpt_projection_map(fp_random[:, 0:1]), # Apply cpt_projection_map to first column
|
270 |
+
vec_projection_map(fp_random[:, 1:-7]) # Apply original projection to remaining columns
|
271 |
+
], axis=1),
|
272 |
+
scale=np.concatenate([
|
273 |
+
vec_cpt_stdev_map(fp_random[:, 0:1]), # Apply cpt_projection_map to first column
|
274 |
+
vec_stdev_map(fp_random[:, 1:-7]) # Apply original projection to remaining columns
|
275 |
+
], axis=1)),
|
276 |
axis=1)
|
277 |
]
|
278 |
|
|
|
285 |
|
286 |
return Sim_Winners
|
287 |
|
|
|
|
|
|
|
|
|
288 |
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
|
289 |
with tab2:
|
290 |
col1, col2 = st.columns([1, 7])
|
|
|
293 |
st.cache_data.clear()
|
294 |
for key in st.session_state.keys():
|
295 |
del st.session_state[key]
|
296 |
+
dk_raw, fd_raw = init_baselines('NFL')
|
297 |
+
|
298 |
+
sport_var1 = st.radio("What sport are you working with?", ('NFL', 'NBA'), key='sport_var1')
|
299 |
+
dk_raw, fd_raw = init_baselines(sport_var1)
|
300 |
+
slate_var1 = st.radio("Which data are you loading?", ('Showdown', 'Secondary Showdown', 'Auxiliary Showdown'), key='slate_var1')
|
301 |
+
|
302 |
+
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
|
303 |
if site_var1 == 'Draftkings':
|
304 |
+
if slate_var1 == 'Showdown':
|
305 |
+
DK_seed = init_DK_seed_frames(sport_var1)
|
306 |
+
if sport_var1 == 'NFL':
|
307 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
308 |
+
elif sport_var1 == 'NBA':
|
309 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
310 |
+
elif slate_var1 == 'Secondary Showdown':
|
311 |
+
DK_seed = init_DK_secondary_seed_frames(sport_var1)
|
312 |
+
if sport_var1 == 'NFL':
|
313 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
314 |
+
elif sport_var1 == 'NBA':
|
315 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
316 |
+
elif slate_var1 == 'Auxiliary Showdown':
|
317 |
+
DK_seed = init_DK_auxiliary_seed_frames(sport_var1)
|
318 |
+
if sport_var1 == 'NFL':
|
319 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
320 |
+
elif sport_var1 == 'NBA':
|
321 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
322 |
raw_baselines = dk_raw
|
323 |
column_names = dk_columns
|
324 |
|
|
|
335 |
stack_var2 = [5, 4, 3, 2, 1, 0]
|
336 |
|
337 |
elif site_var1 == 'Fanduel':
|
338 |
+
if slate_var1 == 'Showdown':
|
339 |
+
FD_seed = init_FD_seed_frames(sport_var1)
|
340 |
+
if sport_var1 == 'NFL':
|
341 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
342 |
+
elif sport_var1 == 'NBA':
|
343 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
344 |
+
elif slate_var1 == 'Secondary Showdown':
|
345 |
+
FD_seed = init_FD_secondary_seed_frames(sport_var1)
|
346 |
+
if sport_var1 == 'NFL':
|
347 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
348 |
+
elif sport_var1 == 'NBA':
|
349 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
350 |
+
elif slate_var1 == 'Auxiliary Showdown':
|
351 |
+
FD_seed = init_FD_auxiliary_seed_frames(sport_var1)
|
352 |
+
if sport_var1 == 'NFL':
|
353 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
354 |
+
elif sport_var1 == 'NBA':
|
355 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
356 |
raw_baselines = fd_raw
|
357 |
column_names = fd_columns
|
358 |
|
|
|
371 |
|
372 |
if st.button("Prepare data export", key='data_export'):
|
373 |
data_export = st.session_state.working_seed.copy()
|
374 |
+
data_export[0:6, 0] = [export_id_dict[x] for x in data_export[0:6, 0]]
|
375 |
st.download_button(
|
376 |
label="Export optimals set",
|
377 |
data=convert_df(data_export),
|
|
|
414 |
st.cache_data.clear()
|
415 |
for key in st.session_state.keys():
|
416 |
del st.session_state[key]
|
417 |
+
dk_raw, fd_raw = init_baselines('NFL')
|
418 |
+
sim_sport_var1 = st.radio("What sport are you working with?", ('NFL', 'NBA'), key='sim_sport_var1')
|
419 |
+
dk_raw, fd_raw = init_baselines(sim_sport_var1)
|
420 |
+
sim_slate_var1 = st.radio("Which data are you loading?", ('Showdown', 'Secondary Showdown', 'Auxiliary Showdown'), key='sim_slate_var1')
|
421 |
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
|
422 |
if sim_site_var1 == 'Draftkings':
|
423 |
+
if sim_slate_var1 == 'Showdown':
|
424 |
+
DK_seed = init_DK_seed_frames(sim_sport_var1)
|
425 |
+
if sport_var1 == 'NFL':
|
426 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
427 |
+
elif sport_var1 == 'NBA':
|
428 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
429 |
+
elif sim_slate_var1 == 'Secondary Showdown':
|
430 |
+
DK_seed = init_DK_secondary_seed_frames(sim_sport_var1)
|
431 |
+
if sport_var1 == 'NFL':
|
432 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
433 |
+
elif sport_var1 == 'NBA':
|
434 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
435 |
+
elif sim_slate_var1 == 'Auxiliary Showdown':
|
436 |
+
DK_seed = init_DK_auxiliary_seed_frames(sim_sport_var1)
|
437 |
+
if sport_var1 == 'NFL':
|
438 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
439 |
+
elif sport_var1 == 'NBA':
|
440 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
441 |
raw_baselines = dk_raw
|
442 |
column_names = dk_columns
|
443 |
elif sim_site_var1 == 'Fanduel':
|
444 |
+
if sim_slate_var1 == 'Showdown':
|
445 |
+
FD_seed = init_FD_seed_frames(sim_sport_var1)
|
446 |
+
if sport_var1 == 'NFL':
|
447 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
448 |
+
elif sport_var1 == 'NBA':
|
449 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
450 |
+
elif sim_slate_var1 == 'Secondary Showdown':
|
451 |
+
FD_seed = init_FD_secondary_seed_frames(sim_sport_var1)
|
452 |
+
if sport_var1 == 'NFL':
|
453 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
454 |
+
elif sport_var1 == 'NBA':
|
455 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
456 |
+
elif sim_slate_var1 == 'Auxiliary Showdown':
|
457 |
+
FD_seed = init_FD_auxiliary_seed_frames(sim_sport_var1)
|
458 |
+
if sport_var1 == 'NFL':
|
459 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
460 |
+
elif sport_var1 == 'NBA':
|
461 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
462 |
raw_baselines = fd_raw
|
463 |
column_names = fd_columns
|
464 |
|
465 |
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
|
466 |
if contest_var1 == 'Small':
|
467 |
Contest_Size = 1000
|
468 |
+
st.write("Small field size is 1,000 entrants.")
|
469 |
+
raw_baselines['Own'] = raw_baselines['Small_Field_Own']
|
470 |
+
raw_baselines['CPT_Own'] = raw_baselines['small_CPT_Own']
|
471 |
elif contest_var1 == 'Medium':
|
472 |
Contest_Size = 5000
|
473 |
+
st.write("Medium field size is 5,000 entrants.")
|
474 |
elif contest_var1 == 'Large':
|
475 |
Contest_Size = 10000
|
476 |
+
st.write("Large field size is 10,000 entrants.")
|
477 |
elif contest_var1 == 'Custom':
|
478 |
+
Contest_Size = st.number_input("Insert contest size", value=100, min_value=1, max_value=100000)
|
479 |
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
|
480 |
if strength_var1 == 'Not Very':
|
481 |
sharp_split = 500000
|
|
|
494 |
if 'working_seed' in st.session_state:
|
495 |
maps_dict = {
|
496 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
497 |
+
'cpt_projection_map':dict(zip(raw_baselines.Player,raw_baselines.cpt_Median)),
|
498 |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
499 |
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
500 |
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
|
501 |
+
'cpt_Own_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_Own'])),
|
502 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
503 |
+
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev)),
|
504 |
+
'cpt_STDev_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_STDev']))
|
505 |
}
|
506 |
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, sharp_split, Contest_Size)
|
507 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
|
|
515 |
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
|
516 |
|
517 |
# Type Casting
|
518 |
+
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
|
519 |
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
520 |
|
521 |
# Sorting
|
|
|
535 |
st.session_state.working_seed = FD_seed.copy()
|
536 |
maps_dict = {
|
537 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
538 |
+
'cpt_projection_map':dict(zip(raw_baselines.Player,raw_baselines.cpt_Median)),
|
539 |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
540 |
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
541 |
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
|
542 |
+
'cpt_Own_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_Own'])),
|
543 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
544 |
+
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev)),
|
545 |
+
'cpt_STDev_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_STDev']))
|
546 |
}
|
547 |
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, sharp_split, Contest_Size)
|
548 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
|
|
553 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
|
554 |
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
|
555 |
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
|
556 |
+
# Add percent rank columns for ownership at each roster position
|
557 |
+
# Calculate Dupes column for Fanduel
|
558 |
+
if sim_site_var1 == 'Fanduel':
|
559 |
+
dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank']
|
560 |
+
own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own']
|
561 |
+
calc_columns = ['own_product', 'avg_own_rank', 'dupes_calc']
|
562 |
+
Sim_Winner_Frame['CPT_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']).rank(pct=True)
|
563 |
+
Sim_Winner_Frame['FLEX1_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']).rank(pct=True)
|
564 |
+
Sim_Winner_Frame['FLEX2_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']).rank(pct=True)
|
565 |
+
Sim_Winner_Frame['FLEX3_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']).rank(pct=True)
|
566 |
+
Sim_Winner_Frame['FLEX4_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']).rank(pct=True)
|
567 |
+
Sim_Winner_Frame['CPT_Own'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']) / 100
|
568 |
+
Sim_Winner_Frame['FLEX1_Own'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']) / 100
|
569 |
+
Sim_Winner_Frame['FLEX2_Own'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']) / 100
|
570 |
+
Sim_Winner_Frame['FLEX3_Own'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']) / 100
|
571 |
+
Sim_Winner_Frame['FLEX4_Own'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']) / 100
|
572 |
+
|
573 |
+
# Calculate ownership product and convert to probability
|
574 |
+
Sim_Winner_Frame['own_product'] = (Sim_Winner_Frame[own_columns].product(axis=1)) + 0.0001
|
575 |
+
|
576 |
+
# Calculate average of ownership percent rank columns
|
577 |
+
Sim_Winner_Frame['avg_own_rank'] = Sim_Winner_Frame[dup_count_columns].mean(axis=1)
|
578 |
+
|
579 |
+
# Calculate dupes formula
|
580 |
+
Sim_Winner_Frame['dupes_calc'] = ((Sim_Winner_Frame['own_product'] * Sim_Winner_Frame['avg_own_rank']) * (Contest_Size * 1.5)) + ((Sim_Winner_Frame['salary'] - 59800) / 100)
|
581 |
+
|
582 |
+
# Round and handle negative values
|
583 |
+
Sim_Winner_Frame['Dupes'] = np.where(
|
584 |
+
np.round(Sim_Winner_Frame['dupes_calc'], 0) <= 0,
|
585 |
+
0,
|
586 |
+
np.round(Sim_Winner_Frame['dupes_calc'], 0) - 1
|
587 |
+
)
|
588 |
+
Sim_Winner_Frame['Dupes'] = (Sim_Winner_Frame['Dupes'] * (500000 / sharp_split)) / 2
|
589 |
+
elif sim_site_var1 == 'Draftkings':
|
590 |
+
dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
|
591 |
+
own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own']
|
592 |
+
calc_columns = ['own_product', 'avg_own_rank', 'dupes_calc']
|
593 |
+
Sim_Winner_Frame['CPT_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']).rank(pct=True)
|
594 |
+
Sim_Winner_Frame['FLEX1_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']).rank(pct=True)
|
595 |
+
Sim_Winner_Frame['FLEX2_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']).rank(pct=True)
|
596 |
+
Sim_Winner_Frame['FLEX3_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']).rank(pct=True)
|
597 |
+
Sim_Winner_Frame['FLEX4_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']).rank(pct=True)
|
598 |
+
Sim_Winner_Frame['FLEX5_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,5].map(maps_dict['Own_map']).rank(pct=True)
|
599 |
+
Sim_Winner_Frame['CPT_Own'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']) / 100
|
600 |
+
Sim_Winner_Frame['FLEX1_Own'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']) / 100
|
601 |
+
Sim_Winner_Frame['FLEX2_Own'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']) / 100
|
602 |
+
Sim_Winner_Frame['FLEX3_Own'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']) / 100
|
603 |
+
Sim_Winner_Frame['FLEX4_Own'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']) / 100
|
604 |
+
Sim_Winner_Frame['FLEX5_Own'] = Sim_Winner_Frame.iloc[:,5].map(maps_dict['Own_map']) / 100
|
605 |
+
|
606 |
+
# Calculate ownership product and convert to probability
|
607 |
+
Sim_Winner_Frame['own_product'] = (Sim_Winner_Frame[own_columns].product(axis=1))
|
608 |
+
|
609 |
+
# Calculate average of ownership percent rank columns
|
610 |
+
Sim_Winner_Frame['avg_own_rank'] = Sim_Winner_Frame[dup_count_columns].mean(axis=1)
|
611 |
+
|
612 |
+
# Calculate dupes formula
|
613 |
+
Sim_Winner_Frame['dupes_calc'] = ((Sim_Winner_Frame['own_product'] * Sim_Winner_Frame['avg_own_rank']) * (Contest_Size * 1.5)) + ((Sim_Winner_Frame['salary'] - 49800) / 100)
|
614 |
+
|
615 |
+
# Round and handle negative values
|
616 |
+
Sim_Winner_Frame['Dupes'] = np.where(
|
617 |
+
np.round(Sim_Winner_Frame['dupes_calc'], 0) <= 0,
|
618 |
+
0,
|
619 |
+
np.round(Sim_Winner_Frame['dupes_calc'], 0) - 1
|
620 |
+
)
|
621 |
+
Sim_Winner_Frame['Dupes'] = (Sim_Winner_Frame['Dupes'] * (500000 / sharp_split)) / 2
|
622 |
+
Sim_Winner_Frame['Dupes'] = np.round(Sim_Winner_Frame['Dupes'], 0)
|
623 |
+
Sim_Winner_Frame['Dupes'] = np.where(
|
624 |
+
np.round(Sim_Winner_Frame['dupes_calc'], 0) <= 0,
|
625 |
+
0,
|
626 |
+
np.round(Sim_Winner_Frame['dupes_calc'], 0)
|
627 |
+
)
|
628 |
+
Sim_Winner_Frame = Sim_Winner_Frame.drop(columns=dup_count_columns)
|
629 |
+
Sim_Winner_Frame = Sim_Winner_Frame.drop(columns=own_columns)
|
630 |
+
Sim_Winner_Frame = Sim_Winner_Frame.drop(columns=calc_columns)
|
631 |
+
|
632 |
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
|
633 |
|
634 |
# Type Casting
|
635 |
+
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32, 'Dupes': int}
|
636 |
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
637 |
|
638 |
# Sorting
|
|
|
641 |
|
642 |
# Data Copying
|
643 |
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
644 |
+
st.session_state.Sim_Winner_Export.iloc[:, 0:6] = st.session_state.Sim_Winner_Export.iloc[:, 0:6].apply(lambda x: x.map(export_id_dict))
|
645 |
|
646 |
# Data Copying
|
647 |
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
|
|
655 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
656 |
freq_working['Freq'] = freq_working['Freq'].astype(int)
|
657 |
freq_working['Position'] = freq_working['Player'].map(maps_dict['Pos_map'])
|
658 |
+
if sim_site_var1 == 'Draftkings':
|
659 |
+
if sim_sport_var1 == 'NFL':
|
660 |
+
freq_working['Salary'] = freq_working['Player'].map(maps_dict['Salary_map']) / 1.5
|
661 |
+
elif sim_sport_var1 == 'NBA':
|
662 |
+
freq_working['Salary'] = freq_working['Player'].map(maps_dict['Salary_map'])
|
663 |
+
elif sim_site_var1 == 'Fanduel':
|
664 |
+
freq_working['Salary'] = freq_working['Player'].map(maps_dict['Salary_map'])
|
665 |
freq_working['Proj Own'] = freq_working['Player'].map(maps_dict['Own_map']) / 100
|
666 |
freq_working['Exposure'] = freq_working['Freq']/(1000)
|
667 |
freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
|
|
|
676 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
677 |
cpt_working['Freq'] = cpt_working['Freq'].astype(int)
|
678 |
cpt_working['Position'] = cpt_working['Player'].map(maps_dict['Pos_map'])
|
679 |
+
if sim_sport_var1 == 'NFL':
|
680 |
+
cpt_working['Salary'] = cpt_working['Player'].map(maps_dict['Salary_map'])
|
681 |
+
elif sim_sport_var1 == 'NBA':
|
682 |
+
cpt_working['Salary'] = cpt_working['Player'].map(maps_dict['Salary_map']) * 1.5
|
683 |
+
cpt_working['Proj Own'] = cpt_working['Player'].map(maps_dict['cpt_Own_map']) / 100
|
684 |
cpt_working['Exposure'] = cpt_working['Freq']/(1000)
|
685 |
cpt_working['Edge'] = cpt_working['Exposure'] - cpt_working['Proj Own']
|
686 |
cpt_working['Team'] = cpt_working['Player'].map(maps_dict['Team_map'])
|
|
|
689 |
if sim_site_var1 == 'Draftkings':
|
690 |
flex_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:6].values, return_counts=True)),
|
691 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
692 |
+
cpt_own_div = 600
|
693 |
elif sim_site_var1 == 'Fanduel':
|
694 |
flex_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:5].values, return_counts=True)),
|
695 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
696 |
+
cpt_own_div = 500
|
697 |
flex_working['Freq'] = flex_working['Freq'].astype(int)
|
698 |
flex_working['Position'] = flex_working['Player'].map(maps_dict['Pos_map'])
|
699 |
+
if sim_site_var1 == 'Draftkings':
|
700 |
+
if sim_sport_var1 == 'NFL':
|
701 |
+
flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map']) / 1.5
|
702 |
+
elif sim_sport_var1 == 'NBA':
|
703 |
+
flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map'])
|
704 |
+
elif sim_site_var1 == 'Fanduel':
|
705 |
+
flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map'])
|
706 |
+
flex_working['Proj Own'] = (flex_working['Player'].map(maps_dict['Own_map']) / 100) - (flex_working['Player'].map(maps_dict['cpt_Own_map']) / 100)
|
707 |
flex_working['Exposure'] = flex_working['Freq']/(1000)
|
708 |
flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
|
709 |
flex_working['Team'] = flex_working['Player'].map(maps_dict['Team_map'])
|
|
|
718 |
team_working['Freq'] = team_working['Freq'].astype(int)
|
719 |
team_working['Exposure'] = team_working['Freq']/(1000)
|
720 |
st.session_state.team_freq = team_working.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
721 |
|
722 |
with st.container():
|
723 |
if st.button("Reset Sim", key='reset_sim'):
|