Multichem commited on
Commit
e78bbe7
·
1 Parent(s): e046b36

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -7
app.py CHANGED
@@ -720,6 +720,10 @@ with tab2:
720
  raw_baselines = dk_roo_raw
721
  elif slate_var1 == 'Paydirt (Secondary)':
722
  raw_baselines = dk_roo_raw_2
 
 
 
 
723
  st.info("If you are uploading a portfolio, note that there is an adjustments to projections and deviation mapping to prevent 'Projection Bias' and create a fair simulation")
724
  insert_port1 = st.selectbox("Are you uploading a portfolio?", ('No', 'Yes'))
725
  if insert_port1 == 'Yes':
@@ -1030,9 +1034,12 @@ with tab2:
1030
  Sim_Winner_Frame['Projection'] = Sim_Winner_Frame['Projection'].astype(np.float16)
1031
  Sim_Winner_Frame['Fantasy'] = Sim_Winner_Frame['Fantasy'].astype(np.float16)
1032
  Sim_Winner_Frame['GPP_Proj'] = Sim_Winner_Frame['GPP_Proj'].astype(np.float16)
1033
- Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by='GPP_Proj', ascending=False)
 
1034
 
1035
- player_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,0:6].values, return_counts=True)),
 
 
1036
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
1037
  player_freq['Freq'] = player_freq['Freq'].astype(int)
1038
  player_freq['Position'] = player_freq['Player'].map(maps_dict['Pos_map'])
@@ -1046,7 +1053,7 @@ with tab2:
1046
 
1047
  player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1048
 
1049
- cpt_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,0:1].values, return_counts=True)),
1050
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
1051
  cpt_freq['Freq'] = cpt_freq['Freq'].astype(int)
1052
  cpt_freq['Position'] = cpt_freq['Player'].map(maps_dict['Pos_map'])
@@ -1060,7 +1067,7 @@ with tab2:
1060
 
1061
  cpt_freq = cpt_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1062
 
1063
- flex_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[1, 2, 3, 4, 5]].values, return_counts=True)),
1064
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
1065
  flex_freq['Freq'] = flex_freq['Freq'].astype(int)
1066
  flex_freq['Position'] = flex_freq['Player'].map(maps_dict['Pos_map'])
@@ -1091,7 +1098,7 @@ with tab2:
1091
  del Sim_size
1092
 
1093
  with st.container():
1094
- st.dataframe(Sim_Winner_Frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Own']).format(precision=2), use_container_width = True)
1095
 
1096
  with st.container():
1097
  tab1, tab2, tab3 = st.tabs(['Overall Exposures', 'CPT Exposures', 'FLEX Exposures'])
@@ -1122,7 +1129,7 @@ with tab2:
1122
 
1123
  st.download_button(
1124
  label="Export Tables",
1125
- data=convert_df_to_csv(Sim_Winner_Frame),
1126
  file_name='NFL_consim_export.csv',
1127
  mime='text/csv',
1128
- )
 
720
  raw_baselines = dk_roo_raw
721
  elif slate_var1 == 'Paydirt (Secondary)':
722
  raw_baselines = dk_roo_raw_2
723
+ del dk_roo_raw
724
+ del dk_roo_raw_2
725
+ del fd_roo_raw
726
+ del fd_roo_raw_2
727
  st.info("If you are uploading a portfolio, note that there is an adjustments to projections and deviation mapping to prevent 'Projection Bias' and create a fair simulation")
728
  insert_port1 = st.selectbox("Are you uploading a portfolio?", ('No', 'Yes'))
729
  if insert_port1 == 'Yes':
 
1034
  Sim_Winner_Frame['Projection'] = Sim_Winner_Frame['Projection'].astype(np.float16)
1035
  Sim_Winner_Frame['Fantasy'] = Sim_Winner_Frame['Fantasy'].astype(np.float16)
1036
  Sim_Winner_Frame['GPP_Proj'] = Sim_Winner_Frame['GPP_Proj'].astype(np.float16)
1037
+ st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by='GPP_Proj', ascending=False)
1038
+ st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
1039
 
1040
+ del Sim_Winner_Frame
1041
+
1042
+ player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,0:6].values, return_counts=True)),
1043
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
1044
  player_freq['Freq'] = player_freq['Freq'].astype(int)
1045
  player_freq['Position'] = player_freq['Player'].map(maps_dict['Pos_map'])
 
1053
 
1054
  player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1055
 
1056
+ cpt_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,0:1].values, return_counts=True)),
1057
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
1058
  cpt_freq['Freq'] = cpt_freq['Freq'].astype(int)
1059
  cpt_freq['Position'] = cpt_freq['Player'].map(maps_dict['Pos_map'])
 
1067
 
1068
  cpt_freq = cpt_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1069
 
1070
+ flex_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,[1, 2, 3, 4, 5]].values, return_counts=True)),
1071
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
1072
  flex_freq['Freq'] = flex_freq['Freq'].astype(int)
1073
  flex_freq['Position'] = flex_freq['Player'].map(maps_dict['Pos_map'])
 
1098
  del Sim_size
1099
 
1100
  with st.container():
1101
+ st.dataframe(st.session_state.Sim_Winner_Frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Own']).format(precision=2), use_container_width = True)
1102
 
1103
  with st.container():
1104
  tab1, tab2, tab3 = st.tabs(['Overall Exposures', 'CPT Exposures', 'FLEX Exposures'])
 
1129
 
1130
  st.download_button(
1131
  label="Export Tables",
1132
+ data=convert_df_to_csv(st.session_state.Sim_Winner_Frame_export),
1133
  file_name='NFL_consim_export.csv',
1134
  mime='text/csv',
1135
+ )