Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -36,7 +36,9 @@ def init_baselines():
|
|
36 |
cell_vals = [row[0:11] for row in all_values[2:500]]
|
37 |
frame_hold = pd.DataFrame(cell_vals, columns=['Player', 'Team', 'Salary', 'OwnAvg', 'PointsAvg', 'Points per $', 'blank', 'drop', 'drop2', 'drop3', 'GPP Rank'])
|
38 |
frame_hold['OwnAvg'] = frame_hold['OwnAvg'].str.replace('%', '').astype(float)/100
|
39 |
-
|
|
|
|
|
40 |
string_cols = ['Team']
|
41 |
qb_frame = qb_frame.drop_duplicates(subset='Player')
|
42 |
qb_frame = qb_frame.set_index('Player')
|
@@ -55,7 +57,9 @@ def init_baselines():
|
|
55 |
cell_vals = [row[0:11] for row in all_values[2:500]]
|
56 |
frame_hold = pd.DataFrame(cell_vals, columns=['Player', 'Team', 'Salary', 'OwnAvg', 'PointsAvg', 'Points per $', 'blank', 'drop', 'drop2', 'drop3', 'GPP Rank'])
|
57 |
frame_hold['OwnAvg'] = frame_hold['OwnAvg'].str.replace('%', '').astype(float)/100
|
58 |
-
|
|
|
|
|
59 |
string_cols = ['Team']
|
60 |
rb_frame = rb_frame.drop_duplicates(subset='Player')
|
61 |
rb_frame = rb_frame.set_index('Player')
|
@@ -74,7 +78,9 @@ def init_baselines():
|
|
74 |
cell_vals = [row[0:11] for row in all_values[2:500]]
|
75 |
frame_hold = pd.DataFrame(cell_vals, columns=['Player', 'Team', 'Salary', 'OwnAvg', 'PointsAvg', 'Points per $', 'blank', 'drop', 'drop2', 'drop3', 'GPP Rank'])
|
76 |
frame_hold['OwnAvg'] = frame_hold['OwnAvg'].str.replace('%', '').astype(float)/100
|
77 |
-
|
|
|
|
|
78 |
string_cols = ['Team']
|
79 |
wr_frame = wr_frame.drop_duplicates(subset='Player')
|
80 |
wr_frame = wr_frame.set_index('Player')
|
@@ -93,7 +99,9 @@ def init_baselines():
|
|
93 |
cell_vals = [row[0:11] for row in all_values[2:500]]
|
94 |
frame_hold = pd.DataFrame(cell_vals, columns=['Player', 'Team', 'Salary', 'OwnAvg', 'PointsAvg', 'Points per $', 'blank', 'drop', 'drop2', 'drop3', 'GPP Rank'])
|
95 |
frame_hold['OwnAvg'] = frame_hold['OwnAvg'].str.replace('%', '').astype(float)/100
|
96 |
-
|
|
|
|
|
97 |
string_cols = ['Team']
|
98 |
flex_frame = flex_frame.drop_duplicates(subset='Player')
|
99 |
flex_frame = flex_frame.set_index('Player')
|
|
|
36 |
cell_vals = [row[0:11] for row in all_values[2:500]]
|
37 |
frame_hold = pd.DataFrame(cell_vals, columns=['Player', 'Team', 'Salary', 'OwnAvg', 'PointsAvg', 'Points per $', 'blank', 'drop', 'drop2', 'drop3', 'GPP Rank'])
|
38 |
frame_hold['OwnAvg'] = frame_hold['OwnAvg'].str.replace('%', '').astype(float)/100
|
39 |
+
frame_hold['Floor'] = frame_hold['PointsAvg'] * .15
|
40 |
+
frame_hold['Ceiling'] = frame_hold['PointsAvg'] * 1.85
|
41 |
+
qb_frame = frame_hold[['Player', 'Team', 'Salary', 'OwnAvg', 'Floor', 'PointsAvg', 'Ceiling', 'Points per $', 'GPP Rank']]
|
42 |
string_cols = ['Team']
|
43 |
qb_frame = qb_frame.drop_duplicates(subset='Player')
|
44 |
qb_frame = qb_frame.set_index('Player')
|
|
|
57 |
cell_vals = [row[0:11] for row in all_values[2:500]]
|
58 |
frame_hold = pd.DataFrame(cell_vals, columns=['Player', 'Team', 'Salary', 'OwnAvg', 'PointsAvg', 'Points per $', 'blank', 'drop', 'drop2', 'drop3', 'GPP Rank'])
|
59 |
frame_hold['OwnAvg'] = frame_hold['OwnAvg'].str.replace('%', '').astype(float)/100
|
60 |
+
frame_hold['Floor'] = frame_hold['PointsAvg'] * .15
|
61 |
+
frame_hold['Ceiling'] = frame_hold['PointsAvg'] * 1.85
|
62 |
+
rb_frame = frame_hold[['Player', 'Team', 'Salary', 'OwnAvg', 'Floor', 'PointsAvg', 'Ceiling', 'Points per $', 'GPP Rank']]
|
63 |
string_cols = ['Team']
|
64 |
rb_frame = rb_frame.drop_duplicates(subset='Player')
|
65 |
rb_frame = rb_frame.set_index('Player')
|
|
|
78 |
cell_vals = [row[0:11] for row in all_values[2:500]]
|
79 |
frame_hold = pd.DataFrame(cell_vals, columns=['Player', 'Team', 'Salary', 'OwnAvg', 'PointsAvg', 'Points per $', 'blank', 'drop', 'drop2', 'drop3', 'GPP Rank'])
|
80 |
frame_hold['OwnAvg'] = frame_hold['OwnAvg'].str.replace('%', '').astype(float)/100
|
81 |
+
frame_hold['Floor'] = frame_hold['PointsAvg'] * .15
|
82 |
+
frame_hold['Ceiling'] = frame_hold['PointsAvg'] * 1.85
|
83 |
+
wr_frame = frame_hold[['Player', 'Team', 'Salary', 'OwnAvg', 'Floor', 'PointsAvg', 'Ceiling', 'Points per $', 'GPP Rank']]
|
84 |
string_cols = ['Team']
|
85 |
wr_frame = wr_frame.drop_duplicates(subset='Player')
|
86 |
wr_frame = wr_frame.set_index('Player')
|
|
|
99 |
cell_vals = [row[0:11] for row in all_values[2:500]]
|
100 |
frame_hold = pd.DataFrame(cell_vals, columns=['Player', 'Team', 'Salary', 'OwnAvg', 'PointsAvg', 'Points per $', 'blank', 'drop', 'drop2', 'drop3', 'GPP Rank'])
|
101 |
frame_hold['OwnAvg'] = frame_hold['OwnAvg'].str.replace('%', '').astype(float)/100
|
102 |
+
frame_hold['Floor'] = frame_hold['PointsAvg'] * .15
|
103 |
+
frame_hold['Ceiling'] = frame_hold['PointsAvg'] * 1.85
|
104 |
+
flex_frame = frame_hold[['Player', 'Team', 'Salary', 'OwnAvg', 'Floor', 'PointsAvg', 'Ceiling', 'Points per $', 'GPP Rank']]
|
105 |
string_cols = ['Team']
|
106 |
flex_frame = flex_frame.drop_duplicates(subset='Player')
|
107 |
flex_frame = flex_frame.set_index('Player')
|