Multichem commited on
Commit
ffdc4c9
·
verified ·
1 Parent(s): 51993d6

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +312 -0
app.py ADDED
@@ -0,0 +1,312 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pulp
2
+ import numpy as np
3
+ import pandas as pd
4
+ import random
5
+ import sys
6
+ import openpyxl
7
+ import re
8
+ import time
9
+ import streamlit as st
10
+ import matplotlib
11
+ from matplotlib.colors import LinearSegmentedColormap
12
+ from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
13
+ import json
14
+ import requests
15
+ import gspread
16
+ import plotly.figure_factory as ff
17
+
18
+ scope = ['https://www.googleapis.com/auth/spreadsheets',
19
+ "https://www.googleapis.com/auth/drive"]
20
+
21
+ credentials = {
22
+ "type": "service_account",
23
+ "project_id": "sheets-api-connect-378620",
24
+ "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
25
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
26
+ "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
27
+ "client_id": "106625872877651920064",
28
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
29
+ "token_uri": "https://oauth2.googleapis.com/token",
30
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
31
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
32
+ }
33
+
34
+ gc = gspread.service_account_from_dict(credentials)
35
+
36
+ st.set_page_config(layout="wide")
37
+
38
+ roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}',
39
+ '40+%': '{:.2%}','3x%': '{:.2%}','4x%': '{:.2%}','5x%': '{:.2%}','Own': '{:.2%}','LevX': '{:.2%}'}
40
+ stat_format = {'Odds%': '{:.2%}', 'Boosts': '{:.2%}'}
41
+
42
+ @st.cache_data
43
+ def init_baselines():
44
+ sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/10MVGsAHJPUAdK9SJ28ZqjgBgV2xBJSXEka-s2pIxHHE/edit#gid=1858245367')
45
+ worksheet = sh.worksheet('ROO')
46
+ raw_display = pd.DataFrame(worksheet.get_all_records())
47
+ raw_display.replace("", 'Welp', inplace=True)
48
+ raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
49
+ raw_display = raw_display.loc[raw_display['Salary'] > 0]
50
+ raw_display = raw_display.loc[raw_display['Median'] > 0]
51
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
52
+ roo_table = raw_display.sort_values(by='Median', ascending=False)
53
+
54
+ worksheet = sh.worksheet('Positional_Boosts')
55
+ raw_display = pd.DataFrame(worksheet.get_all_records())
56
+ raw_display.replace("", 'Welp', inplace=True)
57
+ raw_display = raw_display.loc[raw_display['teamname'] != 'Welp']
58
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
59
+ positional_boosts = raw_display.sort_values(by='Avg_Allowed', ascending=False)
60
+
61
+ worksheet = sh.worksheet('Overall_Stacks')
62
+ raw_display = pd.DataFrame(worksheet.get_all_records())
63
+ raw_display.replace("", 'Welp', inplace=True)
64
+ raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
65
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
66
+ lck_overall_stacks = raw_display.sort_values(by='Stack+', ascending=False)
67
+
68
+ worksheet = sh.worksheet('Win_Stacks')
69
+ raw_display = pd.DataFrame(worksheet.get_all_records())
70
+ raw_display.replace("", 'Welp', inplace=True)
71
+ raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
72
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
73
+ lck_win_stacks = raw_display.sort_values(by='Stack+', ascending=False)
74
+
75
+ worksheet = sh.worksheet('Loss_Stacks')
76
+ raw_display = pd.DataFrame(worksheet.get_all_records())
77
+ raw_display.replace("", 'Welp', inplace=True)
78
+ raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
79
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
80
+ lck_loss_stacks = raw_display.sort_values(by='Stack+', ascending=False)
81
+
82
+ worksheet = sh.worksheet('Overall_BO1_Stats')
83
+ raw_display = pd.DataFrame(worksheet.get_all_records())
84
+ raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
85
+ raw_display.replace("", 'Welp', inplace=True)
86
+ raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
87
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
88
+ lck_bo1 = raw_display.sort_values(by='Kills', ascending=False)
89
+
90
+ worksheet = sh.worksheet('Overall_BO3_Stats')
91
+ raw_display = pd.DataFrame(worksheet.get_all_records())
92
+ raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
93
+ raw_display.replace("", 'Welp', inplace=True)
94
+ raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
95
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
96
+ lck_bo3 = raw_display.sort_values(by='Kills', ascending=False)
97
+
98
+ worksheet = sh.worksheet('Overall_BO5_Stats')
99
+ raw_display = pd.DataFrame(worksheet.get_all_records())
100
+ raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
101
+ raw_display.replace("", 'Welp', inplace=True)
102
+ raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
103
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
104
+ lck_bo5 = raw_display.sort_values(by='Kills', ascending=False)
105
+
106
+ sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1W5gH-ef2K6gX3Dw86n-YbXxQhbpUiUosDOiH4-mzX8g/edit#gid=582025223')
107
+ worksheet = sh.worksheet('Overall_Stacks')
108
+ raw_display = pd.DataFrame(worksheet.get_all_records())
109
+ raw_display.replace("", 'Welp', inplace=True)
110
+ raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
111
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
112
+ lcs_overall_stacks = raw_display.sort_values(by='Stack+', ascending=False)
113
+
114
+ worksheet = sh.worksheet('Win_Stacks')
115
+ raw_display = pd.DataFrame(worksheet.get_all_records())
116
+ raw_display.replace("", 'Welp', inplace=True)
117
+ raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
118
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
119
+ lcs_win_stacks = raw_display.sort_values(by='Stack+', ascending=False)
120
+
121
+ worksheet = sh.worksheet('Loss_Stacks')
122
+ raw_display = pd.DataFrame(worksheet.get_all_records())
123
+ raw_display.replace("", 'Welp', inplace=True)
124
+ raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
125
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
126
+ lcs_loss_stacks = raw_display.sort_values(by='Stack+', ascending=False)
127
+
128
+ worksheet = sh.worksheet('Overall_BO1_Stats')
129
+ raw_display = pd.DataFrame(worksheet.get_all_records())
130
+ raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
131
+ raw_display.replace("", 'Welp', inplace=True)
132
+ raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
133
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
134
+ lcs_bo1 = raw_display.sort_values(by='Kills', ascending=False)
135
+
136
+ worksheet = sh.worksheet('Overall_BO3_Stats')
137
+ raw_display = pd.DataFrame(worksheet.get_all_records())
138
+ raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
139
+ raw_display.replace("", 'Welp', inplace=True)
140
+ raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
141
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
142
+ lcs_bo3 = raw_display.sort_values(by='Kills', ascending=False)
143
+
144
+ worksheet = sh.worksheet('Overall_BO5_Stats')
145
+ raw_display = pd.DataFrame(worksheet.get_all_records())
146
+ raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
147
+ raw_display.replace("", 'Welp', inplace=True)
148
+ raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
149
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
150
+ lcs_bo5 = raw_display.sort_values(by='Kills', ascending=False)
151
+
152
+ sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1oOJD_QcBeDJ1f7e9FfgUHOQEPT6kvU0Sa9hQ_4B8gqc/edit#gid=0')
153
+ worksheet = sh.worksheet('Overall_Stacks')
154
+ raw_display = pd.DataFrame(worksheet.get_all_records())
155
+ raw_display.replace("", 'Welp', inplace=True)
156
+ raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
157
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
158
+ lec_overall_stacks = raw_display.sort_values(by='Stack+', ascending=False)
159
+
160
+ worksheet = sh.worksheet('Win_Stacks')
161
+ raw_display = pd.DataFrame(worksheet.get_all_records())
162
+ raw_display.replace("", 'Welp', inplace=True)
163
+ raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
164
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
165
+ lec_win_stacks = raw_display.sort_values(by='Stack+', ascending=False)
166
+
167
+ worksheet = sh.worksheet('Loss_Stacks')
168
+ raw_display = pd.DataFrame(worksheet.get_all_records())
169
+ raw_display.replace("", 'Welp', inplace=True)
170
+ raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
171
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
172
+ lec_loss_stacks = raw_display.sort_values(by='Stack+', ascending=False)
173
+
174
+ worksheet = sh.worksheet('Overall_BO1_Stats')
175
+ raw_display = pd.DataFrame(worksheet.get_all_records())
176
+ raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
177
+ raw_display.replace("", 'Welp', inplace=True)
178
+ raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
179
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
180
+ lec_bo1 = raw_display.sort_values(by='Kills', ascending=False)
181
+
182
+ worksheet = sh.worksheet('Overall_BO3_Stats')
183
+ raw_display = pd.DataFrame(worksheet.get_all_records())
184
+ raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
185
+ raw_display.replace("", 'Welp', inplace=True)
186
+ raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
187
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
188
+ lec_bo3 = raw_display.sort_values(by='Kills', ascending=False)
189
+
190
+ worksheet = sh.worksheet('Overall_BO5_Stats')
191
+ raw_display = pd.DataFrame(worksheet.get_all_records())
192
+ raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
193
+ raw_display.replace("", 'Welp', inplace=True)
194
+ raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
195
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
196
+ lec_bo5 = raw_display.sort_values(by='Kills', ascending=False)
197
+
198
+ return roo_table, positional_boosts, lck_overall_stacks, lck_win_stacks, lck_loss_stacks, lcs_overall_stacks, lcs_win_stacks, lcs_loss_stacks, lec_overall_stacks, lec_win_stacks, lec_loss_stacks, lck_bo1, lck_bo3, lck_bo5, lcs_bo1, lcs_bo3, lcs_bo5, lec_bo1, lec_bo3, lec_bo5
199
+
200
+ roo_table, positional_boosts, lck_overall_stacks, lck_win_stacks, lck_loss_stacks, lcs_overall_stacks, lcs_win_stacks, lcs_loss_stacks, lec_overall_stacks, lec_win_stacks, lec_loss_stacks, lck_bo1, lck_bo3, lck_bo5, lcs_bo1, lcs_bo3, lcs_bo5, lec_bo1, lec_bo3, lec_bo5 = init_baselines()
201
+
202
+ tab1, tab2, tab3 = st.tabs(["LOL Stacks Table", "LOL Range of Outcomes", "LOL Player Base Stats"])
203
+
204
+ def convert_df_to_csv(df):
205
+ return df.to_csv().encode('utf-8')
206
+
207
+ with tab1:
208
+ if st.button("Reset Data", key='reset1'):
209
+ # Clear values from *all* all in-memory and on-disk data caches:
210
+ # i.e. clear values from both square and cube
211
+ st.cache_data.clear()
212
+ roo_table, positional_boosts, lck_overall_stacks, lck_win_stacks, lck_loss_stacks, lcs_overall_stacks, lcs_win_stacks, lcs_loss_stacks, lec_overall_stacks, lec_win_stacks, lec_loss_stacks, lck_bo1, lck_bo3, lck_bo5, lcs_bo1, lcs_bo3, lcs_bo5, lec_bo1, lec_bo3, lec_bo5 = init_baselines()
213
+ league_choice1 = st.radio("What table would you like to display?", ('LCK/LPL', 'LCS', 'LCK'), key='league_var1')
214
+ if league_choice1 == 'LCK/LPL':
215
+ league_hold = lck_overall_stacks
216
+ elif league_choice1 == 'LCS':
217
+ league_hold = lcs_overall_stacks
218
+ elif league_choice1 == 'LCK':
219
+ league_hold = lec_overall_stacks
220
+ display = league_hold.set_index('Team')
221
+ st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
222
+ st.download_button(
223
+ label="Export Stacks",
224
+ data=convert_df_to_csv(display),
225
+ file_name='LOL_Stacks_export.csv',
226
+ mime='text/csv',
227
+ )
228
+
229
+ with tab2:
230
+ if st.button("Reset Data", key='reset2'):
231
+ # Clear values from *all* all in-memory and on-disk data caches:
232
+ # i.e. clear values from both square and cube
233
+ st.cache_data.clear()
234
+ roo_table, positional_boosts, lck_overall_stacks, lck_win_stacks, lck_loss_stacks, lcs_overall_stacks, lcs_win_stacks, lcs_loss_stacks, lec_overall_stacks, lec_win_stacks, lec_loss_stacks, lck_bo1, lck_bo3, lck_bo5, lcs_bo1, lcs_bo3, lcs_bo5, lec_bo1, lec_bo3, lec_bo5 = init_baselines()
235
+ league_choice2 = st.radio("What table would you like to display?", ('LCK/LPL', 'LCS', 'LCK'), key='league_var2')
236
+ if league_choice2 == 'LCK/LPL':
237
+ league_hold = roo_table[roo_table['league'] == 'LCK']
238
+ elif league_choice2 == 'LCS':
239
+ league_hold = roo_table[roo_table['league'] == 'LCS']
240
+ elif league_choice2 == 'LCK':
241
+ league_hold = roo_table[roo_table['league'] == 'LCK']
242
+ model_choice = st.radio("What table would you like to display?", ('Overall', 'Wins', 'Losses'), key='roo_table')
243
+ if model_choice == 'Overall':
244
+ hold_display = league_hold[league_hold['type'] == 'Overall']
245
+ elif model_choice == 'Wins':
246
+ hold_display = league_hold[league_hold['type'] == 'Wins']
247
+ elif model_choice == 'Losses':
248
+ hold_display = league_hold[league_hold['type'] == 'Losses']
249
+ pos_var1 = st.selectbox('View specific position?', options = ['All', 'TOP', 'JNG', 'MID', 'ADC', 'SUP'], key = 'roo_posvar')
250
+ team_var1 = st.multiselect('View specific team?', options = hold_display['Team'].unique(), key = 'roo_teamvar')
251
+ display = hold_display.set_index('Player')
252
+ if team_var1:
253
+ display = display[display['Team'].isin(team_var1)]
254
+ if pos_var1 == 'All':
255
+ display = display
256
+ elif pos_var1 != 'All':
257
+ display = display[display['Position'].str.contains(pos_var1)]
258
+ st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(roo_format, precision=2), use_container_width = True)
259
+ st.download_button(
260
+ label="Export Range of Outcomes",
261
+ data=convert_df_to_csv(display),
262
+ file_name='LOL_ROO_export.csv',
263
+ mime='text/csv',
264
+ )
265
+
266
+ with tab3:
267
+ if st.button("Reset Data", key='reset3'):
268
+ # Clear values from *all* all in-memory and on-disk data caches:
269
+ # i.e. clear values from both square and cube
270
+ st.cache_data.clear()
271
+ roo_table, positional_boosts, lck_overall_stacks, lck_win_stacks, lck_loss_stacks, lcs_overall_stacks, lcs_win_stacks, lcs_loss_stacks, lec_overall_stacks, lec_win_stacks, lec_loss_stacks, lck_bo1, lck_bo3, lck_bo5, lcs_bo1, lcs_bo3, lcs_bo5, lec_bo1, lec_bo3, lec_bo5 = init_baselines()
272
+ league_choice3 = st.radio("What table would you like to display?", ('LCK/LPL', 'LCS', 'LCK'), key='league_var3')
273
+ gametype_choice = st.radio("What format are the games being played?", ('Best of 1', 'Best of 3', 'Best of 5'), key='player_stats')
274
+ pos_var2 = st.selectbox('View specific position?', options = ['All', 'TOP', 'JNG', 'MID', 'ADC', 'SUP'], key = 'proj_posvar')
275
+ team_var2 = st.multiselect('View specific team?', options = hold_display['Team'].unique(), key = 'proj_teamvar')
276
+ if league_choice3 == 'LCK/LPL':
277
+ if gametype_choice == 'Best of 1':
278
+ hold_display = lck_bo1
279
+ elif gametype_choice == 'Best of 3':
280
+ hold_display = lck_bo3
281
+ elif gametype_choice == 'Best of 5':
282
+ hold_display = lck_bo5
283
+ display = hold_display.set_index('Player')
284
+ elif league_choice3 == 'LCS':
285
+ if gametype_choice == 'Best of 1':
286
+ hold_display = lcs_bo1
287
+ elif gametype_choice == 'Best of 3':
288
+ hold_display = lcs_bo3
289
+ elif gametype_choice == 'Best of 5':
290
+ hold_display = lcs_bo5
291
+ display = hold_display.set_index('Player')
292
+ elif league_choice3 == 'LEC':
293
+ if gametype_choice == 'Best of 1':
294
+ hold_display = lec_bo1
295
+ elif gametype_choice == 'Best of 3':
296
+ hold_display = lec_bo3
297
+ elif gametype_choice == 'Best of 5':
298
+ hold_display = lec_bo5
299
+ display = hold_display.set_index('Player')
300
+ if team_var2:
301
+ display = display[display['Team'].isin(team_var2)]
302
+ if pos_var2 == 'All':
303
+ display = display
304
+ elif pos_var2 != 'All':
305
+ display = display[display['Position'].str.contains(pos_var2)]
306
+ st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(stat_format, precision=2), use_container_width = True)
307
+ st.download_button(
308
+ label="Export Baselines",
309
+ data=convert_df_to_csv(display),
310
+ file_name='LOL_Baselines_export.csv',
311
+ mime='text/csv',
312
+ )