Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pulp
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import random
|
5 |
+
import sys
|
6 |
+
import openpyxl
|
7 |
+
import re
|
8 |
+
import time
|
9 |
+
import streamlit as st
|
10 |
+
import matplotlib
|
11 |
+
from matplotlib.colors import LinearSegmentedColormap
|
12 |
+
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
|
13 |
+
import json
|
14 |
+
import requests
|
15 |
+
import gspread
|
16 |
+
import plotly.figure_factory as ff
|
17 |
+
|
18 |
+
scope = ['https://www.googleapis.com/auth/spreadsheets',
|
19 |
+
"https://www.googleapis.com/auth/drive"]
|
20 |
+
|
21 |
+
credentials = {
|
22 |
+
"type": "service_account",
|
23 |
+
"project_id": "sheets-api-connect-378620",
|
24 |
+
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
|
25 |
+
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
|
26 |
+
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
|
27 |
+
"client_id": "106625872877651920064",
|
28 |
+
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
29 |
+
"token_uri": "https://oauth2.googleapis.com/token",
|
30 |
+
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
31 |
+
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
|
32 |
+
}
|
33 |
+
|
34 |
+
gc = gspread.service_account_from_dict(credentials)
|
35 |
+
|
36 |
+
st.set_page_config(layout="wide")
|
37 |
+
|
38 |
+
roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}',
|
39 |
+
'40+%': '{:.2%}','3x%': '{:.2%}','4x%': '{:.2%}','5x%': '{:.2%}','Own': '{:.2%}','LevX': '{:.2%}'}
|
40 |
+
stat_format = {'Odds%': '{:.2%}', 'Boosts': '{:.2%}'}
|
41 |
+
|
42 |
+
@st.cache_data
|
43 |
+
def init_baselines():
|
44 |
+
sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/10MVGsAHJPUAdK9SJ28ZqjgBgV2xBJSXEka-s2pIxHHE/edit#gid=1858245367')
|
45 |
+
worksheet = sh.worksheet('ROO')
|
46 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
47 |
+
raw_display.replace("", 'Welp', inplace=True)
|
48 |
+
raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
|
49 |
+
raw_display = raw_display.loc[raw_display['Salary'] > 0]
|
50 |
+
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
51 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
52 |
+
roo_table = raw_display.sort_values(by='Median', ascending=False)
|
53 |
+
|
54 |
+
worksheet = sh.worksheet('Positional_Boosts')
|
55 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
56 |
+
raw_display.replace("", 'Welp', inplace=True)
|
57 |
+
raw_display = raw_display.loc[raw_display['teamname'] != 'Welp']
|
58 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
59 |
+
positional_boosts = raw_display.sort_values(by='Avg_Allowed', ascending=False)
|
60 |
+
|
61 |
+
worksheet = sh.worksheet('Overall_Stacks')
|
62 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
63 |
+
raw_display.replace("", 'Welp', inplace=True)
|
64 |
+
raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
|
65 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
66 |
+
lck_overall_stacks = raw_display.sort_values(by='Stack+', ascending=False)
|
67 |
+
|
68 |
+
worksheet = sh.worksheet('Win_Stacks')
|
69 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
70 |
+
raw_display.replace("", 'Welp', inplace=True)
|
71 |
+
raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
|
72 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
73 |
+
lck_win_stacks = raw_display.sort_values(by='Stack+', ascending=False)
|
74 |
+
|
75 |
+
worksheet = sh.worksheet('Loss_Stacks')
|
76 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
77 |
+
raw_display.replace("", 'Welp', inplace=True)
|
78 |
+
raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
|
79 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
80 |
+
lck_loss_stacks = raw_display.sort_values(by='Stack+', ascending=False)
|
81 |
+
|
82 |
+
worksheet = sh.worksheet('Overall_BO1_Stats')
|
83 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
84 |
+
raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
|
85 |
+
raw_display.replace("", 'Welp', inplace=True)
|
86 |
+
raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
|
87 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
88 |
+
lck_bo1 = raw_display.sort_values(by='Kills', ascending=False)
|
89 |
+
|
90 |
+
worksheet = sh.worksheet('Overall_BO3_Stats')
|
91 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
92 |
+
raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
|
93 |
+
raw_display.replace("", 'Welp', inplace=True)
|
94 |
+
raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
|
95 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
96 |
+
lck_bo3 = raw_display.sort_values(by='Kills', ascending=False)
|
97 |
+
|
98 |
+
worksheet = sh.worksheet('Overall_BO5_Stats')
|
99 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
100 |
+
raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
|
101 |
+
raw_display.replace("", 'Welp', inplace=True)
|
102 |
+
raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
|
103 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
104 |
+
lck_bo5 = raw_display.sort_values(by='Kills', ascending=False)
|
105 |
+
|
106 |
+
sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1W5gH-ef2K6gX3Dw86n-YbXxQhbpUiUosDOiH4-mzX8g/edit#gid=582025223')
|
107 |
+
worksheet = sh.worksheet('Overall_Stacks')
|
108 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
109 |
+
raw_display.replace("", 'Welp', inplace=True)
|
110 |
+
raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
|
111 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
112 |
+
lcs_overall_stacks = raw_display.sort_values(by='Stack+', ascending=False)
|
113 |
+
|
114 |
+
worksheet = sh.worksheet('Win_Stacks')
|
115 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
116 |
+
raw_display.replace("", 'Welp', inplace=True)
|
117 |
+
raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
|
118 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
119 |
+
lcs_win_stacks = raw_display.sort_values(by='Stack+', ascending=False)
|
120 |
+
|
121 |
+
worksheet = sh.worksheet('Loss_Stacks')
|
122 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
123 |
+
raw_display.replace("", 'Welp', inplace=True)
|
124 |
+
raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
|
125 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
126 |
+
lcs_loss_stacks = raw_display.sort_values(by='Stack+', ascending=False)
|
127 |
+
|
128 |
+
worksheet = sh.worksheet('Overall_BO1_Stats')
|
129 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
130 |
+
raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
|
131 |
+
raw_display.replace("", 'Welp', inplace=True)
|
132 |
+
raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
|
133 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
134 |
+
lcs_bo1 = raw_display.sort_values(by='Kills', ascending=False)
|
135 |
+
|
136 |
+
worksheet = sh.worksheet('Overall_BO3_Stats')
|
137 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
138 |
+
raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
|
139 |
+
raw_display.replace("", 'Welp', inplace=True)
|
140 |
+
raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
|
141 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
142 |
+
lcs_bo3 = raw_display.sort_values(by='Kills', ascending=False)
|
143 |
+
|
144 |
+
worksheet = sh.worksheet('Overall_BO5_Stats')
|
145 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
146 |
+
raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
|
147 |
+
raw_display.replace("", 'Welp', inplace=True)
|
148 |
+
raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
|
149 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
150 |
+
lcs_bo5 = raw_display.sort_values(by='Kills', ascending=False)
|
151 |
+
|
152 |
+
sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1oOJD_QcBeDJ1f7e9FfgUHOQEPT6kvU0Sa9hQ_4B8gqc/edit#gid=0')
|
153 |
+
worksheet = sh.worksheet('Overall_Stacks')
|
154 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
155 |
+
raw_display.replace("", 'Welp', inplace=True)
|
156 |
+
raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
|
157 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
158 |
+
lec_overall_stacks = raw_display.sort_values(by='Stack+', ascending=False)
|
159 |
+
|
160 |
+
worksheet = sh.worksheet('Win_Stacks')
|
161 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
162 |
+
raw_display.replace("", 'Welp', inplace=True)
|
163 |
+
raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
|
164 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
165 |
+
lec_win_stacks = raw_display.sort_values(by='Stack+', ascending=False)
|
166 |
+
|
167 |
+
worksheet = sh.worksheet('Loss_Stacks')
|
168 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
169 |
+
raw_display.replace("", 'Welp', inplace=True)
|
170 |
+
raw_display = raw_display.loc[raw_display['Team'] != 'Welp']
|
171 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
172 |
+
lec_loss_stacks = raw_display.sort_values(by='Stack+', ascending=False)
|
173 |
+
|
174 |
+
worksheet = sh.worksheet('Overall_BO1_Stats')
|
175 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
176 |
+
raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
|
177 |
+
raw_display.replace("", 'Welp', inplace=True)
|
178 |
+
raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
|
179 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
180 |
+
lec_bo1 = raw_display.sort_values(by='Kills', ascending=False)
|
181 |
+
|
182 |
+
worksheet = sh.worksheet('Overall_BO3_Stats')
|
183 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
184 |
+
raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
|
185 |
+
raw_display.replace("", 'Welp', inplace=True)
|
186 |
+
raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
|
187 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
188 |
+
lec_bo3 = raw_display.sort_values(by='Kills', ascending=False)
|
189 |
+
|
190 |
+
worksheet = sh.worksheet('Overall_BO5_Stats')
|
191 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
192 |
+
raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}, inplace = True)
|
193 |
+
raw_display.replace("", 'Welp', inplace=True)
|
194 |
+
raw_display = raw_display.loc[raw_display['Player'] != 'Welp']
|
195 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
196 |
+
lec_bo5 = raw_display.sort_values(by='Kills', ascending=False)
|
197 |
+
|
198 |
+
return roo_table, positional_boosts, lck_overall_stacks, lck_win_stacks, lck_loss_stacks, lcs_overall_stacks, lcs_win_stacks, lcs_loss_stacks, lec_overall_stacks, lec_win_stacks, lec_loss_stacks, lck_bo1, lck_bo3, lck_bo5, lcs_bo1, lcs_bo3, lcs_bo5, lec_bo1, lec_bo3, lec_bo5
|
199 |
+
|
200 |
+
roo_table, positional_boosts, lck_overall_stacks, lck_win_stacks, lck_loss_stacks, lcs_overall_stacks, lcs_win_stacks, lcs_loss_stacks, lec_overall_stacks, lec_win_stacks, lec_loss_stacks, lck_bo1, lck_bo3, lck_bo5, lcs_bo1, lcs_bo3, lcs_bo5, lec_bo1, lec_bo3, lec_bo5 = init_baselines()
|
201 |
+
|
202 |
+
tab1, tab2, tab3 = st.tabs(["LOL Stacks Table", "LOL Range of Outcomes", "LOL Player Base Stats"])
|
203 |
+
|
204 |
+
def convert_df_to_csv(df):
|
205 |
+
return df.to_csv().encode('utf-8')
|
206 |
+
|
207 |
+
with tab1:
|
208 |
+
if st.button("Reset Data", key='reset1'):
|
209 |
+
# Clear values from *all* all in-memory and on-disk data caches:
|
210 |
+
# i.e. clear values from both square and cube
|
211 |
+
st.cache_data.clear()
|
212 |
+
roo_table, positional_boosts, lck_overall_stacks, lck_win_stacks, lck_loss_stacks, lcs_overall_stacks, lcs_win_stacks, lcs_loss_stacks, lec_overall_stacks, lec_win_stacks, lec_loss_stacks, lck_bo1, lck_bo3, lck_bo5, lcs_bo1, lcs_bo3, lcs_bo5, lec_bo1, lec_bo3, lec_bo5 = init_baselines()
|
213 |
+
league_choice1 = st.radio("What table would you like to display?", ('LCK/LPL', 'LCS', 'LCK'), key='league_var1')
|
214 |
+
if league_choice1 == 'LCK/LPL':
|
215 |
+
league_hold = lck_overall_stacks
|
216 |
+
elif league_choice1 == 'LCS':
|
217 |
+
league_hold = lcs_overall_stacks
|
218 |
+
elif league_choice1 == 'LCK':
|
219 |
+
league_hold = lec_overall_stacks
|
220 |
+
display = league_hold.set_index('Team')
|
221 |
+
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
222 |
+
st.download_button(
|
223 |
+
label="Export Stacks",
|
224 |
+
data=convert_df_to_csv(display),
|
225 |
+
file_name='LOL_Stacks_export.csv',
|
226 |
+
mime='text/csv',
|
227 |
+
)
|
228 |
+
|
229 |
+
with tab2:
|
230 |
+
if st.button("Reset Data", key='reset2'):
|
231 |
+
# Clear values from *all* all in-memory and on-disk data caches:
|
232 |
+
# i.e. clear values from both square and cube
|
233 |
+
st.cache_data.clear()
|
234 |
+
roo_table, positional_boosts, lck_overall_stacks, lck_win_stacks, lck_loss_stacks, lcs_overall_stacks, lcs_win_stacks, lcs_loss_stacks, lec_overall_stacks, lec_win_stacks, lec_loss_stacks, lck_bo1, lck_bo3, lck_bo5, lcs_bo1, lcs_bo3, lcs_bo5, lec_bo1, lec_bo3, lec_bo5 = init_baselines()
|
235 |
+
league_choice2 = st.radio("What table would you like to display?", ('LCK/LPL', 'LCS', 'LCK'), key='league_var2')
|
236 |
+
if league_choice2 == 'LCK/LPL':
|
237 |
+
league_hold = roo_table[roo_table['league'] == 'LCK']
|
238 |
+
elif league_choice2 == 'LCS':
|
239 |
+
league_hold = roo_table[roo_table['league'] == 'LCS']
|
240 |
+
elif league_choice2 == 'LCK':
|
241 |
+
league_hold = roo_table[roo_table['league'] == 'LCK']
|
242 |
+
model_choice = st.radio("What table would you like to display?", ('Overall', 'Wins', 'Losses'), key='roo_table')
|
243 |
+
if model_choice == 'Overall':
|
244 |
+
hold_display = league_hold[league_hold['type'] == 'Overall']
|
245 |
+
elif model_choice == 'Wins':
|
246 |
+
hold_display = league_hold[league_hold['type'] == 'Wins']
|
247 |
+
elif model_choice == 'Losses':
|
248 |
+
hold_display = league_hold[league_hold['type'] == 'Losses']
|
249 |
+
pos_var1 = st.selectbox('View specific position?', options = ['All', 'TOP', 'JNG', 'MID', 'ADC', 'SUP'], key = 'roo_posvar')
|
250 |
+
team_var1 = st.multiselect('View specific team?', options = hold_display['Team'].unique(), key = 'roo_teamvar')
|
251 |
+
display = hold_display.set_index('Player')
|
252 |
+
if team_var1:
|
253 |
+
display = display[display['Team'].isin(team_var1)]
|
254 |
+
if pos_var1 == 'All':
|
255 |
+
display = display
|
256 |
+
elif pos_var1 != 'All':
|
257 |
+
display = display[display['Position'].str.contains(pos_var1)]
|
258 |
+
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(roo_format, precision=2), use_container_width = True)
|
259 |
+
st.download_button(
|
260 |
+
label="Export Range of Outcomes",
|
261 |
+
data=convert_df_to_csv(display),
|
262 |
+
file_name='LOL_ROO_export.csv',
|
263 |
+
mime='text/csv',
|
264 |
+
)
|
265 |
+
|
266 |
+
with tab3:
|
267 |
+
if st.button("Reset Data", key='reset3'):
|
268 |
+
# Clear values from *all* all in-memory and on-disk data caches:
|
269 |
+
# i.e. clear values from both square and cube
|
270 |
+
st.cache_data.clear()
|
271 |
+
roo_table, positional_boosts, lck_overall_stacks, lck_win_stacks, lck_loss_stacks, lcs_overall_stacks, lcs_win_stacks, lcs_loss_stacks, lec_overall_stacks, lec_win_stacks, lec_loss_stacks, lck_bo1, lck_bo3, lck_bo5, lcs_bo1, lcs_bo3, lcs_bo5, lec_bo1, lec_bo3, lec_bo5 = init_baselines()
|
272 |
+
league_choice3 = st.radio("What table would you like to display?", ('LCK/LPL', 'LCS', 'LCK'), key='league_var3')
|
273 |
+
gametype_choice = st.radio("What format are the games being played?", ('Best of 1', 'Best of 3', 'Best of 5'), key='player_stats')
|
274 |
+
pos_var2 = st.selectbox('View specific position?', options = ['All', 'TOP', 'JNG', 'MID', 'ADC', 'SUP'], key = 'proj_posvar')
|
275 |
+
team_var2 = st.multiselect('View specific team?', options = hold_display['Team'].unique(), key = 'proj_teamvar')
|
276 |
+
if league_choice3 == 'LCK/LPL':
|
277 |
+
if gametype_choice == 'Best of 1':
|
278 |
+
hold_display = lck_bo1
|
279 |
+
elif gametype_choice == 'Best of 3':
|
280 |
+
hold_display = lck_bo3
|
281 |
+
elif gametype_choice == 'Best of 5':
|
282 |
+
hold_display = lck_bo5
|
283 |
+
display = hold_display.set_index('Player')
|
284 |
+
elif league_choice3 == 'LCS':
|
285 |
+
if gametype_choice == 'Best of 1':
|
286 |
+
hold_display = lcs_bo1
|
287 |
+
elif gametype_choice == 'Best of 3':
|
288 |
+
hold_display = lcs_bo3
|
289 |
+
elif gametype_choice == 'Best of 5':
|
290 |
+
hold_display = lcs_bo5
|
291 |
+
display = hold_display.set_index('Player')
|
292 |
+
elif league_choice3 == 'LEC':
|
293 |
+
if gametype_choice == 'Best of 1':
|
294 |
+
hold_display = lec_bo1
|
295 |
+
elif gametype_choice == 'Best of 3':
|
296 |
+
hold_display = lec_bo3
|
297 |
+
elif gametype_choice == 'Best of 5':
|
298 |
+
hold_display = lec_bo5
|
299 |
+
display = hold_display.set_index('Player')
|
300 |
+
if team_var2:
|
301 |
+
display = display[display['Team'].isin(team_var2)]
|
302 |
+
if pos_var2 == 'All':
|
303 |
+
display = display
|
304 |
+
elif pos_var2 != 'All':
|
305 |
+
display = display[display['Position'].str.contains(pos_var2)]
|
306 |
+
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(stat_format, precision=2), use_container_width = True)
|
307 |
+
st.download_button(
|
308 |
+
label="Export Baselines",
|
309 |
+
data=convert_df_to_csv(display),
|
310 |
+
file_name='LOL_Baselines_export.csv',
|
311 |
+
mime='text/csv',
|
312 |
+
)
|