File size: 8,208 Bytes
9002555
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from script.build_vector import IndexManager
from script.document_uploader import Uploader
from db.save_data import InsertDatabase
from db.get_data import GetDatabase
from db.delete_data import DeleteDatabase
from db.update_data import UpdateDatabase
from typing import Any
from fastapi import UploadFile
from fastapi import HTTPException
from core.chat.engine import Engine
from core.parser import clean_text, update_response, renumber_sources, seperate_to_list
from llama_index.core.composability import QASummaryQueryEngineBuilder
from service.dto import BotResponseStreaming, TestStreaming
from service.aws_loader import Loader

import logging
import re


# Configure logging
logging.basicConfig(level=logging.INFO)


# async def data_ingestion(
#     db_conn, reference, file: UploadFile, content_table: UploadFile
# ) -> Any:

async def data_ingestion(
    db_conn, reference, file: UploadFile
) -> Any:

    insert_database = InsertDatabase(db_conn)
    
    file_name = f"{reference['title']}.pdf"
    aws_loader = Loader()
    
    file_obj = file
    aws_loader.upload_to_s3(file_obj, file_name)
    
    print("Uploaded Success")

    try:
        # Insert data into the database
        await insert_database.insert_data(reference)
        
        # uploader = Uploader(reference, file, content_table)
        uploader = Uploader(reference, file)
        print("uploader : ", uploader)
        
        nodes_with_metadata = await uploader.process_documents()

        # Build indexes using IndexManager
        index = IndexManager()
        response = index.build_indexes(nodes_with_metadata)

        return response

    except Exception as e:
        # Log the error and raise HTTPException for FastAPI
        logging.error(f"An error occurred in data ingestion: {e}")
        raise HTTPException(
            status_code=500,
            detail="An internal server error occurred in data ingestion.",
        )

async def get_data(db_conn, title="", fetch_all_data=True):
    get_database = GetDatabase(db_conn)
    print(get_database)
    try:
        if fetch_all_data:
            results = await get_database.get_all_data()
            print(results)
            logging.info("Database fetched all data")
            return results
        else:
            results = await get_database.get_data(title)
            logging.info("Database fetched one data")
            return results

    except Exception as e:
        # Log the error and raise HTTPException for FastAPI
        logging.error(f"An error occurred in get data.: {e}")
        raise HTTPException(
            status_code=500, detail="An internal server error occurred in get data."
        )


async def update_data(id: int, reference, db_conn):
    update_database = UpdateDatabase(db_conn)
    try:
        reference = reference.model_dump()
        print(reference)
        reference.update({"id": id})
        print(reference)
        await update_database.update_record(reference)
        response = {"status": "Update Success"}
        return response
    except Exception as e:
        # Log the error and raise HTTPException for FastAPI
        logging.error(f"An error occurred in update data.: {e}")
        raise HTTPException(
            status_code=500, detail="An internal server error occurred in update data."
        )


async def delete_data(id: int, db_conn):
    delete_database = DeleteDatabase(db_conn)
    try:
        params = {"id": id}
        await delete_database.delete_record(params)
        response = {"status": "Delete Success"}
        return response
    except Exception as e:
        # Log the error and raise HTTPException for FastAPI
        logging.error(f"An error occurred in get data.: {e}")
        raise HTTPException(
            status_code=500, detail="An internal server error occurred in delete data."
        )


def generate_completion_non_streaming(user_request, chat_engine):
    try:
        engine = Engine()
        index_manager = IndexManager()

        # Load existing indexes
        index = index_manager.load_existing_indexes()

        # Retrieve the chat engine with the loaded index
        chat_engine = engine.get_chat_engine(index)

        # Generate completion response
        response = chat_engine.chat(user_request)

        sources = response.sources

        number_reference = list(set(re.findall(r"\[(\d+)\]", str(response))))
        number_reference_sorted = sorted(number_reference)

        contents = []
        raw_contents = []
        metadata_collection = []
        scores = []

        if number_reference_sorted:
            for number in number_reference_sorted:
                # Konversi number ke integer untuk digunakan sebagai indeks
                number = int(number)

                # Pastikan sources tidak kosong dan memiliki elemen yang diperlukan
                if sources and len(sources) > 0:
                    node = dict(sources[0])["raw_output"].source_nodes

                    # Pastikan number valid sebagai indeks
                    if 0 <= number - 1 < len(node):
                        print(node[number - 1].node.get_text())
                        raw_content = seperate_to_list(
                            node[number - 1].node.get_text()
                        )
                        raw_contents.append(raw_content)

                        content = clean_text(node[number - 1].node.get_text())
                        contents.append(content)

                        metadata = dict(node[number - 1].node.metadata)
                        metadata_collection.append(metadata)

                        score = node[number - 1].score
                        scores.append(score)
                    else:
                        print(f"Invalid reference number: {number}")
                else:
                    print("No sources available")
        else:
            print("There are no references")

        response = update_response(str(response))
        contents = renumber_sources(contents)
        
        # Check the lengths of content and metadata
        num_content = len(contents)
        num_metadata = len(metadata_collection)

        # Add content to metadata
        for i in range(min(num_content, num_metadata)):
            metadata_collection[i]["content"] = re.sub(r"source \d+\:", "", contents[i])

        return str(response), raw_contents, contents, metadata_collection, scores
    except Exception as e:
        # Log the error and raise HTTPException for FastAPI
        logging.error(f"An error occurred in generate text: {e}")
        raise HTTPException(
            status_code=500,
            detail="An internal server error occurred in generate text.",
        )


async def generate_streaming_completion(user_request, chat_engine):
    try:
        engine = Engine()
        index_manager = IndexManager()

        # Load existing indexes
        index = index_manager.load_existing_indexes()

        # Retrieve the chat engine with the loaded index
        chat_engine = engine.get_chat_engine(index)
        # Generate completion response
        response = chat_engine.stream_chat(user_request)

        completed_response = ""

        for gen in response.response_gen:
            completed_response += gen  # Concatenate the new string
            yield BotResponseStreaming(
                content=gen, completed_content=completed_response
            )

        nodes = response.source_nodes
        for node in nodes:
            reference = str(clean_text(node.node.get_text()))
            metadata = dict(node.node.metadata)
            score = float(node.score)
            yield BotResponseStreaming(
                completed_content=completed_response,
                reference=reference,
                metadata=metadata,
                score=score,
            )
    except Exception as e:
        yield {"error": str(e)}

    except Exception as e:
        # Log the error and raise HTTPException for FastAPI
        logging.error(f"An error occurred in generate text: {e}")
        raise HTTPException(
            status_code=500,
            detail="An internal server error occurred in generate text.",
        )