File size: 3,304 Bytes
9002555
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from llama_index.core import VectorStoreIndex
from llama_index.core import StorageContext
from pinecone import Pinecone, ServerlessSpec
from llama_index.llms.openai import OpenAI
from llama_index.vector_stores.pinecone import PineconeVectorStore
from fastapi import HTTPException, status
from config import PINECONE_CONFIG
import os
import json


class IndexManager:
    def __init__(self):
        self.vector_index = None
        self.index_name = "summarizer-semantic-index"

    def _get_pinecone_client(self):
        """Initialize and return the Pinecone client."""
        # api_key = os.getenv("PINECONE_API_KEY")
        api_key = PINECONE_CONFIG.PINECONE_API_KEY
        if not api_key:
            raise ValueError(
                "Pinecone API key is missing. Please set it in environment variables."
            )
        return Pinecone(api_key=api_key)

    def _create_pinecone_index(self, client):
        """Create Pinecone index if it doesn't already exist."""
        if self.index_name not in client.list_indexes().names():
            client.create_index(
                name=self.index_name,
                dimension=1536,
                metric="cosine",
                spec=ServerlessSpec(cloud="aws", region="us-east-1"),
            )
        return client.Index(self.index_name)

    def _initialize_vector_store(self, pinecone_index):
        """Initialize and return the vector store with the Pinecone index."""
        vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
        return StorageContext.from_defaults(vector_store=vector_store)


    def build_indexes(self, nodes):
        """Build vector and tree indexes from nodes."""
        try:
            client = self._get_pinecone_client()
            pinecone_index = self._create_pinecone_index(client)
            storage_context = self._initialize_vector_store(pinecone_index)

            self.vector_index = VectorStoreIndex(nodes, storage_context=storage_context)
            self.vector_index.set_index_id("vector")

            print(f"Vector Index ID: {self.vector_index.index_id}")
            print("Vector Index created successfully.")

            response = {
                "status": "success",
                "message": "Existing Vector Index loaded successfully.",
            }

            return json.dumps(response)
        except HTTPException as http_exc:
            raise http_exc  # Re-raise HTTPExceptions to ensure FastAPI handles them
        except Exception as e:
            raise HTTPException(
                status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
                detail=f"Error loading existing indexes: {str(e)}"
            )

    def load_existing_indexes(self):
        """Load existing indexes from Pinecone."""
        try:
            client = self._get_pinecone_client()
            pinecone_index = client.Index(self.index_name)
            print(pinecone_index.describe_index_stats())
            vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
            retriever = VectorStoreIndex.from_vector_store(vector_store)

            print("Existing Vector Index loaded successfully.")
            return retriever
        except Exception as e:
            print(f"Error loading existing indexes: {e}")
            raise