Spaces:
Sleeping
Sleeping
from script.vector_db import IndexManager | |
from script.document_uploader import Uploader | |
from db.get_data import GetDatabase | |
from db.delete_data import DeleteDatabase | |
from db.update_data import UpdateDatabase | |
from typing import Any | |
from fastapi import UploadFile | |
from fastapi import HTTPException | |
from fastapi.responses import JSONResponse | |
from llama_index.core.llms import MessageRole | |
from core.chat.engine import Engine | |
from core.chat.chatstore import ChatStore | |
from core.parser import clean_text, update_response, renumber_sources | |
from service.dto import BotResponseStreaming, ChatMessage | |
from service.aws_loader import Loader | |
from pymongo.mongo_client import MongoClient | |
from dotenv import load_dotenv | |
from typing import List | |
from datetime import datetime | |
import redis | |
import logging | |
import re | |
import json | |
import os | |
load_dotenv() | |
# Configure logging | |
logging.basicConfig(level=logging.INFO) | |
async def data_ingestion(category_id, reference, file: UploadFile) -> Any: | |
try: | |
# Upload to AWS | |
file_name = f"{reference['title']}" | |
aws_loader = Loader() | |
file_obj = file | |
aws_loader.upload_to_s3(file_obj, file_name) | |
uploader = Uploader(reference, file) | |
nodes_with_metadata = await uploader.process_documents() | |
# Build indexes using IndexManager | |
index = IndexManager() | |
index.build_indexes(nodes_with_metadata) | |
return json.dumps( | |
{"status": "success", "message": "Vector Index loaded successfully."} | |
) | |
except Exception as e: | |
# Log the error and raise HTTPException for FastAPI | |
logging.error("An error occurred in data ingestion: %s", e) | |
return JSONResponse( | |
status_code=500, | |
content="An internal server error occurred in data ingestion.", | |
) | |
async def get_data(db_conn, title=None, fetch_all_data=True): | |
get_database = GetDatabase(db_conn) | |
print(get_database) | |
try: | |
if fetch_all_data: | |
results = await get_database.get_all_data() | |
print(results) | |
logging.info("Database fetched all data") | |
return results | |
else: | |
results = await get_database.get_data(title) | |
logging.info("Database fetched one data") | |
return results | |
except Exception as e: | |
# Log the error and raise HTTPException for FastAPI | |
logging.error("An error occurred in get data: %s", e) | |
return JSONResponse( | |
status_code=500, content="An internal server error occurred in get data." | |
) | |
async def update_data(id: int, reference, db_conn): | |
update_database = UpdateDatabase(db_conn) | |
try: | |
reference = reference.model_dump() | |
print(reference) | |
reference.update({"id": id}) | |
print(reference) | |
await update_database.update_record(reference) | |
response = {"status": "Update Success"} | |
return response | |
except Exception as e: | |
# Log the error and raise HTTPException for FastAPI | |
logging.error("An error occurred in update data: %s", e) | |
return JSONResponse( | |
status_code=500, content="An internal server error occurred in update data." | |
) | |
async def delete_data(id: int, db_conn): | |
delete_database = DeleteDatabase(db_conn) | |
try: | |
params = {"id": id} | |
await delete_database.delete_record(params) | |
response = {"status": "Delete Success"} | |
return response | |
except Exception as e: | |
# Log the error and raise HTTPException for FastAPI | |
logging.error("An error occurred in get data: %s", e) | |
return JSONResponse( | |
status_code=500, content="An internal server error occurred in delete data." | |
) | |
def generate_completion_non_streaming( | |
session_id, user_request, titles: List = None, type_bot="general" | |
): | |
uri = os.getenv("MONGO_URI") | |
engine = Engine() | |
index_manager = IndexManager() | |
chatstore = ChatStore() | |
client = MongoClient(uri) | |
try: | |
client.admin.command("ping") | |
print("Pinged your deployment. You successfully connected to MongoDB!") | |
except Exception as e: | |
return JSONResponse(status_code=500, content=f"Database Error as {e}") | |
try: | |
# Load existing indexes | |
index = index_manager.load_existing_indexes() | |
if type_bot == "general": | |
# Retrieve the chat engine with the loaded index | |
chat_engine = engine.get_chat_engine(session_id, index) | |
else: | |
# Retrieve the chat engine with the loaded index | |
chat_engine = engine.get_chat_engine(session_id, index, titles, type_bot) | |
# Generate completion response | |
response = chat_engine.chat(user_request) | |
sources = response.sources | |
number_reference = list(set(re.findall(r"\[(\d+)\]", str(response)))) | |
number_reference_sorted = sorted(number_reference) | |
contents = [] | |
metadata_collection = [] | |
scores = [] | |
if number_reference_sorted: | |
for number in number_reference_sorted: | |
# Konversi number ke integer untuk digunakan sebagai indeks | |
number = int(number) | |
# Pastikan sources tidak kosong dan memiliki elemen yang diperlukan | |
if sources and len(sources) > 0: | |
node = dict(sources[0])["raw_output"].source_nodes | |
# Pastikan number valid sebagai indeks | |
if 0 <= number - 1 < len(node): | |
content = clean_text(node[number - 1].node.get_text()) | |
contents.append(content) | |
metadata = dict(node[number - 1].node.metadata) | |
metadata_collection.append(metadata) | |
score = node[number - 1].score | |
scores.append(score) | |
else: | |
print(f"Invalid reference number: {number}") | |
else: | |
print("No sources available") | |
else: | |
print("There are no references") | |
response = update_response(str(response)) | |
contents = renumber_sources(contents) | |
# Check the lengths of content and metadata | |
num_content = len(contents) | |
num_metadata = len(metadata_collection) | |
# Add content to metadata | |
for i in range(min(num_content, num_metadata)): | |
metadata_collection[i]["content"] = re.sub(r"source \d+\:", "", contents[i]) | |
message = ChatMessage( | |
role=MessageRole.ASSISTANT, content=response, metadata=metadata_collection | |
) | |
chatstore.delete_last_message(session_id) | |
chatstore.add_message(session_id, message) | |
chatstore.clean_message(session_id) | |
except Exception as e: | |
# Log the error and raise HTTPException for FastAPI | |
logging.error("An error occurred in generate text: %s", e) | |
return JSONResponse( | |
status_code=500, | |
content=f"An internal server error occurred in generate text as {e}.") | |
try : | |
chat_history_db = [ | |
ChatMessage(role=MessageRole.SYSTEM, | |
content=user_request, | |
timestamp=datetime.now(), | |
payment = "free" if type_bot=="general" else None | |
), | |
ChatMessage( | |
role=MessageRole.ASSISTANT, | |
content=response, | |
metadata=metadata_collection, | |
timestamp=datetime.now(), | |
payment = "free" if type_bot=="general" else None | |
) | |
] | |
chat_history_json = [message.model_dump() for message in chat_history_db] | |
db = client["bot_database"] # Replace with your database name | |
collection = db[session_id] # Replace with your collection name | |
result = collection.insert_many(chat_history_json) | |
print("Data inserted with record ids", result.inserted_ids) | |
return str(response), metadata_collection, scores | |
except Exception as e: | |
# Log the error and raise HTTPException for FastAPI | |
logging.error("An error occurred in generate text: %s", e) | |
return JSONResponse( | |
status_code=500, | |
content=f"An internal server error occurred in generate text as {e}.") | |
async def generate_streaming_completion(user_request, session_id): | |
try: | |
engine = Engine() | |
index_manager = IndexManager() | |
# Load existing indexes | |
index = index_manager.load_existing_indexes() | |
# Retrieve the chat engine with the loaded index | |
chat_engine = engine.get_chat_engine(index, session_id) | |
# Generate completion response | |
response = chat_engine.stream_chat(user_request) | |
completed_response = "" | |
for gen in response.response_gen: | |
completed_response += gen # Concatenate the new string | |
yield BotResponseStreaming( | |
content=gen, completed_content=completed_response | |
) | |
nodes = response.source_nodes | |
for node in nodes: | |
reference = str(clean_text(node.node.get_text())) | |
metadata = dict(node.node.metadata) | |
score = float(node.score) | |
yield BotResponseStreaming( | |
completed_content=completed_response, | |
reference=reference, | |
metadata=metadata, | |
score=score, | |
) | |
except Exception as e: | |
yield {"error": str(e)} | |
except Exception as e: | |
# Log the error and raise HTTPException for FastAPI | |
logging.error(f"An error occurred in generate text: {e}") | |
raise HTTPException( | |
status_code=500, | |
detail="An internal server error occurred in generate text.", | |
) from e | |