Spaces:
Sleeping
Sleeping
from typing import List | |
from llama_index.core.vector_stores import ( | |
MetadataFilter, | |
MetadataFilters, | |
) | |
from llama_index.core.tools import QueryEngineTool, ToolMetadata | |
from llama_index.agent.openai import OpenAIAgent | |
from llama_index.llms.openai import OpenAI | |
from llama_index.core.query_engine import CitationQueryEngine | |
from llama_index.embeddings.openai import OpenAIEmbedding | |
from llama_index.multi_modal_llms.openai import OpenAIMultiModal | |
from llama_index.core import Settings | |
from core.chat.chatstore import ChatStore | |
from core.multimodal import MultimodalQueryEngine | |
from config import GPTBOT_CONFIG | |
from core.prompt import SYSTEM_BOT_TEMPLATE, ADDITIONAL_INFORMATIONS,SYSTEM_BOT_GENERAL_TEMPLATE, SYSTEM_BOT_IMAGE_TEMPLATE | |
from core.parser import join_list | |
class Engine: | |
def __init__(self): | |
self.llm = OpenAI( | |
temperature=GPTBOT_CONFIG.temperature, | |
model=GPTBOT_CONFIG.model, | |
max_tokens=GPTBOT_CONFIG.max_tokens, | |
api_key=GPTBOT_CONFIG.api_key, | |
) | |
self.chat_store = ChatStore() | |
Settings.llm = self.llm | |
embed_model = OpenAIEmbedding(model="text-embedding-3-large") | |
Settings.embed_model = embed_model | |
def get_citation_engine(self, titles:List, index): | |
model_multimodal = OpenAIMultiModal(model="gpt-4o-mini", max_new_tokens=4096) | |
filters = [ | |
MetadataFilter( | |
key="title", | |
value=title, | |
operator="==", | |
) | |
for title in titles | |
] | |
filters = MetadataFilters(filters=filters, condition="or") | |
# Create the QueryEngineTool with the index and filters | |
kwargs = {"similarity_top_k": 10, "filters": filters} | |
retriever = index.as_retriever(**kwargs) | |
# citation_engine = CitationQueryEngine(retriever=retriever) | |
# return CitationQueryEngine.from_args(index, retriever=retriever) | |
return MultimodalQueryEngine(retriever=retriever, multi_modal_llm=model_multimodal) | |
def get_chat_engine(self, session_id, index, titles=None, type_bot="general"): | |
# Create the QueryEngineTool based on the type | |
if type_bot == "general": | |
# query_engine = index.as_query_engine(similarity_top_k=3) | |
# citation_engine = CitationQueryEngine.from_args(index, similarity_top_k=5) | |
model_multimodal = OpenAIMultiModal(model="gpt-4o-mini", max_new_tokens=4096) | |
retriever = index.as_retriever(similarity_top_k=10) | |
citation_engine = MultimodalQueryEngine(retriever=retriever, multi_modal_llm=model_multimodal) | |
# description = "A book containing information about medicine" | |
else: | |
citation_engine = self.get_citation_engine(titles, index) | |
# description = "A book containing information about medicine" | |
# metadata = ToolMetadata(name="bot-belajar", description=description) | |
# vector_query_engine = QueryEngineTool( | |
# query_engine=citation_engine, metadata=metadata | |
# ) | |
vector_tool = QueryEngineTool.from_defaults( | |
query_engine=citation_engine, | |
name="vector_tool", | |
description=( | |
"Useful for retrieving specific context from the data from a book containing information about medicine" | |
), | |
) | |
# Initialize the OpenAI agent with the tools | |
# if type_bot == "general": | |
# system_prompt = SYSTEM_BOT_GENERAL_TEMPLATE | |
# else: | |
# additional_information = ADDITIONAL_INFORMATIONS.format(titles=join_list(titles)) | |
# system_prompt = SYSTEM_BOT_TEMPLATE.format(additional_information=additional_information) | |
# chat_engine = OpenAIAgent.from_tools( | |
# tools=[vector_query_engine], | |
# llm=self.llm, | |
# memory=self.chat_store.initialize_memory_bot(session_id), | |
# system_prompt=system_prompt, | |
# ) | |
if type_bot == "general": | |
system_prompt = SYSTEM_BOT_IMAGE_TEMPLATE | |
else: | |
additional_information = ADDITIONAL_INFORMATIONS.format(titles=join_list(titles)) | |
system_prompt = SYSTEM_BOT_IMAGE_TEMPLATE.format(additional_information=additional_information) | |
chat_engine = OpenAIAgent.from_tools( | |
tools=[vector_tool], | |
llm=self.llm, | |
memory=self.chat_store.initialize_memory_bot(session_id), | |
system_prompt=system_prompt, | |
) | |
return chat_engine | |