diff --git a/.gitignore b/.gitignore index 4e86d6c975898e2dbac08a6dd2802be9329888d6..7c7c3d9fa057951b75a7619500371c246d47d1f0 100644 --- a/.gitignore +++ b/.gitignore @@ -397,4 +397,5 @@ FodyWeavers.xsd # JetBrains Rider *.sln.iml -.env \ No newline at end of file +.env +*.pem \ No newline at end of file diff --git a/alembic.ini b/alembic.ini new file mode 100644 index 0000000000000000000000000000000000000000..0babb416e7e7a3273b048c59b59eff143ef07db5 --- /dev/null +++ b/alembic.ini @@ -0,0 +1,117 @@ +# A generic, single database configuration. + +[alembic] +# path to migration scripts +# Use forward slashes (/) also on windows to provide an os agnostic path +script_location = alembic + +# template used to generate migration file names; The default value is %%(rev)s_%%(slug)s +# Uncomment the line below if you want the files to be prepended with date and time +# see https://alembic.sqlalchemy.org/en/latest/tutorial.html#editing-the-ini-file +# for all available tokens +# file_template = %%(year)d_%%(month).2d_%%(day).2d_%%(hour).2d%%(minute).2d-%%(rev)s_%%(slug)s + +# sys.path path, will be prepended to sys.path if present. +# defaults to the current working directory. +prepend_sys_path = . + +# timezone to use when rendering the date within the migration file +# as well as the filename. +# If specified, requires the python>=3.9 or backports.zoneinfo library. +# Any required deps can installed by adding `alembic[tz]` to the pip requirements +# string value is passed to ZoneInfo() +# leave blank for localtime +# timezone = + +# max length of characters to apply to the "slug" field +# truncate_slug_length = 40 + +# set to 'true' to run the environment during +# the 'revision' command, regardless of autogenerate +# revision_environment = false + +# set to 'true' to allow .pyc and .pyo files without +# a source .py file to be detected as revisions in the +# versions/ directory +# sourceless = false + +# version location specification; This defaults +# to alembic/versions. When using multiple version +# directories, initial revisions must be specified with --version-path. +# The path separator used here should be the separator specified by "version_path_separator" below. +# version_locations = %(here)s/bar:%(here)s/bat:alembic/versions + +# version path separator; As mentioned above, this is the character used to split +# version_locations. The default within new alembic.ini files is "os", which uses os.pathsep. +# If this key is omitted entirely, it falls back to the legacy behavior of splitting on spaces and/or commas. +# Valid values for version_path_separator are: +# +# version_path_separator = : +# version_path_separator = ; +# version_path_separator = space +# version_path_separator = newline +version_path_separator = os # Use os.pathsep. Default configuration used for new projects. + +# set to 'true' to search source files recursively +# in each "version_locations" directory +# new in Alembic version 1.10 +# recursive_version_locations = false + +# the output encoding used when revision files +# are written from script.py.mako +# output_encoding = utf-8 + +sqlalchemy.url = placeholder_url + + +[post_write_hooks] +# post_write_hooks defines scripts or Python functions that are run +# on newly generated revision scripts. See the documentation for further +# content and examples + +# format using "black" - use the console_scripts runner, against the "black" entrypoint +# hooks = black +# black.type = console_scripts +# black.entrypoint = black +# black.options = -l 79 REVISION_SCRIPT_FILENAME + +# lint with attempts to fix using "ruff" - use the exec runner, execute a binary +# hooks = ruff +# ruff.type = exec +# ruff.executable = %(here)s/.venv/bin/ruff +# ruff.options = --fix REVISION_SCRIPT_FILENAME + +# Logging configuration +[loggers] +keys = root,sqlalchemy,alembic + +[handlers] +keys = console + +[formatters] +keys = generic + +[logger_root] +level = WARN +handlers = console +qualname = + +[logger_sqlalchemy] +level = WARN +handlers = +qualname = sqlalchemy.engine + +[logger_alembic] +level = INFO +handlers = +qualname = alembic + +[handler_console] +class = StreamHandler +args = (sys.stderr,) +level = NOTSET +formatter = generic + +[formatter_generic] +format = %(levelname)-5.5s [%(name)s] %(message)s +datefmt = %H:%M:%S diff --git a/alembic/README b/alembic/README new file mode 100644 index 0000000000000000000000000000000000000000..98e4f9c44effe479ed38c66ba922e7bcc672916f --- /dev/null +++ b/alembic/README @@ -0,0 +1 @@ +Generic single-database configuration. \ No newline at end of file diff --git a/alembic/env.py b/alembic/env.py new file mode 100644 index 0000000000000000000000000000000000000000..4b15c43284af75f9ca24c0267ae85b6feebd51c7 --- /dev/null +++ b/alembic/env.py @@ -0,0 +1,86 @@ +from logging.config import fileConfig + +from sqlalchemy import engine_from_config +from sqlalchemy import pool +from dotenv import load_dotenv +from alembic import context +from db.models import Base + +import os + +load_dotenv() + +# this is the Alembic Config object, which provides +# access to the values within the .ini file in use. +config = context.config + +# Interpret the config file for Python logging. +# This line sets up loggers basically. +if config.config_file_name is not None: + fileConfig(config.config_file_name) + +config.set_main_option( + "sqlalchemy.url", os.getenv("DB_URI_SQL_ALCHEMY") +) +# add your model's MetaData object here +# for 'autogenerate' support +# from myapp import mymodel +# target_metadata = mymodel.Base.metadata +target_metadata = Base.metadata + +# other values from the config, defined by the needs of env.py, +# can be acquired: +# my_important_option = config.get_main_option("my_important_option") +# ... etc. + + +def run_migrations_offline() -> None: + """Run migrations in 'offline' mode. + + This configures the context with just a URL + and not an Engine, though an Engine is acceptable + here as well. By skipping the Engine creation + we don't even need a DBAPI to be available. + + Calls to context.execute() here emit the given string to the + script output. + + """ + url = config.get_main_option("sqlalchemy.url") + context.configure( + url=url, + target_metadata=target_metadata, + literal_binds=True, + dialect_opts={"paramstyle": "named"}, + ) + + with context.begin_transaction(): + context.run_migrations() + + +def run_migrations_online() -> None: + """Run migrations in 'online' mode. + + In this scenario we need to create an Engine + and associate a connection with the context. + + """ + connectable = engine_from_config( + config.get_section(config.config_ini_section, {}), + prefix="sqlalchemy.", + poolclass=pool.NullPool, + ) + + with connectable.connect() as connection: + context.configure( + connection=connection, target_metadata=target_metadata + ) + + with context.begin_transaction(): + context.run_migrations() + + +if context.is_offline_mode(): + run_migrations_offline() +else: + run_migrations_online() diff --git a/alembic/script.py.mako b/alembic/script.py.mako new file mode 100644 index 0000000000000000000000000000000000000000..fbc4b07dcef98b20c6f96b642097f35e8433258e --- /dev/null +++ b/alembic/script.py.mako @@ -0,0 +1,26 @@ +"""${message} + +Revision ID: ${up_revision} +Revises: ${down_revision | comma,n} +Create Date: ${create_date} + +""" +from typing import Sequence, Union + +from alembic import op +import sqlalchemy as sa +${imports if imports else ""} + +# revision identifiers, used by Alembic. +revision: str = ${repr(up_revision)} +down_revision: Union[str, None] = ${repr(down_revision)} +branch_labels: Union[str, Sequence[str], None] = ${repr(branch_labels)} +depends_on: Union[str, Sequence[str], None] = ${repr(depends_on)} + + +def upgrade() -> None: + ${upgrades if upgrades else "pass"} + + +def downgrade() -> None: + ${downgrades if downgrades else "pass"} diff --git a/alembic/versions/404f8a028e0e_add_bot_name.py b/alembic/versions/404f8a028e0e_add_bot_name.py new file mode 100644 index 0000000000000000000000000000000000000000..7a26858c6b681b836bce58336c71e9386c54a173 --- /dev/null +++ b/alembic/versions/404f8a028e0e_add_bot_name.py @@ -0,0 +1,30 @@ +"""add bot_name + +Revision ID: 404f8a028e0e +Revises: 98b1b4a0de39 +Create Date: 2024-10-04 14:03:44.098762 + +""" +from typing import Sequence, Union + +from alembic import op +import sqlalchemy as sa + + +# revision identifiers, used by Alembic. +revision: str = '404f8a028e0e' +down_revision: Union[str, None] = '98b1b4a0de39' +branch_labels: Union[str, Sequence[str], None] = None +depends_on: Union[str, Sequence[str], None] = None + + +def upgrade() -> None: + # ### commands auto generated by Alembic - please adjust! ### + op.add_column('bot', sa.Column('bot_name', sa.String(length=200), nullable=False)) + # ### end Alembic commands ### + + +def downgrade() -> None: + # ### commands auto generated by Alembic - please adjust! ### + op.drop_column('bot', 'bot_name') + # ### end Alembic commands ### diff --git a/alembic/versions/426e52aa13aa_migration_description.py b/alembic/versions/426e52aa13aa_migration_description.py new file mode 100644 index 0000000000000000000000000000000000000000..1e4941093ef31ec0035d132a021f55cc0eb24b54 --- /dev/null +++ b/alembic/versions/426e52aa13aa_migration_description.py @@ -0,0 +1,91 @@ +"""migration description + +Revision ID: 426e52aa13aa +Revises: +Create Date: 2024-10-02 14:32:47.859996 + +""" +from typing import Sequence, Union + +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import mysql + +# revision identifiers, used by Alembic. +revision: str = '426e52aa13aa' +down_revision: Union[str, None] = None +branch_labels: Union[str, Sequence[str], None] = None +depends_on: Union[str, Sequence[str], None] = None + + +def upgrade() -> None: + # ### commands auto generated by Alembic - please adjust! ### + op.drop_table('Category') + op.drop_table('Role') + op.drop_table('Metadata') + op.drop_table('_prisma_migrations') + op.drop_index('email', table_name='User') + op.drop_table('User') + op.add_column('bot', sa.Column('user_id', sa.Integer(), nullable=True)) + op.add_column('metadata', sa.Column('title', sa.String(length=100), nullable=True)) + op.create_foreign_key(None, 'bot', 'user', ['user_id'], ['id']) + op.alter_column('session', 'id', + existing_type=mysql.CHAR(length=36), + type_=sa.String(length=36), + existing_nullable=False) + # ### end Alembic commands ### + + +def downgrade() -> None: + # ### commands auto generated by Alembic - please adjust! ### + op.alter_column('session', 'id', + existing_type=sa.String(length=36), + type_=mysql.CHAR(length=36), + existing_nullable=False) + op.drop_constraint(None, 'bot', type_='foreignkey') + op.drop_column('bot', 'user_id') + op.create_table('User', + sa.Column('id', mysql.INTEGER(), autoincrement=True, nullable=False), + sa.Column('name', mysql.VARCHAR(length=50), nullable=False), + sa.Column('email', mysql.VARCHAR(length=100), nullable=False), + sa.Column('password_hash', mysql.VARCHAR(length=100), nullable=False), + sa.Column('created_at', mysql.DATETIME(), server_default=sa.text('CURRENT_TIMESTAMP'), nullable=False), + sa.Column('updated_at', mysql.DATETIME(), server_default=sa.text('CURRENT_TIMESTAMP'), nullable=False), + sa.PrimaryKeyConstraint('id') + ) + op.create_index('email', 'User', ['email'], unique=True) + op.create_table('_prisma_migrations', + sa.Column('id', mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=36), nullable=False), + sa.Column('checksum', mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=64), nullable=False), + sa.Column('finished_at', mysql.DATETIME(fsp=3), nullable=True), + sa.Column('migration_name', mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=255), nullable=False), + sa.Column('logs', mysql.TEXT(collation='utf8mb4_unicode_ci'), nullable=True), + sa.Column('rolled_back_at', mysql.DATETIME(fsp=3), nullable=True), + sa.Column('started_at', mysql.DATETIME(fsp=3), server_default=sa.text('CURRENT_TIMESTAMP(3)'), nullable=False), + sa.Column('applied_steps_count', mysql.INTEGER(unsigned=True), server_default=sa.text("'0'"), autoincrement=False, nullable=False), + sa.PrimaryKeyConstraint('id') + ) + op.create_table('Metadata', + sa.Column('id', mysql.INTEGER(), autoincrement=True, nullable=False), + sa.Column('title', mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=191), nullable=False), + sa.Column('category', mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=191), nullable=False), + sa.Column('author', mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=191), nullable=False), + sa.Column('year', mysql.INTEGER(), autoincrement=False, nullable=False), + sa.Column('publisher', mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=191), nullable=False), + sa.Column('createdAt', mysql.DATETIME(fsp=3), server_default=sa.text('CURRENT_TIMESTAMP(3)'), nullable=False), + sa.Column('updatedAt', mysql.DATETIME(fsp=3), nullable=False), + sa.PrimaryKeyConstraint('id') + ) + op.create_table('Role', + sa.Column('id', mysql.INTEGER(), autoincrement=True, nullable=False), + sa.Column('role_name', mysql.VARCHAR(length=100), nullable=False), + sa.Column('description', mysql.VARCHAR(length=100), nullable=True), + sa.PrimaryKeyConstraint('id') + ) + op.create_table('Category', + sa.Column('id', mysql.INTEGER(), autoincrement=True, nullable=False), + sa.Column('category', mysql.VARCHAR(length=100), nullable=True), + sa.Column('created_at', mysql.DATETIME(), server_default=sa.text('CURRENT_TIMESTAMP'), nullable=False), + sa.PrimaryKeyConstraint('id') + ) + # ### end Alembic commands ### diff --git a/alembic/versions/4dd226fee84e_add_updated_data.py b/alembic/versions/4dd226fee84e_add_updated_data.py new file mode 100644 index 0000000000000000000000000000000000000000..357314735ed545c66fe464cee8aa8cbb3679bbd3 --- /dev/null +++ b/alembic/versions/4dd226fee84e_add_updated_data.py @@ -0,0 +1,30 @@ +"""add updated data + +Revision ID: 4dd226fee84e +Revises: 6bd7ce57dca0 +Create Date: 2024-10-07 14:44:03.718963 + +""" +from typing import Sequence, Union + +from alembic import op +import sqlalchemy as sa + + +# revision identifiers, used by Alembic. +revision: str = '4dd226fee84e' +down_revision: Union[str, None] = '6bd7ce57dca0' +branch_labels: Union[str, Sequence[str], None] = None +depends_on: Union[str, Sequence[str], None] = None + + +def upgrade() -> None: + # ### commands auto generated by Alembic - please adjust! ### + op.add_column('category', sa.Column('updated_at', sa.DateTime(), server_default=sa.text('CURRENT_TIMESTAMP'), nullable=False)) + # ### end Alembic commands ### + + +def downgrade() -> None: + # ### commands auto generated by Alembic - please adjust! ### + op.drop_column('category', 'updated_at') + # ### end Alembic commands ### diff --git a/alembic/versions/6bd7ce57dca0_add_updated_at.py b/alembic/versions/6bd7ce57dca0_add_updated_at.py new file mode 100644 index 0000000000000000000000000000000000000000..7728368ddca792ad1bd6baa7fd2b3020700b0804 --- /dev/null +++ b/alembic/versions/6bd7ce57dca0_add_updated_at.py @@ -0,0 +1,30 @@ +"""add updated at + +Revision ID: 6bd7ce57dca0 +Revises: 404f8a028e0e +Create Date: 2024-10-07 14:02:25.722428 + +""" +from typing import Sequence, Union + +from alembic import op +import sqlalchemy as sa + + +# revision identifiers, used by Alembic. +revision: str = '6bd7ce57dca0' +down_revision: Union[str, None] = '404f8a028e0e' +branch_labels: Union[str, Sequence[str], None] = None +depends_on: Union[str, Sequence[str], None] = None + + +def upgrade() -> None: + # ### commands auto generated by Alembic - please adjust! ### + op.add_column('category', sa.Column('updated_at', sa.DateTime(), server_default=sa.text('CURRENT_TIMESTAMP'), nullable=False)) + # ### end Alembic commands ### + + +def downgrade() -> None: + # ### commands auto generated by Alembic - please adjust! ### + op.drop_column('category', 'updated_at') + # ### end Alembic commands ### diff --git a/alembic/versions/6e972ae8b93b_add_updated_at_session.py b/alembic/versions/6e972ae8b93b_add_updated_at_session.py new file mode 100644 index 0000000000000000000000000000000000000000..68247a9ed6b820823bc7c2a311c7e79b8eeba9cc --- /dev/null +++ b/alembic/versions/6e972ae8b93b_add_updated_at_session.py @@ -0,0 +1,32 @@ +"""add updated at session + +Revision ID: 6e972ae8b93b +Revises: 82908d30ae5a +Create Date: 2024-10-10 14:10:14.433336 + +""" +from typing import Sequence, Union + +from alembic import op +import sqlalchemy as sa + + +# revision identifiers, used by Alembic. +revision: str = '6e972ae8b93b' +down_revision: Union[str, None] = '82908d30ae5a' +branch_labels: Union[str, Sequence[str], None] = None +depends_on: Union[str, Sequence[str], None] = None + + +def upgrade() -> None: + # ### commands auto generated by Alembic - please adjust! ### + op.add_column('session', sa.Column('updated_at', sa.DateTime(), server_default=sa.text('CURRENT_TIMESTAMP'), nullable=False)) + op.add_column('session_publisher', sa.Column('updated_at', sa.DateTime(), server_default=sa.text('CURRENT_TIMESTAMP'), nullable=False)) + # ### end Alembic commands ### + + +def downgrade() -> None: + # ### commands auto generated by Alembic - please adjust! ### + op.drop_column('session_publisher', 'updated_at') + op.drop_column('session', 'updated_at') + # ### end Alembic commands ### diff --git a/alembic/versions/82908d30ae5a_add_updated_data.py b/alembic/versions/82908d30ae5a_add_updated_data.py new file mode 100644 index 0000000000000000000000000000000000000000..2d64091107f1716fa204a9d95ae9d88af718370b --- /dev/null +++ b/alembic/versions/82908d30ae5a_add_updated_data.py @@ -0,0 +1,50 @@ +"""add updated data + +Revision ID: 82908d30ae5a +Revises: fcc0580a4769 +Create Date: 2024-10-09 14:12:01.147393 + +""" +from typing import Sequence, Union + +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import mysql + +# revision identifiers, used by Alembic. +revision: str = '82908d30ae5a' +down_revision: Union[str, None] = 'fcc0580a4769' +branch_labels: Union[str, Sequence[str], None] = None +depends_on: Union[str, Sequence[str], None] = None + + +def upgrade() -> None: + # ### commands auto generated by Alembic - please adjust! ### + op.create_table('session_publisher', + sa.Column('id', sa.String(length=36), nullable=False), + sa.Column('user_id', sa.Integer(), nullable=True), + sa.Column('metadata_id', sa.Integer(), nullable=True), + sa.Column('created_at', sa.DateTime(), server_default=sa.text('CURRENT_TIMESTAMP'), nullable=False), + sa.ForeignKeyConstraint(['metadata_id'], ['metadata.id'], ), + sa.ForeignKeyConstraint(['user_id'], ['user.id'], ), + sa.PrimaryKeyConstraint('id') + ) + op.create_index(op.f('ix_session_publisher_id'), 'session_publisher', ['id'], unique=False) + op.add_column('metadata', sa.Column('thumbnail', sa.LargeBinary(), nullable=True)) + op.add_column('planning', sa.Column('trials_id', sa.Integer(), nullable=True)) + op.create_foreign_key(None, 'planning', 'trials', ['trials_id'], ['id']) + op.drop_column('planning', 'token_planned') + op.drop_column('planning', 'token_used') + # ### end Alembic commands ### + + +def downgrade() -> None: + # ### commands auto generated by Alembic - please adjust! ### + op.add_column('planning', sa.Column('token_used', mysql.INTEGER(), autoincrement=False, nullable=False)) + op.add_column('planning', sa.Column('token_planned', mysql.INTEGER(), autoincrement=False, nullable=False)) + op.drop_constraint(None, 'planning', type_='foreignkey') + op.drop_column('planning', 'trials_id') + op.drop_column('metadata', 'thumbnail') + op.drop_index(op.f('ix_session_publisher_id'), table_name='session_publisher') + op.drop_table('session_publisher') + # ### end Alembic commands ### diff --git a/alembic/versions/98b1b4a0de39_add_username.py b/alembic/versions/98b1b4a0de39_add_username.py new file mode 100644 index 0000000000000000000000000000000000000000..fa3b0c972b6acf1501f7b4e30c2ef1b602459620 --- /dev/null +++ b/alembic/versions/98b1b4a0de39_add_username.py @@ -0,0 +1,32 @@ +"""add username + +Revision ID: 98b1b4a0de39 +Revises: c818e5b84075 +Create Date: 2024-10-03 14:27:43.877725 + +""" +from typing import Sequence, Union + +from alembic import op +import sqlalchemy as sa + + +# revision identifiers, used by Alembic. +revision: str = '98b1b4a0de39' +down_revision: Union[str, None] = 'c818e5b84075' +branch_labels: Union[str, Sequence[str], None] = None +depends_on: Union[str, Sequence[str], None] = None + + +def upgrade() -> None: + # ### commands auto generated by Alembic - please adjust! ### + op.add_column('user', sa.Column('username', sa.String(length=100), nullable=False)) + op.create_unique_constraint(None, 'user', ['username']) + # ### end Alembic commands ### + + +def downgrade() -> None: + # ### commands auto generated by Alembic - please adjust! ### + op.drop_constraint(None, 'user', type_='unique') + op.drop_column('user', 'username') + # ### end Alembic commands ### diff --git a/alembic/versions/b1df0377cbe2_change_time_zome.py b/alembic/versions/b1df0377cbe2_change_time_zome.py new file mode 100644 index 0000000000000000000000000000000000000000..fbbaed0efd455dcd761fc1c9ef5e2cc258032a9a --- /dev/null +++ b/alembic/versions/b1df0377cbe2_change_time_zome.py @@ -0,0 +1,30 @@ +"""change time zome + +Revision ID: b1df0377cbe2 +Revises: c0e9d62caae8 +Create Date: 2024-10-10 14:44:44.626184 + +""" +from typing import Sequence, Union + +from alembic import op +import sqlalchemy as sa + + +# revision identifiers, used by Alembic. +revision: str = 'b1df0377cbe2' +down_revision: Union[str, None] = 'c0e9d62caae8' +branch_labels: Union[str, Sequence[str], None] = None +depends_on: Union[str, Sequence[str], None] = None + + +def upgrade() -> None: + # ### commands auto generated by Alembic - please adjust! ### + pass + # ### end Alembic commands ### + + +def downgrade() -> None: + # ### commands auto generated by Alembic - please adjust! ### + pass + # ### end Alembic commands ### diff --git a/alembic/versions/c0e9d62caae8_change_time_zome.py b/alembic/versions/c0e9d62caae8_change_time_zome.py new file mode 100644 index 0000000000000000000000000000000000000000..bceb8f9a1baa7c64840a10729aea8186b389e72d --- /dev/null +++ b/alembic/versions/c0e9d62caae8_change_time_zome.py @@ -0,0 +1,30 @@ +"""change time zome + +Revision ID: c0e9d62caae8 +Revises: 6e972ae8b93b +Create Date: 2024-10-10 14:37:41.728523 + +""" +from typing import Sequence, Union + +from alembic import op +import sqlalchemy as sa + + +# revision identifiers, used by Alembic. +revision: str = 'c0e9d62caae8' +down_revision: Union[str, None] = '6e972ae8b93b' +branch_labels: Union[str, Sequence[str], None] = None +depends_on: Union[str, Sequence[str], None] = None + + +def upgrade() -> None: + # ### commands auto generated by Alembic - please adjust! ### + pass + # ### end Alembic commands ### + + +def downgrade() -> None: + # ### commands auto generated by Alembic - please adjust! ### + pass + # ### end Alembic commands ### diff --git a/alembic/versions/c818e5b84075_add_role_id.py b/alembic/versions/c818e5b84075_add_role_id.py new file mode 100644 index 0000000000000000000000000000000000000000..e988506998f0b3a9d07bd5cc782f53e0baf6bc5d --- /dev/null +++ b/alembic/versions/c818e5b84075_add_role_id.py @@ -0,0 +1,108 @@ +"""add role id + +Revision ID: c818e5b84075 +Revises: 426e52aa13aa +Create Date: 2024-10-03 09:35:53.882054 + +""" +from typing import Sequence, Union + +from alembic import op +import sqlalchemy as sa +from sqlalchemy.dialects import mysql + +# revision identifiers, used by Alembic. +revision: str = 'c818e5b84075' +down_revision: Union[str, None] = '426e52aa13aa' +branch_labels: Union[str, Sequence[str], None] = None +depends_on: Union[str, Sequence[str], None] = None + + +def upgrade() -> None: + # ### commands auto generated by Alembic - please adjust! ### + op.drop_table('_prisma_migrations') + op.alter_column('category', 'category', + existing_type=mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=100), + type_=sa.String(length=200), + existing_nullable=True) + op.alter_column('feedback', 'comment', + existing_type=mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=100), + type_=sa.String(length=1000), + existing_nullable=True) + op.alter_column('message', 'goal', + existing_type=mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=100), + type_=sa.String(length=200), + existing_nullable=True) + op.alter_column('metadata', 'title', + existing_type=mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=100), + type_=sa.String(length=200), + existing_nullable=True) + op.alter_column('metadata', 'author', + existing_type=mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=100), + type_=sa.String(length=200), + existing_nullable=True) + op.alter_column('role', 'role_name', + existing_type=mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=100), + type_=sa.String(length=200), + existing_nullable=False) + op.alter_column('role', 'description', + existing_type=mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=100), + type_=sa.String(length=200), + existing_nullable=True) + op.add_column('user', sa.Column('role_id', sa.Integer(), nullable=True)) + op.alter_column('user', 'name', + existing_type=mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=50), + type_=sa.String(length=100), + existing_nullable=False) + op.create_foreign_key(None, 'user', 'role', ['role_id'], ['id']) + # ### end Alembic commands ### + + +def downgrade() -> None: + # ### commands auto generated by Alembic - please adjust! ### + op.drop_constraint(None, 'user', type_='foreignkey') + op.alter_column('user', 'name', + existing_type=sa.String(length=100), + type_=mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=50), + existing_nullable=False) + op.drop_column('user', 'role_id') + op.alter_column('role', 'description', + existing_type=sa.String(length=200), + type_=mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=100), + existing_nullable=True) + op.alter_column('role', 'role_name', + existing_type=sa.String(length=200), + type_=mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=100), + existing_nullable=False) + op.alter_column('metadata', 'author', + existing_type=sa.String(length=200), + type_=mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=100), + existing_nullable=True) + op.alter_column('metadata', 'title', + existing_type=sa.String(length=200), + type_=mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=100), + existing_nullable=True) + op.alter_column('message', 'goal', + existing_type=sa.String(length=200), + type_=mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=100), + existing_nullable=True) + op.alter_column('feedback', 'comment', + existing_type=sa.String(length=1000), + type_=mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=100), + existing_nullable=True) + op.alter_column('category', 'category', + existing_type=sa.String(length=200), + type_=mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=100), + existing_nullable=True) + op.create_table('_prisma_migrations', + sa.Column('id', mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=36), nullable=False), + sa.Column('checksum', mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=64), nullable=False), + sa.Column('finished_at', mysql.DATETIME(fsp=3), nullable=True), + sa.Column('migration_name', mysql.VARCHAR(collation='utf8mb4_unicode_ci', length=255), nullable=False), + sa.Column('logs', mysql.TEXT(collation='utf8mb4_unicode_ci'), nullable=True), + sa.Column('rolled_back_at', mysql.DATETIME(fsp=3), nullable=True), + sa.Column('started_at', mysql.DATETIME(fsp=3), server_default=sa.text('CURRENT_TIMESTAMP(3)'), nullable=False), + sa.Column('applied_steps_count', mysql.INTEGER(unsigned=True), server_default=sa.text("'0'"), autoincrement=False, nullable=False), + sa.PrimaryKeyConstraint('id') + ) + # ### end Alembic commands ### diff --git a/alembic/versions/fcc0580a4769_add_updated_model_planning.py b/alembic/versions/fcc0580a4769_add_updated_model_planning.py new file mode 100644 index 0000000000000000000000000000000000000000..2037541919a21daea4375d5ddb37324f4aa1d519 --- /dev/null +++ b/alembic/versions/fcc0580a4769_add_updated_model_planning.py @@ -0,0 +1,48 @@ +"""add updated model planning + +Revision ID: fcc0580a4769 +Revises: 4dd226fee84e +Create Date: 2024-10-08 10:01:41.964473 + +""" +from typing import Sequence, Union + +from alembic import op +import sqlalchemy as sa + + +# revision identifiers, used by Alembic. +revision: str = 'fcc0580a4769' +down_revision: Union[str, None] = '4dd226fee84e' +branch_labels: Union[str, Sequence[str], None] = None +depends_on: Union[str, Sequence[str], None] = None + + +def upgrade() -> None: + # ### commands auto generated by Alembic - please adjust! ### + op.add_column('bot_meta', sa.Column('created_at', sa.DateTime(), server_default=sa.text('CURRENT_TIMESTAMP'), nullable=False)) + op.add_column('bot_meta', sa.Column('updated_at', sa.DateTime(), server_default=sa.text('CURRENT_TIMESTAMP'), nullable=False)) + op.add_column('planning', sa.Column('planning_name', sa.String(length=200), nullable=False)) + op.add_column('planning', sa.Column('duration', sa.Integer(), nullable=False)) + op.add_column('planning', sa.Column('token_used', sa.Integer(), nullable=False)) + op.add_column('planning', sa.Column('token_planned', sa.Integer(), nullable=False)) + op.add_column('planning', sa.Column('start_date', sa.DateTime(), nullable=False)) + op.add_column('planning', sa.Column('end_date', sa.DateTime(), nullable=False)) + op.add_column('planning', sa.Column('is_activated', sa.Boolean(), nullable=True)) + op.add_column('planning', sa.Column('created_at', sa.DateTime(), server_default=sa.text('CURRENT_TIMESTAMP'), nullable=False)) + # ### end Alembic commands ### + + +def downgrade() -> None: + # ### commands auto generated by Alembic - please adjust! ### + op.drop_column('planning', 'created_at') + op.drop_column('planning', 'is_activated') + op.drop_column('planning', 'end_date') + op.drop_column('planning', 'start_date') + op.drop_column('planning', 'token_planned') + op.drop_column('planning', 'token_used') + op.drop_column('planning', 'duration') + op.drop_column('planning', 'planning_name') + op.drop_column('bot_meta', 'updated_at') + op.drop_column('bot_meta', 'created_at') + # ### end Alembic commands ### diff --git a/api/auth.py b/api/auth.py index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..5d54a98fca40d92a0170ac4ae840ab679431e7f4 100644 --- a/api/auth.py +++ b/api/auth.py @@ -0,0 +1,71 @@ +from fastapi import APIRouter, Depends +from fastapi.responses import JSONResponse +from fastapi.security import OAuth2PasswordBearer +from dotenv import load_dotenv + +from sqlalchemy.orm import Session +from db.models import User +from starlette import status +from datetime import timedelta, datetime, timezone +from db.database import get_db +from passlib.context import CryptContext +from typing import Annotated +from jose import jwt, JWTError +import os + +load_dotenv() + +oauth2_scheme = OAuth2PasswordBearer(tokenUrl="login") + +# Custom OAuth2 request form to accept email, username, password, and role_id +router = APIRouter(prefix="/auth", tags=["auth"]) + +SECRET_KEY = os.getenv("SECRET_KEY") +ALGORITHM = "HS256" + +bcrypt_context = CryptContext(schemes=["bcrypt"], deprecated="auto") + +# Database dependency +db_dependency = Annotated[Session, Depends(get_db)] + + +def authenticate_user(email: str, password: str, db): + user = db.query(User).filter(User.email == email).first() + if not user: + return False + + if not bcrypt_context.verify(password, user.hashed_password): + return False + return user + + +def create_access_token( + username: str, name: str, user_id: int, role_id: int, expires_delta: timedelta, email: str +): + encode = {"sub": username, "name":name, "id": user_id, "role_id": role_id, "email": email} + expires = datetime.now(timezone.utc) + expires_delta + encode.update({"exp": expires}) + return jwt.encode(encode, SECRET_KEY, algorithm=ALGORITHM) + + +async def get_current_user(token: Annotated[str, Depends(oauth2_scheme)]): + try: + payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM]) + username: str = payload.get("sub") + name: str = payload.get("name") + user_id: int = payload.get("id") + role_id: int = payload.get("role_id") + email: str = payload.get("email") + + if username is None or user_id is None: + return JSONResponse( + status_code=status.HTTP_401_UNAUTHORIZED, + content="Could not validate user.", + ) + + return {"username": username, "name" : name, "id": user_id, "role_id": role_id, "email": email} + + except JWTError: + return JSONResponse( + status_code=status.HTTP_401_UNAUTHORIZED, content="Could not validate user." + ) \ No newline at end of file diff --git a/api/events.py b/api/events.py index d15175d1a11bed40a3e21868a1663fc5636ea951..d75fca04f80ed89f7d01a39539e2ee757da672f4 100644 --- a/api/events.py +++ b/api/events.py @@ -1,14 +1,18 @@ from fastapi import FastAPI -from api.router.topic import db_conn +from db.models import Base +from db.database import engine +from api.router.book import db_conn from llama_index.core import set_global_handler -import os from dotenv import load_dotenv +import os load_dotenv() async def startup() -> None: + Base.metadata.create_all(engine) + print("table added") await db_conn.connect() os.environ["LANGFUSE_SECRET_KEY"] = os.getenv("LANGFUSE_SECRET_KEY") os.environ["LANGFUSE_PUBLIC_KEY"] = os.getenv("LANGFUSE_PUBLIC_KEY") @@ -19,7 +23,6 @@ async def startup() -> None: async def shutdown() -> None: await db_conn.disconnect() - def register_events(app: FastAPI) -> FastAPI: app.add_event_handler("startup", startup) app.add_event_handler("shutdown", shutdown) diff --git a/api/function.py b/api/function.py index 15b3001789374917dbb3b77598b6becea232854f..9ca26fce712bcb6bda4b7a265fd6a12e356c6c9d 100644 --- a/api/function.py +++ b/api/function.py @@ -1,75 +1,69 @@ from script.vector_db import IndexManager from script.document_uploader import Uploader -from db.save_data import InsertDatabase from db.get_data import GetDatabase from db.delete_data import DeleteDatabase from db.update_data import UpdateDatabase -from typing import Any, Optional, List +from typing import Any from fastapi import UploadFile from fastapi import HTTPException +from fastapi.responses import JSONResponse -from service.dto import ChatMessage +from llama_index.core.llms import MessageRole from core.chat.engine import Engine from core.chat.chatstore import ChatStore -from core.parser import clean_text, update_response, renumber_sources, seperate_to_list -from llama_index.core.llms import MessageRole -from service.dto import BotResponseStreaming +from core.parser import clean_text, update_response, renumber_sources +from service.dto import BotResponseStreaming, ChatMessage from service.aws_loader import Loader +from pymongo.mongo_client import MongoClient +from dotenv import load_dotenv + +from typing import List +from datetime import datetime +import redis import logging import re import json +import os +load_dotenv() # Configure logging logging.basicConfig(level=logging.INFO) -# async def data_ingestion( -# db_conn, reference, file: UploadFile, content_table: UploadFile -# ) -> Any: - -async def data_ingestion(db_conn, reference, file: UploadFile) -> Any: +async def data_ingestion(category_id, reference, file: UploadFile) -> Any: try: - - # insert_database = InsertDatabase(db_conn) - + # Upload to AWS file_name = f"{reference['title']}" aws_loader = Loader() file_obj = file aws_loader.upload_to_s3(file_obj, file_name) - print("Uploaded Success") - - response = json.dumps({"status": "success", "message": "Vector Index loaded successfully."}) - - # Insert data into the database - # await insert_database.insert_data(reference) - - # # uploader = Uploader(reference, file, content_table) - # uploader = Uploader(reference, file) - # print("uploader : ", uploader) + uploader = Uploader(reference, file) - # nodes_with_metadata = await uploader.process_documents() + nodes_with_metadata = await uploader.process_documents() - # # Build indexes using IndexManager - # index = IndexManager() - # response = index.build_indexes(nodes_with_metadata) + # Build indexes using IndexManager + index = IndexManager() + index.build_indexes(nodes_with_metadata) - return response + return json.dumps( + {"status": "success", "message": "Vector Index loaded successfully."} + ) except Exception as e: # Log the error and raise HTTPException for FastAPI - logging.error(f"An error occurred in data ingestion: {e}") - raise HTTPException( + logging.error("An error occurred in data ingestion: %s", e) + return JSONResponse( status_code=500, - detail="An internal server error occurred in data ingestion.", + content="An internal server error occurred in data ingestion.", ) -async def get_data(db_conn, title="", fetch_all_data=True): +async def get_data(db_conn, title=None, fetch_all_data=True): get_database = GetDatabase(db_conn) print(get_database) try: @@ -85,9 +79,9 @@ async def get_data(db_conn, title="", fetch_all_data=True): except Exception as e: # Log the error and raise HTTPException for FastAPI - logging.error(f"An error occurred in get data.: {e}") - raise HTTPException( - status_code=500, detail="An internal server error occurred in get data." + logging.error("An error occurred in get data: %s", e) + return JSONResponse( + status_code=500, content="An internal server error occurred in get data." ) @@ -103,9 +97,9 @@ async def update_data(id: int, reference, db_conn): return response except Exception as e: # Log the error and raise HTTPException for FastAPI - logging.error(f"An error occurred in update data.: {e}") - raise HTTPException( - status_code=500, detail="An internal server error occurred in update data." + logging.error("An error occurred in update data: %s", e) + return JSONResponse( + status_code=500, content="An internal server error occurred in update data." ) @@ -118,43 +112,48 @@ async def delete_data(id: int, db_conn): return response except Exception as e: # Log the error and raise HTTPException for FastAPI - logging.error(f"An error occurred in get data.: {e}") - raise HTTPException( - status_code=500, detail="An internal server error occurred in delete data." + logging.error("An error occurred in get data: %s", e) + return JSONResponse( + status_code=500, content="An internal server error occurred in delete data." ) def generate_completion_non_streaming( - session_id, user_request, chat_engine, title=None, category=None, type="general" + session_id, user_request, titles: List = None, type_bot="general" ): + uri = os.getenv("MONGO_URI") + engine = Engine() + index_manager = IndexManager() + chatstore = ChatStore() + client = MongoClient(uri) + + try: + client.admin.command("ping") + print("Pinged your deployment. You successfully connected to MongoDB!") + except Exception as e: + return JSONResponse(status_code=500, content=f"Database Error as {e}") + try: - engine = Engine() - index_manager = IndexManager() - chatstore = ChatStore() # Load existing indexes index = index_manager.load_existing_indexes() - if type == "general": + if type_bot == "general": # Retrieve the chat engine with the loaded index chat_engine = engine.get_chat_engine(session_id, index) else: # Retrieve the chat engine with the loaded index - chat_engine = engine.get_chat_engine( - session_id, index, title=title, category=category - ) + chat_engine = engine.get_chat_engine(session_id, index, titles, type_bot) # Generate completion response response = chat_engine.chat(user_request) sources = response.sources - print(sources) number_reference = list(set(re.findall(r"\[(\d+)\]", str(response)))) number_reference_sorted = sorted(number_reference) contents = [] - raw_contents = [] metadata_collection = [] scores = [] @@ -170,9 +169,6 @@ def generate_completion_non_streaming( # Pastikan number valid sebagai indeks if 0 <= number - 1 < len(node): - raw_content = seperate_to_list(node[number - 1].node.get_text()) - raw_contents.append(raw_content) - content = clean_text(node[number - 1].node.get_text()) contents.append(content) @@ -206,18 +202,47 @@ def generate_completion_non_streaming( chatstore.delete_last_message(session_id) chatstore.add_message(session_id, message) chatstore.clean_message(session_id) - - return str(response), raw_contents, contents, metadata_collection, scores except Exception as e: # Log the error and raise HTTPException for FastAPI - logging.error(f"An error occurred in generate text: {e}") - raise HTTPException( + logging.error("An error occurred in generate text: %s", e) + return JSONResponse( status_code=500, - detail="An internal server error occurred in generate text.", - ) + content=f"An internal server error occurred in generate text as {e}.") + + try : + chat_history_db = [ + ChatMessage(role=MessageRole.SYSTEM, + content=user_request, + timestamp=datetime.now(), + payment = "free" if type_bot=="general" else None + ), + ChatMessage( + role=MessageRole.ASSISTANT, + content=response, + metadata=metadata_collection, + timestamp=datetime.now(), + payment = "free" if type_bot=="general" else None + ) + ] + + chat_history_json = [message.model_dump() for message in chat_history_db] + + db = client["bot_database"] # Replace with your database name + collection = db[session_id] # Replace with your collection name + + result = collection.insert_many(chat_history_json) + print("Data inserted with record ids", result.inserted_ids) + return str(response), metadata_collection, scores + + except Exception as e: + # Log the error and raise HTTPException for FastAPI + logging.error("An error occurred in generate text: %s", e) + return JSONResponse( + status_code=500, + content=f"An internal server error occurred in generate text as {e}.") -async def generate_streaming_completion(user_request, chat_engine): +async def generate_streaming_completion(user_request, session_id): try: engine = Engine() index_manager = IndexManager() @@ -226,7 +251,7 @@ async def generate_streaming_completion(user_request, chat_engine): index = index_manager.load_existing_indexes() # Retrieve the chat engine with the loaded index - chat_engine = engine.get_chat_engine(index) + chat_engine = engine.get_chat_engine(index, session_id) # Generate completion response response = chat_engine.stream_chat(user_request) @@ -258,4 +283,4 @@ async def generate_streaming_completion(user_request, chat_engine): raise HTTPException( status_code=500, detail="An internal server error occurred in generate text.", - ) \ No newline at end of file + ) from e diff --git a/api/router/book.py b/api/router/book.py new file mode 100644 index 0000000000000000000000000000000000000000..b07b03fde7055a95356df95a62c90125a9615059 --- /dev/null +++ b/api/router/book.py @@ -0,0 +1,278 @@ +import logging +import base64 + +from typing import Annotated, Optional +from api.function import data_ingestion, get_data, delete_data, update_data +from api.router.user import user_dependency +from fastapi import Form, APIRouter, File, UploadFile, Depends +from fastapi.responses import JSONResponse +from db.repository import get_db_conn +from db.get_data import GetDatabase +from db.models import Category, Metadata +from db.database import get_db +from langfuse.llama_index import LlamaIndexCallbackHandler +from config import MYSQL_CONFIG +from script.vector_db import IndexManager +from service.dto import MetadataRequest, MetadataResponse +from sqlalchemy.orm import Session +from sqlalchemy.future import select +from sqlalchemy.exc import SQLAlchemyError + + +router = APIRouter(tags=["Book"]) + +db_conn = get_db_conn(MYSQL_CONFIG) +get_database = GetDatabase(db_conn) +index_manager = IndexManager() +db_dependency = Annotated[Session, Depends(get_db)] + + +@router.post("/book") +async def upload_file( + user: user_dependency, + db: db_dependency, + title: str = Form(...), + author: str = Form(...), + category_id: int = Form(...), + year: int = Form(...), + publisher: str = Form(...), + file: UploadFile = File(...), + thumbnail: Optional[UploadFile] = File(None), +): + print(user.get("role_id")) + # if user is None or user.get('role_id') != 1: + if user is None: + return JSONResponse(status_code=401, content="Authentication Failed") + + # Create a new Metadata object + new_book = Metadata( + title=title, + author=author, + category_id=category_id, + year=year, + publisher=publisher, + ) + + db.add(new_book) + db.commit() + logging.info("Database Inserted") + + try: + # Query the category based on category_id + category_query = select(Category.category).where(Category.id == category_id) + result = db.execute(category_query) + category = result.scalar_one_or_none() + + # Check if the category exists + if category is None: + return JSONResponse(status_code=404, content="Category not found") + + except SQLAlchemyError as db_exc: + # Handle any database-related errors (e.g., connection issues, query issues) + print(f"Database error: {db_exc}") + return JSONResponse(status_code=500, content="Database error occurred") + + except Exception as e: + # Catch any other general exceptions + print(f"Error: {e}") + return JSONResponse( + status_code=500, content="An error occurred while processing your request" + ) + + try: + # Assuming you have a Langfuse callback handler + langfuse_callback_handler = LlamaIndexCallbackHandler() + langfuse_callback_handler.set_trace_params( + user_id="admin_book_uploaded", + ) + + # Construct the reference dictionary + reference = { + "title": title, + "author": author, + "category": category, + "year": year, + "publisher": publisher, + } + + # Process the file and handle data ingestion + response = await data_ingestion(category_id, reference, file) + + except Exception as e: + # Handle any errors related to file processing or data ingestion + print(f"File processing error: {e}") + return JSONResponse(status_code=500, content="File processing error") + + # Return a successful response with the uploaded filename and response from data ingestion + return { + "filename": file.filename, + "response": response, + "info": "upload file successfully", + } + + +@router.get("/book") +async def get_metadata(user: user_dependency, db: db_dependency): + if user is None: + return JSONResponse(status_code=401, content="Authentication Failed") + try: + # Join Metadata with Category to get the category name + results = ( + db.query( + Metadata.id, + Metadata.title, + Metadata.author, + Category.category, # Assuming this is the correct field for category name + Category.id, + Metadata.year, + Metadata.publisher, + Metadata.thumbnail, + ) + .join(Category, Metadata.category_id == Category.id) + .all() + ) + + # Transform results into MetadataResponse model with optional thumbnail handling + return [ + MetadataResponse( + id = id, + title=title, + author=author, + category=category, + category_id = category_id, + year=year, + publisher=publisher, + thumbnail=( + thumbnail if thumbnail else None + ), # Ensure None if thumbnail is not present + ) + for id, title, author, category, category_id, year, publisher, thumbnail in results + ] + except SQLAlchemyError as db_exc: + print(f"Database error: {db_exc}") + return JSONResponse(status_code=500, content="Database error occurred") + + +@router.put("/book/{metadata_id}") +async def update_metadata( + user: user_dependency, + db: db_dependency, + metadata_id: int, + title: str = Form(...), + author: str = Form(...), + category_id: int = Form(...), + year: int = Form(...), + publisher: str = Form(...), + thumbnail: Optional[UploadFile] = File(None), +): + if user is None or user.get("role_id") != 1: + return JSONResponse(status_code=401, content="Authentication Failed") + + try: + # old_metadata = await get_database.get_data_by_id(metadata_id) + + old_metadata = db.execute( + select(Metadata).where(Metadata.id == metadata_id) + ).scalar_one_or_none() + + if old_metadata is None: + return JSONResponse(status_code=404, content="Metadata not found.") + + # Fetch old and new categories + old_category = db.execute( + select(Category.category).join(Metadata).where(Metadata.id == metadata_id) + ).scalar_one_or_none() + + new_category = db.execute( + select(Category.category).where(Category.id == category_id) + ).scalar_one_or_none() + + if old_category is None or new_category is None: + return JSONResponse(status_code=404, content="Category not found.") + + # Prepare the references + old_reference = { + "title": old_metadata.title, + "author": old_metadata.author, + "category": old_category, + "year": old_metadata.year, + "publisher": old_metadata.publisher, + } + + new_reference = { + "title": title, + "author": author, + "category": new_category, + "year": year, + "publisher": publisher, + } + + index_manager.update_vector_database(old_reference, new_reference) + + # Update existing metadata entry + metadata = db.query(Metadata).filter(Metadata.id == metadata_id).first() + + if not metadata: + return JSONResponse(status_code=404, content="Metadata not found") + + if thumbnail is not None: + thumbnail_data = await thumbnail.read() # Read the file data + metadata.thumbnail = base64.b64encode(thumbnail_data).decode("utf-8") + + # Update fields only if provided in the request + metadata.title = title + metadata.author = author + metadata.category_id = category_id + metadata.year = year + metadata.publisher = publisher + + # Commit the changes to the database + db.commit() + db.refresh(metadata) # Refresh to get the updated data + + category_query = select(Category.category).where( + Category.id == metadata.category_id + ) + result = db.execute(category_query) + category = result.scalar_one_or_none() + + return MetadataResponse( + id=metadata_id, + title=metadata.title, + author=metadata.author, + category=category, # Assuming category relationship is available + category_id=metadata.category_id, + year=metadata.year, + publisher=metadata.publisher, + thumbnail=metadata.thumbnail if metadata.thumbnail is not None else None, + ) + + except Exception as e: + return JSONResponse( + status_code=500, content=f"An error occurred while updating metadata as {e}" + ) + + +@router.delete("/book/{metadata_id}") +async def delete_metadata(user: user_dependency, db: db_dependency, metadata_id: int): + if user is None or user.get("role_id") != 1: + return JSONResponse(status_code=401, content="Authentication Failed") + + try: + old_reference = await get_database.get_data_by_id(metadata_id) + + old_metadata = db.execute( + select(Metadata).where(Metadata.id == metadata_id) + ).scalar_one_or_none() + + index_manager.delete_vector_database(old_reference) + + await delete_data(metadata_id, db_conn) + + return {"Status": "delete successfully"} + + except Exception as e: + print(e) + return JSONResponse( + status_code=500, content="An error occurred while delete metadata" + ) diff --git a/api/router/book_collection.py b/api/router/book_collection.py new file mode 100644 index 0000000000000000000000000000000000000000..ce505ee7746d3961ac1d4a8d8c28b4de05d04776 --- /dev/null +++ b/api/router/book_collection.py @@ -0,0 +1,188 @@ +from typing import Annotated, List, Optional +from api.router.user import user_dependency +from fastapi import APIRouter, Depends +from fastapi.responses import JSONResponse +from db.models import User_Meta, Metadata, Category +from db.database import get_db +from sqlalchemy.orm import Session +from sqlalchemy.exc import SQLAlchemyError + +router = APIRouter(tags=["Book_Collection"]) + +db_dependency = Annotated[Session, Depends(get_db)] + + +@router.get("/book_collection") +async def get_book_collection( + user: user_dependency, + db: db_dependency, +): + """This function will return a BookCollection""" + if user is None: + return JSONResponse(status_code=401, content="Authentication Failed") + + try: + # Fetch all User_Meta entries for the user and their associated Metadata + user_meta_entries = ( + db.query(User_Meta, Metadata, Category) # Select User_Meta, Metadata, and Category + .join(Metadata, Metadata.id == User_Meta.metadata_id) # Join on metadata_id + .join(Category, Category.id == Metadata.category_id) # Join on category_id + .filter(User_Meta.user_id == user.get("id")) + .all() + ) + + if not user_meta_entries: + return {"info": "No book collection found"} + + # Extract relevant data from the user_meta_entries + results = [ + { + "user_id": user_meta.user_id, + "metadata_id": metadata.id, # Access Metadata fields + "title": metadata.title, # Replace with actual field names in Metadata + "author": metadata.author, # Replace with actual field names in Metadata + "category_name": category.category, # Replace with actual field names in Category + "year": metadata.year, + "publisher": metadata.publisher + # Add other Metadata and Category fields as needed + } + for user_meta, metadata, category in user_meta_entries # Unpack the tuple + ] + + return { + "status": "success", + "book_collection": results, # Return the list of metadata + } + + except SQLAlchemyError as e: + return JSONResponse(status_code=500, content=f"Database error: {str(e)}") + except Exception as e: + return JSONResponse( + status_code=500, content=f"An unexpected error occurred: {str(e)}" + ) + + +@router.post("/book_collection") +async def request_book_collection( + user: user_dependency, + db: db_dependency, + metadata_id: List[Optional[int]], +): + if user is None: + return JSONResponse(status_code=401, content="Authentication Failed") + + try: + # Create User_Meta instances for each metadata_id + user_meta_entries = [ + User_Meta(user_id=user.get("id"), metadata_id=mid) for mid in metadata_id + ] + + # Insert all entries into the database + db.add_all(user_meta_entries) + db.commit() # Commit the transaction + + except SQLAlchemyError as e: + return JSONResponse(status_code=500, content=f"Database error: {str(e)}") + except Exception as e: + return JSONResponse( + status_code=500, content=f"An unexpected error occurred: {str(e)}" + ) + + return {"status": "success", "user_meta": [entry.id for entry in user_meta_entries]} + + +@router.put("/book_collection") +async def update_book_collection( + user: user_dependency, + db: db_dependency, + metadata_id: List[Optional[int]], # Use the Pydantic model +): + if user is None: + return JSONResponse(status_code=401, content="Authentication Failed") + + try: + # Fetch and delete existing User_Meta entries + db.query(User_Meta).filter(User_Meta.user_id == user.get("id")).delete( + synchronize_session=False + ) + db.commit() + + # Insert new User_Meta entries + user_meta_entries = [ + User_Meta(user_id=user.get("id"), metadata_id=mid) for mid in metadata_id + ] + db.add_all(user_meta_entries) + db.commit() + except SQLAlchemyError as e: + db.rollback() + return JSONResponse(status_code=500, content=f"Database error: {str(e)}") + except Exception as e: + return JSONResponse(status_code=500, content=f"Unexpected error: {str(e)}") + + return {"status": "success", "user_meta": [entry.id for entry in user_meta_entries]} + + +@router.delete("/book_collection/{metadata_id}") +async def delete_book_collection( + user: user_dependency, + db: db_dependency, + metadata_id: int +): + if user is None: + return JSONResponse(status_code=401, content="Authentication Failed") + + try: + # Query to delete the entry based on metadata_id for the authenticated user + entry_to_delete = db.query(User_Meta).filter( + User_Meta.user_id == user.get("id"), + User_Meta.metadata_id == metadata_id + ).first() + + if not entry_to_delete: + return JSONResponse(status_code=404, content="Entry not found to delete.") + + # Delete the entry + db.delete(entry_to_delete) + db.commit() + + except SQLAlchemyError as e: + db.rollback() # Rollback in case of any database error + return JSONResponse(status_code=500, content=f"Database error: {str(e)}") + except Exception as e: + return JSONResponse( + status_code=500, content=f"An unexpected error occurred: {str(e)}" + ) + + return { + "status": "success", + "deleted_entry": entry_to_delete.id, + } + + +@router.delete("/all_collections") +async def delete_all_book( + user: user_dependency, + db: db_dependency, +): + if user is None: + return JSONResponse(status_code=401, content="Authentication Failed") + + try: + db.query(User_Meta).filter(User_Meta.user_id == user.get("id")).delete( + synchronize_session="fetch" + ) + + db.commit() # Commit all deletions + + return { + "status": "success", + "delete book collection from": user.get("id"), + } + + except SQLAlchemyError as e: + db.rollback() # Rollback in case of any database error + return JSONResponse(status_code=500, content=f"Database error: {str(e)}") + except Exception as e: + return JSONResponse( + status_code=500, content=f"An unexpected error occurred: {str(e)}" + ) diff --git a/api/router/bot_general.py b/api/router/bot_general.py new file mode 100644 index 0000000000000000000000000000000000000000..806b7da81d135f17c0d7783923aeb37161612db4 --- /dev/null +++ b/api/router/bot_general.py @@ -0,0 +1,94 @@ +from fastapi import APIRouter, Depends +from fastapi.responses import JSONResponse +from service.dto import UserPromptRequest, BotResponse +from core.chat.chatstore import ChatStore +from db.database import get_db +from db.models import Session_Publisher +from sqlalchemy.orm import Session +from api.function import ( + generate_streaming_completion, + generate_completion_non_streaming, +) +from api.router.user import user_dependency +from sse_starlette.sse import EventSourceResponse +from utils.utils import generate_uuid +from typing import Annotated +from langfuse.llama_index import LlamaIndexCallbackHandler + + +router = APIRouter(tags=["Bot_General"]) + +db_dependency = Annotated[Session, Depends(get_db)] + + +def get_chat_store(): + return ChatStore() + + +@router.post("/bot_general/new") +async def create_session_general(): + session_id = generate_uuid() + return {"session_id": session_id} + + +@router.get("/bot/{session_id}") +async def get_session_id( + user: user_dependency, + session_id: str, + chat_store: ChatStore = Depends(get_chat_store), +): + if user is None: + return JSONResponse(status_code=401, content="Authentication Failed") + + chat_history = chat_store.get_all_messages_mongodb(session_id) + # if not chat_history: + # return JSONResponse(status_code=404, content="Session not found or empty.") + + return chat_history + + +@router.post("/bot/{session_id}") +async def bot_generator_general( + session_id: str, user_prompt_request: UserPromptRequest +): + + langfuse_callback_handler = LlamaIndexCallbackHandler() + langfuse_callback_handler.set_trace_params(user_id="guest", session_id=session_id) + + if user_prompt_request.streaming: + return EventSourceResponse( + generate_streaming_completion( + user_prompt_request.prompt, + session_id + ) + ) + else: + response, metadata, scores = generate_completion_non_streaming( + session_id, + user_prompt_request.prompt, + ) + + return BotResponse( + content=response, + metadata=metadata, + scores=scores, + ) + + +@router.delete("/bot/{session_id}") +async def delete_bot(db:db_dependency, session_id: str, chat_store: ChatStore = Depends(get_chat_store)): + try: + chat_store.delete_messages(session_id) + + # Delete session from database + session = db.query(Session_Publisher).filter(Session_Publisher.id == session_id).first() + if session: + db.delete(session) + db.commit() # Commit the transaction + else: + return JSONResponse(status_code=404, content="Session not found") + return {"info": f"Delete {session_id} successful"} + except Exception as e: + # Log the error and return JSONResponse for FastAPI + print(f"An error occurred in update data.: {e}") + return JSONResponse(status_code=400, content="the error when deleting message") diff --git a/api/router/bot_one.py b/api/router/bot_one.py new file mode 100644 index 0000000000000000000000000000000000000000..593a630b64805b38fea3fb6b0b8157a6bbbcb564 --- /dev/null +++ b/api/router/bot_one.py @@ -0,0 +1,151 @@ +from typing import Annotated +from fastapi import APIRouter, Depends +from fastapi.responses import JSONResponse +from service.dto import UserPromptRequest, BotResponse +from core.chat.chatstore import ChatStore +from db.database import get_db +from db.models import Metadata, Session_Publisher +from db.models import Session as SessionModel +from sqlalchemy.orm import Session +from sqlalchemy.exc import SQLAlchemyError +from sqlalchemy import select +from api.function import ( + generate_streaming_completion, + generate_completion_non_streaming, +) +from datetime import datetime +from api.router.user import user_dependency +from sse_starlette.sse import EventSourceResponse +from utils.utils import generate_uuid +from langfuse.llama_index import LlamaIndexCallbackHandler + + +router = APIRouter(tags=["Bot_One"]) + +db_dependency = Annotated[Session, Depends(get_db)] + + +def get_chat_store(): + return ChatStore() + + +@router.post("/bot_one/{metadata_id}") +async def create_bot_one(user: user_dependency, db: db_dependency, metadata_id: int): + if user is None: + return JSONResponse(status_code=401, content="Authentication Failed") + # Generate a new session ID (UUID) + try: + session_id = generate_uuid() + + # Create the new session + new_session = Session_Publisher( + id=session_id, + user_id=user.get("id"), + metadata_id=metadata_id, + ) + + db.add(new_session) + db.commit() # Commit the new session to the database + + return { + "statur": "session id created successfully", + "session_id": session_id, + } + + except Exception as e: + return JSONResponse( + status_code=500, content=f"An unexpected in retrieving session id {str(e)}" + ) + + +@router.post("/bot_one/{metadata_id}/{session_id}") +async def generator_bot_one( + user: user_dependency, + db: db_dependency, + metadata_id: int, + session_id: str, + user_prompt_request: UserPromptRequest, +): + if user is None: + return JSONResponse(status_code=401, content="Authentication Failed") + + langfuse_callback_handler = LlamaIndexCallbackHandler() + langfuse_callback_handler.set_trace_params( + user_id=user.get("username"), session_id=session_id + ) + + # Query to retrieve the titles + try: + query = ( + select(Metadata.title) + .join(Session_Publisher, Metadata.id == metadata_id) + .where( + Session_Publisher.user_id == user.get("id"), + Session_Publisher.id == session_id, + ) + ) + + result = db.execute(query) + titles = result.scalars().all() + print(titles) + + except SQLAlchemyError as e: + return JSONResponse(status_code=500, content=f"Database error: {str(e)}") + except Exception as e: + return JSONResponse( + status_code=500, content=f"An unexpected error occurred: {str(e)}" + ) + + if user_prompt_request.streaming: + return EventSourceResponse( + generate_streaming_completion( + user_prompt_request.prompt, + session_id, + ) + ) + else: + response, metadata, scores = generate_completion_non_streaming( + session_id, user_prompt_request.prompt, titles, type_bot="specific" + ) + + existing_session = ( + db.query(Session_Publisher).filter(Session_Publisher.id == session_id).first() + ) + existing_session.updated_at = datetime.now() + db.commit() + + return BotResponse( + content=response, + metadata=metadata, + scores=scores, + ) + + +@router.get("/bot_one{metadata_id}") +async def get_all_session_bot_one( + user: user_dependency, db: db_dependency, metadata_id: int +): + if user is None: + return JSONResponse(status_code=401, content="Authentication Failed") + + try: + # Query the session IDs based on the user ID + query = select(Session_Publisher.id, Session_Publisher.updated_at).where( + Session_Publisher.user_id == user.get("id"), + Session_Publisher.metadata_id == metadata_id, + ) + + result = db.execute(query) + sessions = result.all() + + session_data = [{"id": session.id, "updated_at": str(session.updated_at)} for session in sessions] + + # Convert list of tuples to a simple list + session_sorted_data = sorted(session_data, key=lambda x: datetime.fromisoformat(x['updated_at']), reverse=True) + + return session_sorted_data + + except Exception as e: + # Log the error and return JSONResponse for FastAPI + print(f"An error occurred while fetching session IDs: {e}") + return JSONResponse(status_code=400, content="Error retrieving session IDs") diff --git a/api/router/bot_specific.py b/api/router/bot_specific.py new file mode 100644 index 0000000000000000000000000000000000000000..6b15e0464f81936cc9ad3345809afd086045d8d2 --- /dev/null +++ b/api/router/bot_specific.py @@ -0,0 +1,342 @@ +from typing import Annotated, List, Optional +from fastapi import APIRouter, Depends +from fastapi.responses import JSONResponse +from service.dto import UserPromptRequest, BotResponse, BotCreateRequest +from core.chat.chatstore import ChatStore +from db.database import get_db +from db.models import Bot_Meta, Bot, Metadata +from db.models import Session as SessionModel +from sqlalchemy.orm import Session +from sqlalchemy.exc import SQLAlchemyError +from sqlalchemy.exc import NoResultFound +from sqlalchemy import select +from api.function import ( + generate_streaming_completion, + generate_completion_non_streaming, +) +from api.router.user import user_dependency +from sse_starlette.sse import EventSourceResponse +from utils.utils import generate_uuid +from langfuse.llama_index import LlamaIndexCallbackHandler +from datetime import datetime + + +router = APIRouter(tags=["Bot_Specific"]) + +db_dependency = Annotated[Session, Depends(get_db)] + + +def get_chat_store(): + return ChatStore() + + +@router.post("/bot") +async def create_bot_id( + user: user_dependency, + db: db_dependency, + bot_request: BotCreateRequest, +): + + if user is None: + return JSONResponse(status_code=401, content="Authentication Failed") + + # Create a new bot entry + try: + # Create a new bot entry + new_bot = Bot( + user_id=user.get("id"), bot_name=bot_request.bot_name + ) # Assuming user has an 'id' attribute + + db.add(new_bot) + db.commit() # Commit the transaction + db.refresh(new_bot) # Optional: Refresh the instance with the database state + + return {"status": "success", "bot_id": new_bot.id} + + except SQLAlchemyError as e: + db.rollback() # Roll back the transaction in case of an error + return JSONResponse(status_code=500, content=f"Database error: {str(e)}") + except Exception as e: + return JSONResponse( + status_code=500, content=f"An unexpected error occurred: {str(e)}" + ) + + +@router.post("/meta/{bot_id}") +async def create_bot_specific( + user: user_dependency, + db: db_dependency, + bot_id: int, + metadata_id: List[Optional[int]], # Use the Pydantic model +): + if user is None: + return JSONResponse(status_code=401, content="Authentication Failed") + + try: + # Create BotMeta instances for each metadata_id + bot_meta_entries = [ + Bot_Meta(bot_id=bot_id, metadata_id=mid) for mid in metadata_id + ] + + # Insert all entries into the database + db.add_all(bot_meta_entries) + db.commit() # Commit the transaction + + except SQLAlchemyError as e: + return JSONResponse(status_code=500, content=f"Database error: {str(e)}") + except Exception as e: + return JSONResponse( + status_code=500, content=f"An unexpected error occurred: {str(e)}" + ) + + return {"status": "success", "bot_meta": [entry.id for entry in bot_meta_entries]} + + +@router.put("/meta/{bot_id}") +async def update_bot_specific( + user: user_dependency, + db: db_dependency, + bot_id: int, + metadata_id: List[Optional[int]], # Use the Pydantic model +): + if user is None: + return JSONResponse(status_code=401, content="Authentication Failed") + + try: + # Fetch existing Bot_Meta entries related to bot_id + existing_entries = db.query(Bot_Meta).filter(Bot_Meta.bot_id == bot_id).all() + + # Delete existing entries + for entry in existing_entries: + db.delete(entry) + + # Commit the deletion + db.commit() + + # Insert the new metadata entries + bot_meta_entries = [ + Bot_Meta(bot_id=bot_id, metadata_id=mid) for mid in metadata_id + ] + db.add_all(bot_meta_entries) + db.commit() + + except SQLAlchemyError as e: + db.rollback() # Rollback in case of any database error + return JSONResponse(status_code=500, content=f"Database error: {str(e)}") + except Exception as e: + return JSONResponse( + status_code=500, content=f"An unexpected error occurred: {str(e)}" + ) + + return {"status": "success", "bot_meta": [entry.id for entry in bot_meta_entries]} + + +@router.delete("/meta/{bot_id}/{metadata_id}") +async def delete_bot_specific( + user: user_dependency, + db: db_dependency, + bot_id: int, + metadata_id: int, # Changed to int to specify a single metadata_id +): + if user is None: + return JSONResponse(status_code=401, content="Authentication Failed") + + try: + # Delete the specific metadata entry for the given bot_id + bot_meta_entry = ( + db.query(Bot_Meta) + .filter(Bot_Meta.bot_id == bot_id, Bot_Meta.metadata_id == metadata_id) + .first() # Use first() to get a single entry + ) + + if not bot_meta_entry: + return JSONResponse(status_code=404, content="No entry found to delete.") + + # Delete the found entry + db.delete(bot_meta_entry) + db.commit() + + except SQLAlchemyError as e: + db.rollback() # Rollback in case of any database error + return JSONResponse(status_code=500, content=f"Database error: {str(e)}") + except Exception as e: + return JSONResponse( + status_code=500, content=f"An unexpected error occurred: {str(e)}" + ) + + return { + "status": "success", + "deleted_entry_id": bot_meta_entry.id, + } + + +@router.delete("/bot_all/{bot_id}") +async def delete_bot_id( + user: user_dependency, + db: db_dependency, + bot_id: int, +): + if user is None: + return JSONResponse(status_code=401, content="Authentication Failed") + + try: + # Fetch the bot to ensure it exists + bot_entry = db.query(Bot).filter(Bot.id == bot_id).first() + print("bot entry", bot_entry) + + if not bot_entry: + return JSONResponse( + status_code=404, content=f"Bot with id {bot_id} not found." + ) + + db.query(SessionModel).filter(SessionModel.bot_id == bot_id).delete( + synchronize_session="fetch" + ) + db.query(Bot_Meta).filter(Bot_Meta.bot_id == bot_id).delete( + synchronize_session="fetch" + ) + db.delete(bot_entry) + db.commit() # Commit all deletions + + return { + "status": "success", + "deleted_bot_id": bot_id, + } + + except SQLAlchemyError as e: + db.rollback() # Rollback in case of any database error + return JSONResponse(status_code=500, content=f"Database error: {str(e)}") + except Exception as e: + return JSONResponse( + status_code=500, content=f"An unexpected error occurred: {str(e)}" + ) + + +@router.post("/session/{bot_id}/new") +async def create_new_session(user: user_dependency, db: db_dependency, bot_id: int): + # Check if user is authenticated + if user is None: + return JSONResponse(status_code=401, content="Authentication Failed") + + print(user.get("id")) + user_id = user.get("id") + # Ensure the bot belongs to the user + bot_query = select(Bot).where(Bot.id == bot_id, Bot.user_id == user_id) + + try: + bot = db.execute(bot_query).scalar_one() + print(bot) + + except NoResultFound: + return JSONResponse( + status_code=404, content="Bot not found or unauthorized access." + ) + + # Generate a new session ID (UUID) + try: + session_id = generate_uuid() + + # Create the new session + new_session = SessionModel( + id=session_id, + user_id=user.get("id"), + bot_id=bot_id, + ) + + db.add(new_session) + db.commit() # Commit the new session to the database + + return { + "session_id": session_id, + } + + except Exception as e: + return JSONResponse( + status_code=500, content=f"An unexpected in retrieving session id {str(e)}" + ) + + +@router.get("/bot/all/{bot_id}") +async def get_all_session_ids(user: user_dependency, db: db_dependency, bot_id: int): + if user is None: + return JSONResponse(status_code=401, content="Authentication Failed") + + try: + query = select(SessionModel.id, SessionModel.updated_at).where( + SessionModel.user_id == user.get("id"), + SessionModel.bot_id == bot_id + ) + + result = db.execute(query) + sessions = result.all() + session_data = [{"id": session.id, "updated_at": session.updated_at} for session in sessions] + + return session_data + + except Exception as e: + # Log the error and return JSONResponse for FastAPI + print(f"An error occurred while fetching session IDs: {e}") + return JSONResponse(status_code=400, content="Error retrieving session IDs") + + +@router.post("/bot/{bot_id}/{session_id}") +async def bot_generator_spesific( + user: user_dependency, + db: db_dependency, + bot_id: int, + session_id: str, + user_prompt_request: UserPromptRequest, +): + if user is None: + return JSONResponse(status_code=401, content="Authentication Failed") + + langfuse_callback_handler = LlamaIndexCallbackHandler() + langfuse_callback_handler.set_trace_params( + user_id=user.get("username"), session_id=session_id + ) + + # Query to retrieve the titles + try: + query = ( + select(Metadata.title) + .join(Bot_Meta, Metadata.id == Bot_Meta.metadata_id) + .join(SessionModel, Bot_Meta.bot_id == bot_id) + .where( + SessionModel.user_id == user.get("id"), SessionModel.id == session_id + ) + ) + + result = db.execute(query) + titles = result.scalars().all() + print(titles) + + except SQLAlchemyError as e: + return JSONResponse(status_code=500, content=f"Database error: {str(e)}") + except Exception as e: + return JSONResponse( + status_code=500, content=f"An unexpected error occurred: {str(e)}" + ) + + if user_prompt_request.streaming: + return EventSourceResponse( + generate_streaming_completion( + user_prompt_request.prompt, + session_id, + ) + ) + else: + response, metadata, scores = generate_completion_non_streaming( + session_id, user_prompt_request.prompt, titles, type_bot="specific" + ) + + existing_session = ( + db.query(SessionModel).filter(SessionModel.id == session_id).first() + ) + existing_session.updated_at = datetime.now() + db.commit() + + return BotResponse( + content=response, + metadata=metadata, + scores=scores, + ) diff --git a/api/router/category.py b/api/router/category.py new file mode 100644 index 0000000000000000000000000000000000000000..c94559f9b4c6957ce3136956d66e78d49334ee9e --- /dev/null +++ b/api/router/category.py @@ -0,0 +1,158 @@ +from api.router.user import user_dependency +from fastapi.responses import JSONResponse +from fastapi import APIRouter, HTTPException, Depends, Query + +from db.models import Category +from db.database import get_db +from service.dto import CategoryCreate + +from script.vector_db import IndexManager +from sqlalchemy.orm import Session +from sqlalchemy.exc import SQLAlchemyError, IntegrityError + +from typing import Annotated + +router = APIRouter(tags=["Category"]) + +index_manager = IndexManager() +db_dependency = Annotated[Session, Depends(get_db)] + + +@router.get("/category") +async def get_all_categories(user: user_dependency, db: db_dependency): + if user is None or user.get("role_id") != 1: + return JSONResponse(status_code=401, content="Authentication Failed") + + try: + # Logic to retrieve all categories + categories = db.query(Category).all() + if not categories: + return JSONResponse(status_code=404, content="No categories found") + + return { + "message": "Categories retrieved successfully", + "categories": [ + {"id": cat.id, "category": cat.category} for cat in categories + ], + } + + except SQLAlchemyError as e: + return JSONResponse( + status_code=500, content="Database error occurred: " + str(e) + ) + + +@router.get("/category/{category_id}") +async def get_categories_by_ids( + user: user_dependency, + db: db_dependency, + category_id: int, +): + if user is None or user.get("role_id") != 1: + return JSONResponse(status_code=401, content="Authentication Failed") + + try: + # Fetch categories based on the list of provided category_ids + category = db.query(Category).filter(Category.id == category_id).first() + + if category is None: + return JSONResponse(status_code=404, content="No categories found for the given IDs") + + return { + "message": "Categories retrieved successfully", + "category": {"id": category.id, "category": category.category}, + } + + except SQLAlchemyError as e: + return JSONResponse( + status_code=500, content="Database error occurred: " + str(e) + ) + +@router.post("/category") +async def create_category(user: user_dependency, db: db_dependency, category: CategoryCreate): + if user is None or user.get("role_id") != 1: + return JSONResponse(status_code=401, content="Authentication Failed") + + try: + # Check if category already exists + existing_category = ( + db.query(Category).filter(Category.category == category.category_name).first() + ) + if existing_category: + return JSONResponse(status_code=400, content="Category already exists") + + # Logic to create a new category + new_category = Category(category=category) # Assuming Category is your model + db.add(new_category) + db.commit() + db.refresh(new_category) + + return { + "message": "Category created successfully", + "category_id": new_category.id, + } + + except IntegrityError: + db.rollback() + return JSONResponse( + status_code=400, + content="Database integrity error: possibly a duplicate entry.", + ) + + except SQLAlchemyError as e: + db.rollback() + return JSONResponse( + status_code=500, content="Database error occurred: " + str(e) + ) + + +@router.put("/category/{category_id}") +async def update_category( + user: user_dependency, db: db_dependency, category_id: int, category: CategoryCreate +): + if user is None or user.get("role_id") != 1: + return JSONResponse(status_code=401, content="Authentication Failed") + + try: + # Logic to update an existing category + existing_category = ( + db.query(Category).filter(Category.id == category_id).first() + ) + if not existing_category: + return JSONResponse(status_code=404, content="Category not found") + + existing_category.category = category.category_name + db.commit() + + return {"message": "Category updated successfully"} + + except SQLAlchemyError as e: + db.rollback() + return JSONResponse( + status_code=500, content="Database error occurred: " + str(e) + ) + + +@router.delete("/category/{category_id}") +async def delete_category(user: user_dependency, db: db_dependency, category_id: int): + if user is None or user.get("role_id") != 1: + return JSONResponse(status_code=401, content="Authentication Failed") + + try: + # Logic to delete an existing category + existing_category = ( + db.query(Category).filter(Category.id == category_id).first() + ) + if not existing_category: + return JSONResponse(status_code=404, content="Category not found") + + db.delete(existing_category) + db.commit() + + return {"message": "Category deleted successfully"} + + except SQLAlchemyError as e: + db.rollback() + return JSONResponse( + status_code=500, content="Database error occurred: " + str(e) + ) \ No newline at end of file diff --git a/api/router/role.py b/api/router/role.py index 7d40b9b557e0df4bd253f4095329c6defbde1582..3d8ddcebe0bd72768ec9400cf3ce70b82105ed07 100644 --- a/api/router/role.py +++ b/api/router/role.py @@ -1,20 +1,108 @@ -from fastapi import APIRouter +from fastapi import APIRouter, HTTPException, Depends +from fastapi.responses import JSONResponse +from api.router.user import user_dependency +from typing import Annotated +from sqlalchemy.orm import Session +from db.database import get_db +from db.models import Role, User +from service.dto import RoleCreate, RoleUpdate router = APIRouter(tags=["Roles"]) +db_dependency = Annotated[Session, Depends(get_db)] + @router.get("/roles") -async def get_data_roles(): - pass +async def get_data_roles(user: user_dependency, db: db_dependency): + # Periksa apakah user valid dan memiliki role_id = 1 + if user is None or user.get("role_id") != 1: + return JSONResponse(status_code=401, content="Authentication Failed") + + try: + # Query data role + roles = db.query(Role).all() + + # Jika tidak ada role ditemukan, kembalikan 404 + if not roles: + return JSONResponse(status_code=404, content="No roles found") + + return roles + except Exception as e: + # Menangkap kesalahan untuk debug + print(f"Error fetching roles: {str(e)}") + return JSONResponse(status_code=500, content="Internal Server Error") +# POST: Add a new role @router.post("/roles") -async def add_data_roles(): - pass -@router.put("/roles/{id}") -async def update_data_roles(): - pass +async def add_data_roles( + role_data: RoleCreate, user: user_dependency, db: db_dependency +): + if user is None or user.get("role_id") != 1: + return JSONResponse(status_code=401, content="Authentication Failed") + + new_role = Role(name=role_data.name) + db.add(new_role) + db.commit() + db.refresh(new_role) + + return {"message": "Role added successfully", "role": new_role} + + +@router.put("/roles/{role_id}") +async def update_data_roles( + role_id: int, role_data: RoleUpdate, user: user_dependency, db: db_dependency +): + if user is None or user.get("role_id") != 1: + return JSONResponse(status_code=401, content="Authentication Failed") + + role = db.query(Role).filter(Role.id == id).first() + if role is None: + return JSONResponse(status_code=404, content="Role not found") + + role.name = role_data.name + db.commit() + db.refresh(role) + + return {"message": "Role updated successfully", "role": role} + +# DELETE: Remove a role @router.delete("/roles/{id}") -async def remove_data_roles(): - pass \ No newline at end of file +async def remove_data_roles(id: int, user: user_dependency, db: db_dependency): + if user is None or user.get("role_id") != 1: + return JSONResponse(status_code=401, content="Authentication Failed") + + role = db.query(Role).filter(Role.id == id).first() + if role is None: + return JSONResponse(status_code=404, content="Role not found") + + db.delete(role) + db.commit() + + return {"message": "Role removed successfully"} + + +@router.put("/role_user/{id}") +async def update_user_role( + user: user_dependency, db: db_dependency, user_id: int, role_data: RoleUpdate +): + # Check if the current user is authenticated and has an admin role (role_id == 1) + if user is None or user.get("role_id") != 1: + return JSONResponse(status_code=401, content="Authentication Failed") + + # Fetch the user to be updated + user_to_update = db.query(User).filter(User.id == user_id).first() + if user_to_update is None: + return JSONResponse(status_code=404, content="User not found") + + # Update the user's role + user_to_update.role_id = ( + role_data.role_id + ) # Assuming role_data contains the new role_id + + # Commit the changes to the database + db.commit() + db.refresh(user_to_update) + + return {"message": "User role updated successfully", "user": user_to_update} diff --git a/api/router/trial.py b/api/router/trial.py index 9a5a967566d661e7a8084f29bd3618bd5b36a412..0dec7f9ffa97b890da3f3d7ad34bbd30783defd1 100644 --- a/api/router/trial.py +++ b/api/router/trial.py @@ -3,18 +3,17 @@ from fastapi import APIRouter router = APIRouter(tags=["Trial"]) -@router.get("/roles") +@router.get("/trials") async def get_trial_data(): pass - -@router.post("/roles") +@router.post("/trials") async def add_trial_data(): pass -@router.put("/roles/{id}") +@router.put("/trials/{id}") async def update_trial_data(): pass -@router.delete("/roles/{id}") +@router.delete("/trials/{id}") async def remove_trial_data(): pass \ No newline at end of file diff --git a/api/router/user.py b/api/router/user.py index 97e772cc1b8344fdd47bed417850dadbb91e1c01..d967a9c544d697e1c72952b31a4454f0eba93e65 100644 --- a/api/router/user.py +++ b/api/router/user.py @@ -1,20 +1,153 @@ -from fastapi import APIRouter +from fastapi import APIRouter, Depends, status +from fastapi.security import OAuth2PasswordRequestForm +from fastapi.responses import JSONResponse +from db.models import User +from db.database import get_db +from api.auth import get_current_user, create_access_token +from service.dto import CreateUserRequest, UserVerification, Token +from typing import Annotated +from passlib.context import CryptContext +from sqlalchemy.orm import Session +from datetime import timedelta router = APIRouter(tags=["User"]) -@router.post("/login") -async def get_data_roles(): - pass +bcrypt_context = CryptContext(schemes=["bcrypt"], deprecated="auto") + +db_dependency = Annotated[Session, Depends(get_db)] +user_dependency = Annotated[dict, Depends(get_current_user)] + +ACCESS_TOKEN_EXPIRE_MINUTES = 43200 + + +@router.post("/login", response_model=Token) +async def login_for_access_token( + login_data: Annotated[OAuth2PasswordRequestForm, Depends()], + db: Session = Depends(get_db), +): + user = db.query(User).filter(User.username == login_data.username).first() + + if not user or not bcrypt_context.verify(login_data.password, user.password_hash): + return JSONResponse( + status_code=status.HTTP_401_UNAUTHORIZED, + content="Incorrect username or password", + headers={"WWW-Authenticate": "Bearer"}, + ) + + try: + access_token_expires = timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES) + access_token = create_access_token( + user.username, user.name, user.id, user.role_id, access_token_expires, user.email + ) + + return {"access_token": access_token, "token_type": "bearer"} + + except Exception as e: + print(e) + return JSONResponse( + status_code=500, content="An error occuring when login" + ) + + +@router.get("/login", response_model=dict) +async def get_user(user: user_dependency): + if user is None: + return JSONResponse( + status_code=401, content="Authentication Failed" + ) + return { + "username": user.get("username"), + "name" : user.get("name"), + "id": user.get("id"), + "email": user.get("email"), + "role": user.get("role_id"), + } + + +@router.get("/users", response_model=list[dict]) +async def get_all_users(user: user_dependency, db: Session = Depends(get_db)): + # Check if the current user has an admin role + if user.get("role_id") != 1: # Adjust this check based on how roles are represented + return JSONResponse( + status_code=401, content="Authentication Failed" + ) + + # Query the database to retrieve all users + users = db.query( + User + ).all() # Assuming you have a User model with an SQLAlchemy session + return [ + { + "id": user.id, + "username": user.username, + "name": user.name, + "email": user.email, + "role": user.role_id, + } + for user in users + ] @router.post("/register") -async def register_user(): - pass +async def register_user(db: db_dependency, create_user_request: CreateUserRequest): + existing_user = ( + db.query(User).filter(User.email == create_user_request.email).first() + ) + + if existing_user: + return JSONResponse( + status_code=400, content="Email is already registered" + ) + + try: + password_hash = bcrypt_context.hash(create_user_request.password) + + create_user_model = User( + name=create_user_request.name, + username=create_user_request.username, + email=create_user_request.email, + role_id=create_user_request.role_id, + password_hash=password_hash, + ) + + db.add(create_user_model) + db.commit() + db.refresh(create_user_model) + + return {"message": "User created successfully", "user_id": create_user_model.id} + except Exception as e: + print(e) + return JSONResponse( + status_code=500, content="An error occuring when register user" + ) + + @router.post("/forgot_password") async def forget_password(): pass + @router.post("/change_password") -async def change_password(): - pass \ No newline at end of file +async def change_password( + user: user_dependency, db: db_dependency, user_verification: UserVerification +): + if user is None: + return JSONResponse( + status_code=401, content="Authentication Failed" + ) + user_model = db.query(User).filter(User.id == user.get("id")).first() + + if not bcrypt_context.verify( + user_verification.password, user_model.hashed_password + ): + return JSONResponse( + status_code=401, content="Error on password change" + ) + + user_model.hashed_password = bcrypt_context.hash(user_verification.new_password) + db.add(user_model) + db.commit() + db.refresh(user_model) + + return {"message": "User's password successfully changed", "user_id": user_model.id} \ No newline at end of file diff --git a/app.py b/app.py index 4a88de0212f4c6ce30a1b299bc8976e7f5a34f7d..7bd01b5e64dbf2efeb28e675fa757d610c2afba5 100644 --- a/app.py +++ b/app.py @@ -1,13 +1,25 @@ from fastapi.applications import FastAPI -from api.router import health, topic, user, bot, trial, role +from api.router import ( + health, + user, + trial, + role, + book, + book_collection, + category, + bot_general, + bot_specific, + bot_one +) from fastapi.middleware.cors import CORSMiddleware from api.events import register_events from utils.utils import pipe -import uvicorn + def create_instance() -> FastAPI: return FastAPI() + def add_middleware(app: FastAPI) -> FastAPI: app.add_middleware( CORSMiddleware, @@ -18,15 +30,20 @@ def add_middleware(app: FastAPI) -> FastAPI: ) return app + def init_database(app: FastAPI) -> FastAPI: return app def register_routers(app: FastAPI) -> FastAPI: app.include_router(user.router) - app.include_router(topic.router) - app.include_router(bot.router) - app.include_router(trial.router) + app.include_router(category.router) + app.include_router(book.router) + app.include_router(book_collection.router) + app.include_router(bot_general.router) + app.include_router(bot_specific.router) + app.include_router(bot_one.router) + app.include_router(trial.router) app.include_router(role.router) app.include_router(health.router) @@ -35,8 +52,13 @@ def register_routers(app: FastAPI) -> FastAPI: def init_app() -> FastAPI: app: FastAPI = pipe( - create_instance(), add_middleware, init_database, register_events, register_routers + create_instance(), + add_middleware, + init_database, + register_events, + register_routers, ) return app + app = init_app() \ No newline at end of file diff --git a/config.py b/config.py index 32908db7c6fcebdc6826f8e086763f59e1911635..61cec2a49fa8027142dc3a5232714ac5dc3dcf61 100644 --- a/config.py +++ b/config.py @@ -9,6 +9,7 @@ class MysqlConfig(BaseSettings): DB_USERNAME: str = "" DB_PASSWORD: str = "" DB_NAME: str = "" + DB_URI_SQL_ALCHEMY: str = "" class Config: env_file = ".env" diff --git a/controller/__init__.py b/controller/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/controller/book_collection_controller.py b/controller/book_collection_controller.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/controller/book_controller.py b/controller/book_controller.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/controller/bot_general_controller.py b/controller/bot_general_controller.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/controller/bot_one_controller.py b/controller/bot_one_controller.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/controller/bot_specific_controller.py b/controller/bot_specific_controller.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/controller/category_controller.py b/controller/category_controller.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/controller/user_controller.py b/controller/user_controller.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/core/chat/chatstore.py b/core/chat/chatstore.py index 432ec068d8146f2826338f7763e7678c35e14ba4..6e659078b4e88f763403091ebdf2a86e5434e287 100644 --- a/core/chat/chatstore.py +++ b/core/chat/chatstore.py @@ -1,10 +1,10 @@ import redis import os import json -from fastapi import HTTPException -from uuid import uuid4 +from fastapi.responses import JSONResponse from typing import Optional, List from llama_index.storage.chat_store.redis import RedisChatStore +from pymongo.mongo_client import MongoClient from llama_index.core.memory import ChatMemoryBuffer from service.dto import ChatMessage @@ -16,73 +16,88 @@ class ChatStore: port=10365, password=os.environ.get("REDIS_PASSWORD"), ) + + uri = os.getenv("MONGO_URI") + self.client = MongoClient(uri) + + def initialize_memory_bot(self, session_id): - def generate_uuid(use_hex=False): - if use_hex: - return str(uuid4().hex) - else: - return str(uuid4()) - - def initialize_memory_bot(self, session_id=None): - if session_id is None: - session_id = self.generate_uuid() - # chat_store = SimpleChatStore() chat_store = RedisChatStore( - redis_client=self.redis_client - ) # Need to be configured - - memory = ChatMemoryBuffer.from_defaults( - token_limit=3000, chat_store=chat_store, chat_store_key=session_id + redis_client=self.redis_client, ttl=86400 # Time-to-live set for 1 hour ) + db = self.client["bot_database"] + + if ( + self.redis_client.exists(session_id) + or session_id in db.list_collection_names() + ): + if session_id not in self.redis_client.keys(): + self.add_chat_history_to_redis( + session_id + ) # Add chat history to Redis if not found + # Create memory buffer with chat store and session key + memory = ChatMemoryBuffer.from_defaults( + token_limit=3000, chat_store=chat_store, chat_store_key=session_id + ) + else: + # Handle the case where the session doesn't exist + memory = ChatMemoryBuffer.from_defaults( + token_limit=3000, chat_store=chat_store, chat_store_key=session_id + ) + return memory - + def get_messages(self, session_id: str) -> List[dict]: """Get messages for a session_id.""" items = self.redis_client.lrange(session_id, 0, -1) if len(items) == 0: return [] - + # Decode and parse each item into a dictionary return [json.loads(m.decode("utf-8")) for m in items] def delete_last_message(self, session_id: str) -> Optional[ChatMessage]: """Delete last message for a session_id.""" return self.redis_client.rpop(session_id) - - def delete_messages(self, key: str) -> Optional[List[ChatMessage]]: - """Delete messages for a key.""" - self.redis_client.delete(key) + + def delete_messages(self, session_id: str) -> Optional[List[ChatMessage]]: + """Delete messages for a session_id.""" + self.redis_client.delete(session_id) + db = self.client["bot_database"] + db.session_id.drop() return None - + def clean_message(self, session_id: str) -> Optional[ChatMessage]: """Delete specific message for a session_id.""" current_list = self.redis_client.lrange(session_id, 0, -1) - + indices_to_delete = [] for index, item in enumerate(current_list): data = json.loads(item) # Parse JSON string to dict # Logic to determine if item should be removed - if (data.get("role") == "assistant" and data.get("content") is None) or (data.get("role") == "tool"): + if (data.get("role") == "assistant" and data.get("content") is None) or ( + data.get("role") == "tool" + ): indices_to_delete.append(index) # Remove elements by their indices in reverse order for index in reversed(indices_to_delete): - self.redis_client.lrem(session_id, 1, current_list[index]) # Remove the element from the list in Redis + self.redis_client.lrem( + session_id, 1, current_list[index] + ) # Remove the element from the list in Redis def get_keys(self) -> List[str]: """Get all keys.""" - try : + try: print(self.redis_client.keys("*")) return [key.decode("utf-8") for key in self.redis_client.keys("*")] - + except Exception as e: - # Log the error and raise HTTPException for FastAPI + # Log the error and return JSONResponse for FastAPI print(f"An error occurred in update data.: {e}") - raise HTTPException( - status_code=400, detail="the error when get keys" - ) + return JSONResponse(status_code=400, content="the error when get keys") def add_message(self, session_id: str, message: ChatMessage) -> None: """Add a message for a session_id.""" @@ -90,4 +105,57 @@ class ChatStore: self.redis_client.rpush(session_id, item) def _message_to_dict(self, message: ChatMessage) -> dict: - return message.model_dump() \ No newline at end of file + return message.model_dump() + + def add_chat_history_to_redis(self, session_id: str) -> None: + """Fetch chat history from MongoDB and add it to Redis.""" + db = self.client["bot_database"] + collection = db[session_id] + + try: + chat_history = collection.find() + chat_history_list = [ + { + key: message[key] + for key in message + if key not in ["_id", "timestamp"] and message[key] is not None + } + for message in chat_history + if message is not None + ] + + for message in chat_history_list: + # Convert MongoDB document to the format you need + item = json.dumps( + self._message_to_dict(ChatMessage(**message)) + ) # Convert message to dict + # Push to Redis + self.redis_client.rpush(session_id, item) + self.redis_client.expire(session_id, time=86400) + + except Exception as e: + return JSONResponse(status_code=500, content="Add Database Error") + + def get_all_messages_mongodb(self, session_id): + """Get all messages for a session_id from MongoDB.""" + try: + db = self.client["bot_database"] + collection = db[session_id] + + # Retrieve all documents from the collection + documents = collection.find() + + # Convert the cursor to a list and exclude the _id field + documents_list = [ + {key: doc[key] for key in doc if key !="_id" and doc[key] is not None} + for doc in documents + ] + + # Print the list of documents without the _id field + print(documents_list) # Optional: If you want to see the output + + return documents_list + + except Exception as e: + print(f"An error occurred while retrieving messages: {e}") + return JSONResponse(status_code=500, content=f"An error occurred while retrieving messages: {e}") \ No newline at end of file diff --git a/core/chat/engine.py b/core/chat/engine.py index 3bb004e0493315062b4e290e917cf4f6d66416b8..65237bc8f25c467bc676e83aeb1c6f4af11719e6 100644 --- a/core/chat/engine.py +++ b/core/chat/engine.py @@ -1,26 +1,19 @@ -from typing import Optional, List +from typing import List from llama_index.core.vector_stores import ( MetadataFilter, MetadataFilters, - FilterCondition, ) -from llama_index.core.memory import ChatMemoryBuffer from llama_index.core.tools import QueryEngineTool, ToolMetadata from llama_index.agent.openai import OpenAIAgent from llama_index.llms.openai import OpenAI -from llama_index.storage.chat_store.redis import RedisChatStore -from llama_index.core.memory import ChatMemoryBuffer from llama_index.core.query_engine import CitationQueryEngine from llama_index.core import Settings from core.chat.chatstore import ChatStore -from service.dto import ChatMessage from config import GPTBOT_CONFIG -from core.prompt import SYSTEM_BOT_TEMPLATE -import redis -import os -import json +from core.prompt import SYSTEM_BOT_TEMPLATE, ADDITIONAL_INFORMATIONS +from core.parser import join_list class Engine: @@ -33,48 +26,38 @@ class Engine: ) self.chat_store = ChatStore() - Settings.llm = self.llm - def _build_description_bot(self, title, category): - try: - prompt = f"Write a detailed description for an OpenAI agent with the title '{title}' and categorized under '{category}'." - description = self.llm.complete(prompt) - - return description - - except Exception as e: - return f"Error generating description: {str(e)}" + def get_citation_engine(self, titles:List, index): + filters = [ + MetadataFilter( + key="title", + value=title, + operator="==", + ) + for title in titles + ] - def get_citation_engine(self, title, category, index): - filters = MetadataFilters( - filters=[ - MetadataFilter(key="title", value=title), - MetadataFilter(key="category", value=category), - ], - condition=FilterCondition.AND, - ) + filters = MetadataFilters(filters=filters, condition="or") # Create the QueryEngineTool with the index and filters kwargs = {"similarity_top_k": 5, "filters": filters} retriever = index.as_retriever(**kwargs) - citation_engine = CitationQueryEngine(retriever=retriever) + # citation_engine = CitationQueryEngine(retriever=retriever) - return citation_engine + return CitationQueryEngine.from_args(index, retriever=retriever) - def get_chat_engine( - self, session_id, index, title=None, category=None, type="general" - ): + def get_chat_engine(self, session_id, index, titles=None, type_bot="general"): # Create the QueryEngineTool based on the type - if type == "general": + if type_bot == "general": # query_engine = index.as_query_engine(similarity_top_k=3) citation_engine = CitationQueryEngine.from_args(index, similarity_top_k=5) description = "A book containing information about medicine" else: - citation_engine = self.get_citation_engine(title, category, index) - description = self._build_description_bot() + citation_engine = self.get_citation_engine(titles, index) + description = "A book containing information about medicine" metadata = ToolMetadata(name="bot-belajar", description=description) print(metadata) @@ -85,12 +68,17 @@ class Engine: print(vector_query_engine) # Initialize the OpenAI agent with the tools + + if type_bot == "general": + system_prompt = SYSTEM_BOT_TEMPLATE.format(additional_information="") + else: + additional_information = ADDITIONAL_INFORMATIONS.format(titles=join_list(titles)) + system_prompt = SYSTEM_BOT_TEMPLATE.format(additional_information=additional_information) chat_engine = OpenAIAgent.from_tools( tools=[vector_query_engine], llm=self.llm, memory=self.chat_store.initialize_memory_bot(session_id), - # memory = self.initialize_memory_bot(session_id), - system_prompt=SYSTEM_BOT_TEMPLATE, + system_prompt=system_prompt, ) - return chat_engine \ No newline at end of file + return chat_engine diff --git a/core/parser.py b/core/parser.py index c5e57636f4491b6d289b9d52e29a5215256220d9..16993cc1bec62646e218672ddc2e8398950df28c 100644 --- a/core/parser.py +++ b/core/parser.py @@ -90,3 +90,13 @@ def seperate_to_list(text): final_output.extend([part.strip() for part in split_line if part.strip()]) return final_output + +def join_list(items): + if not items: + return "" + elif len(items) == 1: + return items[0] + elif len(items) == 2: + return f"{items[0]} and {items[1]}" + else: + return ", ".join(items[:-1]) + " and " + items[-1] diff --git a/core/prompt.py b/core/prompt.py index 7739a336eeefe20216be9772552dfb742ddc7341..b07ef89b43e835862abba2dcbf14800afd2f5b8f 100644 --- a/core/prompt.py +++ b/core/prompt.py @@ -1,17 +1,21 @@ SYSTEM_BOT_TEMPLATE = """ -Kamu adalah Medbot yang gunakan tool kamu untuk menjawab pertanyaan tentang kedokteran. Tugasmu adalah memberikan jawaban yang informatif dan akurat berdasarkan tools yang tersediaserta selalu cantumkan kutipan dari teks yang anda kutip. Jika tidak ada jawaban melalui alat yang digunakan, carilah informasi lebih lanjut dengan menggunakan alat. Jika setelah itu tidak ada informasi yang ditemukan, katakan bahwa kamu tidak mengetahuinya. +Kamu adalah Medbot yang selalu menggunakan tools kamu untuk menjawab pertanyaan tentang kedokteran. Tugasmu adalah memberikan jawaban yang informatif dan akurat berdasarkan tools yang tersedia. {additional_information} Jika setelah itu tidak ada informasi yang ditemukan, katakan bahwa kamu tidak mengetahuinya dan berikan informasi dari apa yang kamu ketahui kemudian arahkan pengguna untuk bertanya ke dokter yang lebih ahli. **Instruksi**: - 1. **Jawaban Berdasarkan Tools**: Jika pengguna bertanya tentang topik kedokteran, gunakanlah tools yang tersedia untuk memberikan jawaban. Pastikan jawabanmu relevan dan sesuai dengan informasi dari tools tersebut. + 1. **Jawaban Berdasarkan Tools**: Jika pengguna bertanya tentang topik kedokteran, gunakanlah tools yang tersedia untuk memberikan jawaban. Pastikan jawabanmu relevan dan sesuai dengan informasi dari tools tersebut. Jelaskan informasi dengan content dan lengkap. 2. **Referensi dan Kutipan**: Jangan menghapus sumber kutipan dari teks yang diberikan. Contohnya, jika teksnya adalah "Ilmu kedokteran sangat dibutuhkan [2]", pastikan untuk menyertakan kutipan sumbernya yaitu [2] dalam jawabanmu. 3. **Ketika Tidak Tahu Jawaban**: Jika pertanyaan pengguna tidak dapat dijawab dengan menggunakan tools ini, sampaikan dengan sopan bahwa kamu tidak memiliki jawaban untuk pertanyaan tersebut. Arahkan pengguna untuk mencari informasi lebih lanjut atau bertanya pada ahli di bidang kedokteran. - 4. **Gaya Jawaban**: Berikan jawaban dengan gaya yang ramah dan profesional. Hindari penggunaan poin-poin, dan sampaikan informasi secara naratif agar lebih mudah dipahami. Gunakan kata 'dok' atau 'dokter' untuk merujuk pada dokter, dan hindari kesan monoton dengan menambahkan emotikon jika sesuai. + 4. **Gaya Jawaban**: Berikan jawaban dengan gaya yang ramah dan profesional. Sampaikan informasi secara naratif agar lebih mudah dipahami. Boleh menggunakan point point dan uraiannya agar bisa menjelaskan informasi yang kompleks sehingga mudah dipahami. Gunakan kata 'dok' atau 'dokter' untuk merujuk pada dokter, dan hindari kesan monoton dengan menambahkan emotikon jika sesuai seperti 😁, 😊, 🙌, 😉, 😀, 🤔, 😇. - 5. **Penutup**: Akhiri komunikasi dengan kalimat yang friendly, seperti "Semoga informasi ini bermanfaat, dok ✨" atau "Jika ada pertanyaan lain, jangan ragu untuk bertanya ya dok 😊" + 5. **Penutup**: Akhiri komunikasi dengan kalimat yang friendly, seperti "Semoga informasi ini bermanfaat, dok ✨" atau "Jika ada pertanyaan lain, jangan ragu untuk bertanya ya dok 😊" dan sebagainya. +""" + +ADDITIONAL_INFORMATIONS = """ +Kemudian, kamu menjawab pertanyan user dari buku {titles}, jadi jika user bertaya kamu pastikan akan mengacu buku tersebut yang didapatkan dari tools dari yang kamu punya. """ SYSTEM_TOPIC_TEMPLATE = """ @@ -100,7 +104,7 @@ Your task is to extract and organize metadata for the {class_name}. Follow the i 2. **Extract the Key Subtopic (if applicable):** - **Goal:** Determine the most relevant supporting element related to the main topic. - - **How:** Identify a sub-element or detail that provides additional depth or clarification to the main topic. + - **How:** Identify a sub-element or content that provides additional depth or clarification to the main topic. - **Tip:** Ensure the subtopic directly supports or elaborates on the main topic. 3. **Handle Cases Without a Clear Subtopic:** diff --git a/core/summarization/summarizer.py b/core/summarization/summarizer.py index 131102183b32b3da6088a0a8bb00f0c878f97334..d23b374812f63e0525fffe2daf705e51d87cd01f 100644 --- a/core/summarization/summarizer.py +++ b/core/summarization/summarizer.py @@ -3,7 +3,7 @@ import os import base64 import fitz -from fastapi import HTTPException +from fastapi.responses import JSONResponse from llama_index.core.vector_stores import ( MetadataFilter, MetadataFilters, @@ -39,7 +39,7 @@ class SummarizeGenerator: print(content_table) # content_table = fitz.open(topics_image) except Exception as e: - raise HTTPException(status_code=400, detail=f"Error opening PDF file: {e}") + return JSONResponse(status_code=400, content=f"Error opening PDF file: {e}") # Initialize a list to collect base64 encoded images pix_encoded_combined = [] @@ -57,7 +57,7 @@ class SummarizeGenerator: continue # Skip to the next page if there's an error if not pix_encoded_combined: - raise HTTPException(status_code=404, detail="No images found in the PDF") + return JSONResponse(status_code=404, content="No images found in the PDF") return pix_encoded_combined @@ -102,7 +102,7 @@ class SummarizeGenerator: return str(refined_extractor_output), extractor_dics except Exception as e: - raise HTTPException(status_code=500, detail=f"An error occurred: {e}") + return JSONResponse(status_code=500, content=f"An error occurred: {e}") def _extract_image_as_base64(self, page): try: @@ -110,7 +110,7 @@ class SummarizeGenerator: pix_bytes = pix.tobytes() return base64.b64encode(pix_bytes).decode("utf-8") except Exception as e: - raise HTTPException(status_code=500, detail=f"Error extracting image: {e}") + return JSONResponse(status_code=500, content=f"Error extracting image: {e}") def index_summarizer_engine(self, topic, subtopic, index): filters = MetadataFilters( diff --git a/db/database.py b/db/database.py new file mode 100644 index 0000000000000000000000000000000000000000..f890499c0f40f40a123a8a78dcd54c5e6ecc278d --- /dev/null +++ b/db/database.py @@ -0,0 +1,58 @@ +from sqlalchemy import create_engine +from sqlalchemy.orm import sessionmaker +from sqlalchemy.exc import OperationalError +from config import MYSQL_CONFIG +from fastapi import HTTPException +import os +import base64 + + +SQLALCHEMY_DATABASE_URL = MYSQL_CONFIG.DB_URI_SQL_ALCHEMY + +# Get the base64 encoded certificate from the environment variable +ca_cert_base64 = os.getenv("CA_CERT_BASE64") + +# Decode the base64 content +if ca_cert_base64: + ca_cert_content = base64.b64decode(ca_cert_base64).decode("utf-8") + + # Write the decoded content to a temporary .pem file + with open("/tmp/ca.pem", "w") as f: + f.write(ca_cert_content) + + ca_cert_path = "/tmp/ca.pem" +else: + raise ValueError("CA_CERT_BASE64 environment variable is not set") + +# Use the decoded CA certificate in the SQLAlchemy engine +engine = create_engine( + SQLALCHEMY_DATABASE_URL, + connect_args={ + "ssl": { + "sslmode": "REQUIRED", + "ca": ca_cert_path, # Path to the temporary CA certificate + # Add other SSL options as needed + } + }, +) + +SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine) + + +def get_db(): + db = SessionLocal() + try: + yield db + except OperationalError as e: + # Log the error and raise HTTPException for FastAPI + print(f"An error occurred in get database sql alchemy.: {e}") + raise HTTPException(status_code=400, detail="Database connection error") + # Check if it's an authentication-related error + except Exception as e: + # Check if it's an authentication-related error + if "401" in str(e): + raise HTTPException(status_code=401, detail="Authentication failed") + else: + # For any other type of exception, raise a generic 400 error + print(f"An error occurred: {e}") + raise HTTPException(status_code=400, detail="An unexpected error occurred") \ No newline at end of file diff --git a/db/delete_data.py b/db/delete_data.py index f0619d851756d508818347c5bf2abd8f5a244554..a6e05441eeef956d051a1f377266b6d65b5872aa 100644 --- a/db/delete_data.py +++ b/db/delete_data.py @@ -10,7 +10,7 @@ class DeleteDatabase(Repository): if "id" not in params: raise ValueError("The 'id' parameter is required.") query = """ - DELETE FROM Metadata + DELETE FROM metadata WHERE id = :id """ diff --git a/db/get_data.py b/db/get_data.py index 2073cf1a64df491f2cb47a9023d2242352831274..5efc42b22a8425c6a6682e63a23a1d0b6292703f 100644 --- a/db/get_data.py +++ b/db/get_data.py @@ -1,5 +1,6 @@ import logging from db.repository import Repository, get_db_conn +from fastapi.responses import JSONResponse # Setup logging (configure as needed) logging.basicConfig(level=logging.INFO) @@ -23,14 +24,14 @@ class GetDatabase(Repository): return results if results else None except Exception as e: logging.error(f"An error occurred while executing query: {e}") - return None + return JSONResponse(status_code=500, content=f"An error occurred while executing query: {e}") async def get_data(self, title): """ Fetch the first result matching the given title from the metadata table. """ query = """ - SELECT * FROM Metadata + SELECT * FROM metadata WHERE title = %s limit 5; """ @@ -40,21 +41,22 @@ class GetDatabase(Repository): return results except Exception as e: logging.error(f"An error occurred while get data: {e}") - return None + return JSONResponse(status_code=500, content=f"An error occurred while get data: {e}") async def get_all_data(self): """ Fetch all data from the metadata table. """ query = """ - SELECT * FROM Metadata + SELECT * FROM metadata """ results = await self.execute_query(query) + print("result", results) return results async def get_data_by_id(self, id): query = f""" - SELECT * FROM Metadata WHERE id = :id + SELECT * FROM metadata WHERE id = :id """ param = {"id" : id} @@ -64,4 +66,4 @@ class GetDatabase(Repository): return results[0] if results else None except Exception as e: print('Error fetching data by ID %s: %s', id, e) - return None \ No newline at end of file + return JSONResponse(status_code=500, content=f"An error while fething data: {e}") \ No newline at end of file diff --git a/db/models.py b/db/models.py new file mode 100644 index 0000000000000000000000000000000000000000..a94c3210d4fda94581e7a12f30b38a3806201571 --- /dev/null +++ b/db/models.py @@ -0,0 +1,164 @@ +from typing import Literal +from typing_extensions import Annotated +import sqlalchemy +from sqlalchemy.orm import mapped_column +from sqlalchemy import Integer, String, ForeignKey,func, DateTime, Boolean, LargeBinary +from sqlalchemy.orm import DeclarativeBase, Mapped +import uuid +import datetime +import pytz + +# Set Jakarta timezone +jakarta_tz = pytz.timezone('Asia/Jakarta') + +def get_jakarta_time(): + return datetime.datetime.now(jakarta_tz) + +# Use the timezone-aware function in SQLAlchemy annotations +timestamp_current = Annotated[ + datetime.datetime, + mapped_column(nullable=False, default=get_jakarta_time) # Use default instead of server_default +] + +timestamp_update = Annotated[ + datetime.datetime, + mapped_column(nullable=False, default=get_jakarta_time, onupdate=get_jakarta_time) # onupdate uses the Python function +] + +message_role = Literal["user", "assistant"] + +class Base(DeclarativeBase): + type_annotation_map = { + message_role: sqlalchemy.Enum("user", "assistant", name="message_role"), + } + +class User(Base): + __tablename__ = "user" + + id = mapped_column(Integer, primary_key=True) + name = mapped_column(String(100), nullable=False) + username = mapped_column(String(100), unique=True, nullable=False) + role_id = mapped_column(Integer, ForeignKey("role.id")) + email = mapped_column(String(100), unique=True, nullable=False) + password_hash = mapped_column(String(100), nullable=False) + created_at: Mapped[timestamp_current] + updated_at : Mapped[timestamp_update] + +class Feedback(Base): + __tablename__ = "feedback" + + id = mapped_column(Integer, primary_key=True) + user_id = mapped_column(Integer, ForeignKey("user.id")) + rating = mapped_column(Integer) + comment = mapped_column(String(1000)) + created_at : Mapped[timestamp_current] + +class Role(Base): + __tablename__ = "role" + + id = mapped_column(Integer, primary_key=True) + role_name = mapped_column(String(200), nullable=False) + description = mapped_column(String(200)) + +class User_Role(Base): + __tablename__ = "user_role" + + id = mapped_column(Integer, primary_key=True) + user_id = mapped_column(Integer, ForeignKey("user.id")) + role_id = mapped_column(Integer, ForeignKey("role.id")) + +class Bot(Base): + __tablename__ = "bot" + + id = mapped_column(Integer, primary_key=True) + user_id = mapped_column(Integer, ForeignKey("user.id")) + bot_name = mapped_column(String(200), nullable=False) + created_at : Mapped[timestamp_current] + +class Session(Base): + __tablename__ = "session" + + id = mapped_column(String(36), primary_key=True, index=True, default=lambda: str(uuid.uuid4())) # Store as string + user_id = mapped_column(Integer, ForeignKey("user.id")) + bot_id = mapped_column(Integer, ForeignKey("bot.id")) + created_at : Mapped[timestamp_current] + updated_at : Mapped[timestamp_update] + +class Message(Base): + __tablename__ = "message" + + id = mapped_column(Integer, primary_key=True) + session_id = mapped_column(String(36), ForeignKey("session.id"), nullable=False) # Store as string + role : Mapped[message_role] + goal = mapped_column(String(200)) + created_at : Mapped[timestamp_current] + +class Category(Base): + __tablename__ = "category" + + id = mapped_column(Integer, primary_key=True) + category = mapped_column(String(200)) + created_at : Mapped[timestamp_current] + updated_at : Mapped[timestamp_update] + +class Metadata(Base): + __tablename__ = "metadata" + + id = mapped_column(Integer, primary_key=True) + title = mapped_column(String(200)) + # image_data = mapped_column(LargeBinary, nullable=True) + category_id = mapped_column(Integer, ForeignKey("category.id")) + author = mapped_column(String(200)) + year = mapped_column(Integer) + publisher = mapped_column(String(100)) + thumbnail = mapped_column(LargeBinary, nullable=True) + created_at : Mapped[timestamp_current] + updated_at : Mapped[timestamp_update] + + +class Bot_Meta(Base): + __tablename__ = "bot_meta" + + id = mapped_column(Integer, primary_key=True) + bot_id = mapped_column(Integer, ForeignKey("bot.id")) + metadata_id = mapped_column(Integer, ForeignKey("metadata.id")) + created_at : Mapped[timestamp_current] + updated_at : Mapped[timestamp_update] + +class User_Meta(Base): + __tablename__ = "user_meta" + + id = mapped_column(Integer, primary_key=True) + user_id = mapped_column(Integer, ForeignKey("user.id")) + metadata_id = mapped_column(Integer, ForeignKey("metadata.id")) + created_at : Mapped[timestamp_current] + updated_at : Mapped[timestamp_update] + +class Planning(Base): + __tablename__="planning" + + id = mapped_column(Integer, primary_key=True) + trials_id = mapped_column(Integer, ForeignKey("trials.id")) + planning_name = mapped_column(String(200), nullable=False) + duration = mapped_column(Integer, nullable=False) # Duration in months + start_date = mapped_column(DateTime, nullable=False) # Start date of the planning + end_date = mapped_column(DateTime, nullable=False) # End date of the planning + is_activated = mapped_column(Boolean) + created_at : Mapped[timestamp_current] # Automatically sets the current timestamp + +class Trials(Base): + __tablename__ = "trials" + + id = mapped_column(Integer, primary_key=True) + token_used = mapped_column(Integer, nullable=False) # Adjust length as needed + token_planned = mapped_column(Integer, nullable=False) + + +class Session_Publisher(Base): + __tablename__ = "session_publisher" + + id = mapped_column(String(36), primary_key=True, index=True, default=lambda: str(uuid.uuid4())) # Store as string + user_id = mapped_column(Integer, ForeignKey("user.id")) + metadata_id = mapped_column(Integer, ForeignKey("metadata.id")) + created_at : Mapped[timestamp_current] + updated_at : Mapped[timestamp_update] \ No newline at end of file diff --git a/db/save_data.py b/db/save_data.py index ea7bfe3d4239bef44b7bbdea4dd07ba772bf9c69..8dbd849cc544d01769b961e33e1bb7f85ec39084 100644 --- a/db/save_data.py +++ b/db/save_data.py @@ -3,21 +3,30 @@ import logging from dotenv import load_dotenv from db.repository import Repository + load_dotenv() class InsertDatabase(Repository): # Example function to insert data asynchronously - async def insert_data(self, params): + async def insert_data(self, params, category_id): # SQL insert query with named placeholders query = """ - INSERT INTO Metadata (title, category, author, year, publisher, createdAt, updatedAt) - VALUES (:title, :category, :author, :year, :publisher, :createdAt, :updatedAt) + INSERT INTO metadata (title, category_id, author, year, publisher) + VALUES (:title, :category_id, :author, :year, :publisher) """ - reference = self.update_params(params) + reference = { + "title": params["title"], + "category_id": category_id, # directly assign category_id + "author": params["author"], + "year": params["year"], + "publisher": params["publisher"] + } + + print(reference) try: # Execute the query with the provided values await self._exec(query, reference) diff --git a/db/update_data.py b/db/update_data.py index 7c6471cc2f6e3aa4fae8c09f6802700816511ba0..f4262b6ee5c67e731b6e52e9c69c19ecbcca4432 100644 --- a/db/update_data.py +++ b/db/update_data.py @@ -7,30 +7,29 @@ logging.basicConfig(level=logging.INFO) class UpdateDatabase(Repository): async def update_record(self, reference): + print("update record", reference) if "id" not in reference: raise ValueError("The 'id' parameter is required.") query = """ - UPDATE Metadata + UPDATE metadata SET title = :title, - category = :category, + category_id = :category_id, author = :author, year = :year, - publisher = :publisher, - updatedAt = :updatedAt + publisher = :publisher WHERE id = :id """ print(query) - updated_reference = self.update_params(reference, update=True) - print(updated_reference) + print(reference) try: - await self._exec(query, updated_reference) + await self._exec(query, reference) logging.info( - f"Record with id {updated_reference['id']} updated successfully." + f"Record with id {reference['id']} updated successfully." ) except Exception as e: logging.error( - f"Error updating record with id {updated_reference['id']}: {e}" + f"Error updating record with id {reference['id']}: {e}" ) raise diff --git a/helper/bot_function.py b/helper/bot_function.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/helper/db_function.py b/helper/db_function.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/requirements.txt b/requirements.txt index 0c761426de4610a60c4b30b6982060440797ad9e..935ffc7270d8a60e23af27b8ee5b31c8970a32df 100644 --- a/requirements.txt +++ b/requirements.txt @@ -6,11 +6,13 @@ annotated-types==0.7.0 anyio==4.4.0 asgiref==3.8.1 attrs==24.2.0 +Authlib==1.3.2 backoff==2.2.1 bcrypt==4.2.0 beautifulsoup4==4.12.3 +bleach==6.1.0 boto3==1.35.24 -botocore== 1.35.24 +botocore==1.35.24 build==1.2.2 cachetools==5.5.0 certifi==2024.8.30 @@ -27,6 +29,7 @@ dirtyjson==1.0.8 distro==1.9.0 dnspython==1.16.0 fastapi==0.113.0 +fastjsonschema==2.20.0 filelock==3.16.1 flatbuffers==24.3.25 frozenlist==1.4.1 @@ -47,6 +50,7 @@ importlib_resources==6.4.5 Jinja2==3.1.4 jiter==0.5.0 joblib==1.4.2 +jose==1.0.0 jsonpatch==1.33 jsonpointer==3.0.0 kubernetes==30.1.0 @@ -76,6 +80,7 @@ llama-index-readers-llama-parse==0.3.0 llama-index-storage-chat-store-redis==0.2.0 llama-index-vector-stores-pinecone==0.2.1 llama-parse==0.5.2 +Mako==1.3.5 markdown-it-py==3.0.0 MarkupSafe==2.1.5 marshmallow==3.22.0 @@ -106,6 +111,7 @@ opentelemetry-util-http==0.48b0 orjson==3.10.7 overrides==7.7.0 pandas==2.2.2 +passlib==1.7.4 pillow==10.4.0 pinecone-client==5.0.1 pinecone-plugin-inference==1.0.3 @@ -118,6 +124,7 @@ pyasn1_modules==0.4.1 pydantic==2.9.0 pydantic-settings==2.4.0 pydantic_core==2.23.2 +PyJWT==2.9.0 pymongo==3.11.0 PyMuPDF==1.24.10 PyMuPDFb==1.24.10 @@ -128,6 +135,7 @@ PyPika==0.48.9 pyproject_hooks==1.1.0 pyreadline3==3.5.4 python-dotenv==1.0.1 +python-jose==3.3.0 python-multipart==0.0.9 pytz==2024.1 PyYAML==6.0.2 diff --git a/research/db.ipynb b/research/db.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..ff6cd2e395091438d433c61878e223102d1b7e19 --- /dev/null +++ b/research/db.ipynb @@ -0,0 +1,86 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "work_directory = r\"D:\\Project_Multimedika\\Projek_2\\fullstack_summarizer_and_bot_development\\backend\"\n", + "os.chdir(work_directory)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-10-02 10:13:26,616 DEBUG sqlalchemy.pool.impl.QueuePool Created new connection <_mysql.connection open to 'mysql-1034fd4a-hamzahibnuarman-ad3d.e.aivencloud.com' at 0000014BA7A87210>\n", + "2024-10-02 10:13:26,782 INFO sqlalchemy.engine.Engine SELECT DATABASE()\n", + "2024-10-02 10:13:26,782 INFO sqlalchemy.engine.Engine [raw sql] ()\n", + "2024-10-02 10:13:26,960 INFO sqlalchemy.engine.Engine SELECT @@sql_mode\n", + "2024-10-02 10:13:26,974 INFO sqlalchemy.engine.Engine [raw sql] ()\n", + "2024-10-02 10:13:27,059 INFO sqlalchemy.engine.Engine SELECT @@lower_case_table_names\n", + "2024-10-02 10:13:27,060 INFO sqlalchemy.engine.Engine [raw sql] ()\n", + "2024-10-02 10:13:27,235 DEBUG sqlalchemy.pool.impl.QueuePool Connection <_mysql.connection open to 'mysql-1034fd4a-hamzahibnuarman-ad3d.e.aivencloud.com' at 0000014BA7A87210> checked out from pool\n", + "Connection successful!\n", + "2024-10-02 10:13:27,235 DEBUG sqlalchemy.pool.impl.QueuePool Connection <_mysql.connection open to 'mysql-1034fd4a-hamzahibnuarman-ad3d.e.aivencloud.com' at 0000014BA7A87210> being returned to pool\n", + "2024-10-02 10:13:27,238 DEBUG sqlalchemy.pool.impl.QueuePool Connection <_mysql.connection open to 'mysql-1034fd4a-hamzahibnuarman-ad3d.e.aivencloud.com' at 0000014BA7A87210> rollback-on-return\n" + ] + } + ], + "source": [ + "from sqlalchemy import create_engine\n", + "\n", + "SQLALCHEMY_DATABASE_URL = (\n", + " \"mysql://avnadmin:AVNS_St9zLKGWwfGKvC2yMCz@mysql-1034fd4a-hamzahibnuarman-ad3d.e.aivencloud.com:10707/summarizer\"\n", + ")\n", + "engine = create_engine(\n", + " SQLALCHEMY_DATABASE_URL,\n", + " echo=True,\n", + " echo_pool=\"debug\",\n", + " connect_args={\n", + " \"ssl\": {\n", + " 'sslmode': \"REQUIRED\",\n", + " \"ca\": \"ca.pem\", # Update this path to your CA certificate\n", + " # Other SSL options can be added here\n", + " }\n", + " }\n", + ")\n", + "\n", + "# Test connection\n", + "try:\n", + " with engine.connect() as connection:\n", + " print(\"Connection successful!\")\n", + "except Exception as e:\n", + " print(\"Error connecting to the database:\", str(e))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "fullstack", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/research/delete.ipynb b/research/delete.ipynb index 991584d23377d5a249522c65ad82025a2a48e7d9..6528612a014c75a2f7e0de37660f404db3234ca7 100644 --- a/research/delete.ipynb +++ b/research/delete.ipynb @@ -2,27 +2,27 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import os\n", - "work_directory = r\"D:\\Project Multimedika\\Projek 2\\fullstack_summarizer_and_bot_development\\backend\"\n", + "work_directory = r\"D:\\Project_Multimedika\\Projek_2\\fullstack_summarizer_and_bot_development\\backend\"\n", "os.chdir(work_directory)" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "'D:\\\\Project Multimedika\\\\Projek 2\\\\fullstack_summarizer_and_bot_development\\\\backend'" + "'D:\\\\Project_Multimedika\\\\Projek_2\\\\fullstack_summarizer_and_bot_development\\\\backend'" ] }, - "execution_count": 2, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -33,17 +33,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\Users\\hamza\\anaconda3\\envs\\fullstack\\Lib\\site-packages\\pinecone\\data\\index.py:1: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", - " from tqdm.autonotebook import tqdm\n" - ] - }, { "name": "stdout", "output_type": "stream", @@ -72,7 +64,7 @@ " vector=random_vector,\n", " top_k=10000,\n", " filter={\n", - " \"category\": {\"$eq\": \"Artificial Intelligence\"},\n", + " \"title\": {\"$eq\": \"test\"},\n", " },\n", ")\n", "\n", diff --git a/research/langfuse.ipynb b/research/langfuse.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/research/llama_parse.ipynb b/research/llama_parse.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..d11b54b2af0419d54921a0812b8603e9e9052ffd --- /dev/null +++ b/research/llama_parse.ipynb @@ -0,0 +1,392 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "work_directory = r\"D:\\Project Multimedika\\Projek 2\\fullstack_summarizer_and_bot_development\\backend\"\n", + "os.chdir(work_directory)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'D:\\\\Project Multimedika\\\\Projek 2\\\\fullstack_summarizer_and_bot_development\\\\backend'" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%pwd" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting nbconvert\n", + " Downloading nbconvert-7.16.4-py3-none-any.whl.metadata (8.5 kB)\n", + "Requirement already satisfied: beautifulsoup4 in c:\\users\\hamza\\anaconda3\\envs\\fullstack\\lib\\site-packages (from nbconvert) (4.12.3)\n", + "Collecting bleach!=5.0.0 (from nbconvert)\n", + " Downloading bleach-6.1.0-py3-none-any.whl.metadata (30 kB)\n", + "Collecting defusedxml (from nbconvert)\n", + " Using cached defusedxml-0.7.1-py2.py3-none-any.whl.metadata (32 kB)\n", + "Requirement already satisfied: jinja2>=3.0 in c:\\users\\hamza\\anaconda3\\envs\\fullstack\\lib\\site-packages (from nbconvert) (3.1.4)\n", + "Requirement already satisfied: jupyter-core>=4.7 in c:\\users\\hamza\\anaconda3\\envs\\fullstack\\lib\\site-packages (from nbconvert) (5.7.2)\n", + "Collecting jupyterlab-pygments (from nbconvert)\n", + " Downloading jupyterlab_pygments-0.3.0-py3-none-any.whl.metadata (4.4 kB)\n", + "Requirement already satisfied: markupsafe>=2.0 in c:\\users\\hamza\\anaconda3\\envs\\fullstack\\lib\\site-packages (from nbconvert) (2.1.5)\n", + "Collecting mistune<4,>=2.0.3 (from nbconvert)\n", + " Downloading mistune-3.0.2-py3-none-any.whl.metadata (1.7 kB)\n", + "Collecting nbclient>=0.5.0 (from nbconvert)\n", + " Downloading nbclient-0.10.0-py3-none-any.whl.metadata (7.8 kB)\n", + "Collecting nbformat>=5.7 (from nbconvert)\n", + " Downloading nbformat-5.10.4-py3-none-any.whl.metadata (3.6 kB)\n", + "Requirement already satisfied: packaging in c:\\users\\hamza\\anaconda3\\envs\\fullstack\\lib\\site-packages (from nbconvert) (24.1)\n", + "Collecting pandocfilters>=1.4.1 (from nbconvert)\n", + " Downloading pandocfilters-1.5.1-py2.py3-none-any.whl.metadata (9.0 kB)\n", + "Requirement already satisfied: pygments>=2.4.1 in c:\\users\\hamza\\anaconda3\\envs\\fullstack\\lib\\site-packages (from nbconvert) (2.18.0)\n", + "Collecting tinycss2 (from nbconvert)\n", + " Using cached tinycss2-1.3.0-py3-none-any.whl.metadata (3.0 kB)\n", + "Requirement already satisfied: traitlets>=5.1 in c:\\users\\hamza\\anaconda3\\envs\\fullstack\\lib\\site-packages (from nbconvert) (5.14.3)\n", + "Requirement already satisfied: six>=1.9.0 in c:\\users\\hamza\\anaconda3\\envs\\fullstack\\lib\\site-packages (from bleach!=5.0.0->nbconvert) (1.16.0)\n", + "Collecting webencodings (from bleach!=5.0.0->nbconvert)\n", + " Using cached webencodings-0.5.1-py2.py3-none-any.whl.metadata (2.1 kB)\n", + "Requirement already satisfied: platformdirs>=2.5 in c:\\users\\hamza\\anaconda3\\envs\\fullstack\\lib\\site-packages (from jupyter-core>=4.7->nbconvert) (4.3.6)\n", + "Requirement already satisfied: pywin32>=300 in c:\\users\\hamza\\anaconda3\\envs\\fullstack\\lib\\site-packages (from jupyter-core>=4.7->nbconvert) (306)\n", + "Requirement already satisfied: jupyter-client>=6.1.12 in c:\\users\\hamza\\anaconda3\\envs\\fullstack\\lib\\site-packages (from nbclient>=0.5.0->nbconvert) (8.6.3)\n", + "Collecting fastjsonschema>=2.15 (from nbformat>=5.7->nbconvert)\n", + " Downloading fastjsonschema-2.20.0-py3-none-any.whl.metadata (2.1 kB)\n", + "Collecting jsonschema>=2.6 (from nbformat>=5.7->nbconvert)\n", + " Using cached jsonschema-4.23.0-py3-none-any.whl.metadata (7.9 kB)\n", + "Requirement already satisfied: soupsieve>1.2 in c:\\users\\hamza\\anaconda3\\envs\\fullstack\\lib\\site-packages (from beautifulsoup4->nbconvert) (2.6)\n", + "Requirement already satisfied: attrs>=22.2.0 in c:\\users\\hamza\\anaconda3\\envs\\fullstack\\lib\\site-packages (from jsonschema>=2.6->nbformat>=5.7->nbconvert) (24.2.0)\n", + "Collecting jsonschema-specifications>=2023.03.6 (from jsonschema>=2.6->nbformat>=5.7->nbconvert)\n", + " Using cached jsonschema_specifications-2023.12.1-py3-none-any.whl.metadata (3.0 kB)\n", + "Collecting referencing>=0.28.4 (from jsonschema>=2.6->nbformat>=5.7->nbconvert)\n", + " Using cached referencing-0.35.1-py3-none-any.whl.metadata (2.8 kB)\n", + "Collecting rpds-py>=0.7.1 (from jsonschema>=2.6->nbformat>=5.7->nbconvert)\n", + " Using cached rpds_py-0.20.0-cp311-none-win_amd64.whl.metadata (4.2 kB)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\hamza\\anaconda3\\envs\\fullstack\\lib\\site-packages (from jupyter-client>=6.1.12->nbclient>=0.5.0->nbconvert) (2.9.0)\n", + "Requirement already satisfied: pyzmq>=23.0 in c:\\users\\hamza\\anaconda3\\envs\\fullstack\\lib\\site-packages (from jupyter-client>=6.1.12->nbclient>=0.5.0->nbconvert) (26.2.0)\n", + "Requirement already satisfied: tornado>=6.2 in c:\\users\\hamza\\anaconda3\\envs\\fullstack\\lib\\site-packages (from jupyter-client>=6.1.12->nbclient>=0.5.0->nbconvert) (6.4.1)\n", + "Downloading nbconvert-7.16.4-py3-none-any.whl (257 kB)\n", + "Downloading bleach-6.1.0-py3-none-any.whl (162 kB)\n", + "Downloading mistune-3.0.2-py3-none-any.whl (47 kB)\n", + "Downloading nbclient-0.10.0-py3-none-any.whl (25 kB)\n", + "Downloading nbformat-5.10.4-py3-none-any.whl (78 kB)\n", + "Downloading pandocfilters-1.5.1-py2.py3-none-any.whl (8.7 kB)\n", + "Using cached defusedxml-0.7.1-py2.py3-none-any.whl (25 kB)\n", + "Downloading jupyterlab_pygments-0.3.0-py3-none-any.whl (15 kB)\n", + "Using cached tinycss2-1.3.0-py3-none-any.whl (22 kB)\n", + "Downloading fastjsonschema-2.20.0-py3-none-any.whl (23 kB)\n", + "Using cached jsonschema-4.23.0-py3-none-any.whl (88 kB)\n", + "Using cached webencodings-0.5.1-py2.py3-none-any.whl (11 kB)\n", + "Using cached jsonschema_specifications-2023.12.1-py3-none-any.whl (18 kB)\n", + "Using cached referencing-0.35.1-py3-none-any.whl (26 kB)\n", + "Using cached rpds_py-0.20.0-cp311-none-win_amd64.whl (213 kB)\n", + "Installing collected packages: webencodings, fastjsonschema, tinycss2, rpds-py, pandocfilters, mistune, jupyterlab-pygments, defusedxml, bleach, referencing, jsonschema-specifications, jsonschema, nbformat, nbclient, nbconvert\n", + "Successfully installed bleach-6.1.0 defusedxml-0.7.1 fastjsonschema-2.20.0 jsonschema-4.23.0 jsonschema-specifications-2023.12.1 jupyterlab-pygments-0.3.0 mistune-3.0.2 nbclient-0.10.0 nbconvert-7.16.4 nbformat-5.10.4 pandocfilters-1.5.1 referencing-0.35.1 rpds-py-0.20.0 tinycss2-1.3.0 webencodings-0.5.1\n" + ] + } + ], + "source": [ + "!pip install nbconvert" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Started parsing the file under job_id 831e03ce-727b-415d-a049-11d60a2c69fd\n" + ] + } + ], + "source": [ + "import nest_asyncio\n", + "from dotenv import load_dotenv\n", + "import os\n", + "\n", + "load_dotenv()\n", + "\n", + "nest_asyncio.apply()\n", + "\n", + "from llama_parse import LlamaParse\n", + "from llama_index.core import SimpleDirectoryReader\n", + "\n", + "parser = LlamaParse(\n", + " api_key=os.getenv(\"LLAMA_PARSE_API_KEY\"), # can also be set in your env as LLAMA_CLOUD_API_KEY\n", + " result_type=\"markdown\", # \"markdown\" and \"text\" are available\n", + " verbose=True,\n", + ")\n", + "\n", + "file_extractor = {\".pdf\": parser}\n", + "documents = SimpleDirectoryReader(\n", + " \"./research/data\", file_extractor=file_extractor\n", + ").load_data()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[Document(id_='dc35d195-e8f7-4102-9f5c-c2d73abeb48c', embedding=None, metadata={'file_path': 'D:\\\\Project Multimedika\\\\Projek 2\\\\fullstack_summarizer_and_bot_development\\\\backend\\\\research\\\\data\\\\main.pdf', 'file_name': 'main.pdf', 'file_type': 'application/pdf', 'file_size': 3342958, 'creation_date': '2024-09-25', 'last_modified_date': '2024-09-24'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={}, text='# IL-22: A key inflammatory mediator as a biomarker and potential therapeutic target for lung cancer\\n\\n# Ling Xu a,1, Peng Cao a,1, Jianpeng Wang b,1, Peng Zhang a, Shuhui Hu a, Chao Cheng a, Hua Wang c,*\\n\\n# a Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China\\n\\n# b First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China\\n\\n# c Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China\\n\\n# A R T I C L E I N F O\\n\\n# A B S T R A C T\\n\\n# Keywords:\\n\\nLung cancer, one of the most prevalent cancers worldwide, stands as the primary cause of cancer-related deaths. As is well-known, the utmost crucial risk factor contributing to lung cancer is smoking. In recent years, remarkable progress has been made in treating lung cancer, particularly non-small cell lung cancer (NSCLC). Nevertheless, the absence of effective and accurate biomarkers for diagnosing and treating lung cancer remains a pressing issue. Interleukin 22 (IL-22) is a member of the IL-10 cytokine family. It exerts biological functions (including induction of proliferation and anti-apoptotic signaling pathways, enhancement of tissue regeneration and immunity defense) by binding to heterodimeric receptors containing type 1 receptor chain (R1) and type 2 receptor chain (R2). IL-22 has been identified as a pro-cancer factor since dysregulation of the IL-22-IL-22R system has been implicated in the development of different cancers, including lung, breast, gastric, pancreatic, and colon cancers. In this review, we discuss the differential expression, regulatory role, and potential clinical significance of IL-22 in lung cancer, while shedding light on innovative approaches for the future.\\n\\n# 1. Introduction\\n\\nLung cancer is a heterogeneous disease in which cells in the lung grow aberrantly culminating in the formation of tumors. Typically, these tumors present as nodules or masses discernible through pulmonary imaging techniques [1]. In the year 2020, the global incidence of lung cancer surpassed a staggering 2.2 million cases, leading to approximately 1.8 million tragic fatalities. When considering age-standardized rates, the morbidity and mortality figures stand at 22.4 and 18.0 per 100,000 individuals respectively [2]. Generally, lung cancer is considered to be intricately linked to a multitude of factors including but not limited to smoking, genetic predisposition, occupational exposures, as well as the deleterious effects of air and environmental pollution [3,4]. Among the risk factors for lung cancer, smoking dominates overwhelmingly, with about two-thirds of lung cancer deaths globally caused by it [5]. In recent years, the drug resistance phenomenon of lung cancer to chemotherapy and targeted therapy has become more and more prominent [6–8]. Therefore, it is of heightened importance to find new therapeutic targets.\\n\\n# * Corresponding author. Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.\\n\\n# E-mail address: wanghua@ahmu.edu.cn (H. Wang).\\n\\n# 1 These authors have contributed equally to this work and share first authorship.\\n\\nhttps://doi.org/10.1016/j.heliyon.2024.e35901\\n\\nReceived 13 August 2023; Received in revised form 5 August 2024; Accepted 6 August 2024\\n\\nAvailable online 10 August 2024\\n\\n2405-8440/© 2024 The Authors. Published by Elsevier Ltd. (http://creativecommons.org/licenses/by-nc-nd/4.0/).\\n\\nThis is an open access article under the CC BY-NC-ND license', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='bc2de09b-4e34-492a-9504-b658339e14a3', embedding=None, metadata={'file_path': 'D:\\\\Project Multimedika\\\\Projek 2\\\\fullstack_summarizer_and_bot_development\\\\backend\\\\research\\\\data\\\\main.pdf', 'file_name': 'main.pdf', 'file_type': 'application/pdf', 'file_size': 3342958, 'creation_date': '2024-09-25', 'last_modified_date': '2024-09-24'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\n# 1. Introduction\\n\\nIL-22 is an IL-10 family cytokine produced by T cells and innate lymphocytes. Like all other IL-10 family members, the IL-22 structure contains six α-helices (termed helices A to F). They are arranged in an antiparallel conformation and produce a single bundled protein [9]. IL-22 coordinates mucosal immune defense and tissue regeneration through pleiotropic effects including pro-survival signaling, cell migration, dysplasia, and angiogenesis. These molecules act by targeting the heterodimeric transmembrane receptor complex composed of IL-22R1 and IL-10R2 and by activating subsequent signaling pathways (including JAK/STAT signaling pathway, p38 MAPK signaling pathway, and PI3K/AKT signaling pathway) [10]. It is well known that IL-22 is widely expressed in human tissues and organs, including lung, liver, heart, kidney, pancreas, gastrointestinal tract, skin, blood, adipose, and synovial tissues [11]. Meanwhile, IL-22 is also found to be broadly expressed in pathological states such as cancer, infectious diseases, tissue injury, chronic inflammatory diseases, and Graft-Versus-Host Disease [11–14]. In most cancer diseases, excessively elevated levels of IL-22 are considered to be detrimental [15–19]. For instance, a recent study has demonstrated that IL-22 promotes extravasation of tumor cells in liver metastasis [20]. Over the past few years, there has been a surge in research focusing on the relationship between IL-22 and lung cancer. Particularly in patients with NSCLC, researchers have discovered up-regulated expression of IL-22 in serum, malignant pleural effusion, and tumor tissues, and the levels of IL-22Rα1 in tumor cells and tissues are also increased [21–24]. Although emerging studies have revealed that IL-22 is closely correlated with lung cancer in terms of tissue, cell and pathological changes, the specific function and mechanism remain to be explored. In the present review, we mainly summarized the regulatory function and clinical role of IL-22 in lung cancer. In addition, the feasibility of IL-22 as a biomarker for lung cancer and directions for future research were also discussed. It is reasonable to hypothesize that IL-22 may serve as a potential target in the treatment of lung cancer.\\n\\n# 2. Overview of lung cancer\\n\\nLung cancer is a malignant disease characterized by high morbidity and mortality [25]. According to the data of GLOBOCAN, lung cancer is the second most common cancer in 2020 and the main cause of cancer death worldwide, with about one-tenth (11.4 %) of cancer diagnoses and one-fifth (18.0 %) of deaths [5]. When it comes to gender, the incidence and mortality rates of lung cancer were on the rise in females but declining in males in most countries over the past decade [2]. The 5-year survival rate of lung cancer patients varies by 4–17 % in light of stage and region [26]. As predicted by the American Cancer Society, more than 120,000 people will die of lung cancer in the United States in 2023. The good news is that although the incidence is stable or increasing, the overall mortality is decreasing at an accelerated pace [27]. From the perspective of histopathology and biological behavior, lung cancer can be divided into NSCLC and SCLC, among which the former mainly includes several common types such as adenocarcinoma, squamous cell carcinoma, and large cell carcinoma [25]. The pathogenesis of lung cancer primarily involves the following aspects: chromosome changes; abnormal immune response; abnormal activation of developmental pathways; dysregulation of tumor suppressor genes, proto-oncogenes, and signaling pathways; and the up-regulation of receptor tyrosine kinases, growth factors, and cell markers. These abnormal changes cause an imbalance between lung cell proliferation and apoptosis, which leads to lung cancer [28–31]. For example, when exposed to risk factors continuously, the production of ROS, chemokines, and cytokines increases in lung cells, which leads to DNA damage and gives rise to inflammation and other pathobiological changes that ultimately promote carcinogenesis. At the same time, the anti-tumor immune function of macrophages, T lymphocytes, B lymphocytes, and NK cells gets suppressed, failing recognition and clearance of malignant cells, and eventually bringing about the formation of tumors [32]. In the early stage of the disease, it is usually considered to be asymptomatic, while may manifest as cough, dyspnea, chest pain, hemoptysis, hoarseness, and so on in the middle and advanced period [33]. In principle, the treatment of lung cancer depends largely on the type, stage and condition of the patient’s disease. Currently, the main treatment approaches for lung cancer include surgery, chemotherapy, and radiotherapy. Among them, platinum-containing double drugs are preferred for chemotherapy. Radiation therapy is mainly applied in the control of the local lesion. Furthermore, targeted therapy for EGFR, ALK, ROS1, and other gene mutations and immunotherapy to inhibit PD-1/PD-L1 also plays an irreplaceable role as emerging breakthrough therapeutic means [25,34–39]. Compared with chemotherapy, targeted therapy can prominently enhance the survival rate and tolerance of patients with NSCLC [40,41]. The combination of chemotherapy and immunotherapy has also shown a more notable curative effect over chemotherapy alone [42,43]. Additionally, there has been a growing body of research focusing on natural product therapy, local ablative therapy, and chimeric antigen receptor (CAR)-T-cell therapy lately [44–51]. In principle, the treatments of lung cancer are individualized depending largely on the type, stage, and condition of patients. Unfortunately, the limited sensitivity of NSCLC patients to chemotherapy and immunotherapy drugs has proven to be a major obstacle to clinical treatment. Denk D et al. suggested that inflammation is ubiquitous in carcinogenesis. In his study, he noted that interfering with individual cytokines and their respective signaling pathways holds great promise for the development and improvement of current clinical cancer therapies [52]. IL-22 is a new type of cytokine discovered in 2000 and has gradually attracted attention due to its role in tumor diseases. In recent years, multiple studies have reported the positive role of IL-22 in enhancing chemotherapy resistance in human lung cancer patients. This positive effect is related to the function of IL-22 in promoting lung cancer cell proliferation and inhibiting lung cancer cell apoptosis. Results showed that IL-22 activated the EGFR/AKT/ERK signaling pathway [52], STAT3, and ERK1/2 signaling pathways [24] in drug-treated lung cancer cells, thereby attenuating the pro-apoptotic effect of the drug on lung cancer cells.\\n\\n# 3. Function role of IL-22 in lung cancer\\n\\nIL-22 is a cytokine first identified by Dumoutier et al. in IL-9-induced murine T cells over 20 years ago and was once called IL-10-related T cell-derived inducible factor (IL-10-TIF) [53]. In human beings, the IL-22 gene lies in chromosome 12q15, next to the gene.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='137684ca-6ce0-413c-9836-7cbb099e258f', embedding=None, metadata={'file_path': 'D:\\\\Project Multimedika\\\\Projek 2\\\\fullstack_summarizer_and_bot_development\\\\backend\\\\research\\\\data\\\\main.pdf', 'file_name': 'main.pdf', 'file_type': 'application/pdf', 'file_size': 3342958, 'creation_date': '2024-09-25', 'last_modified_date': '2024-09-24'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\nthat encodes IFN-γ [54]. When the body is in homeostasis, the most important source of IL-22 is Group 3 innate lymphoid cells (ILC3) [14]. Different from other common cytokines, IL-22 is generally thought to be produced only by hematopoietic origin immune cells, whereas it mainly acts on non-hematopoietic cells due to its receptor distribution [55]. Recently, researchers have found that non-hematopoietic cells represented by fibroblasts can also produce IL-22 under certain circumstances [11]. IL-22 is known to act by binding to its receptor (IL-22R), which is synthesized from the IL-22R1 and IL-10R2 subunits [56]. Thereinto, IL-22R1 expression is thought to be restricted to epithelial cells in organs such as the lung, liver, intestine, and skin, while the latter is universally expressed [11,57]. IL-22BP, also known as IL-22RA2, is a soluble IL-22 receptor that binds specifically to IL-22 and prevents it from binding to IL-22R1. All currently known functions of IL-22BP are achieved by inhibiting IL-22 [58,59]. Broadly speaking, the primary function of IL-22 in the body is to promote cell proliferation and tissue protection [60]. Sometimes, excessive activation of this function may lead to pathological results. This dual effect is reflected in both inflammatory and tumor-related diseases. In the short term, the production of IL-22 can play a protective role in anti-inflammatory and tumor prevention, while the uncontrolled generation of IL-22 may promote inflammation and tumor formation [13,18]. The duality of IL-22 reveals that it could be a potential drug target, and the tight regulation of IL-22 is crucial in the treatment of a variety of diseases. In Fig. 1, We summarize the role of IL-22 in lung cancer.\\n\\nIn general, the expression levels of IL-22 in vivo are regulated by a variety of cytokines and genes. For instance, IL-1β and IL-23 can induce the production of IL-22 independently, and the two act synergistically [11]. What’s more, Cornelia Voigt described a novel mechanism whereby cancer cells promote tumor growth by releasing IL-1β to induce IL-22 production by memory CD4+ T cells [61]. According to an animal experiment, IL-1β can enhance the proliferation of epithelial cells and promote lung tumorigenesis [62]. IL-23 has been proven to promote proliferation in NSCLC by Anne-Marie Baird et al. [63]. Although IL-23 is thought to be able to induce macrophages to produce IL-22, this study by Anne-Marie Baird et al. cannot directly prove whether the proliferation-promoting effect of IL-23 on NSCLC cells is related to IL-23’s promotion of IL-22 production. IL-23 is also thought to promote the expression of IL-26 by macrophages. Like IL-22, IL-26 is part of the IL-10 family. Researchers demonstrated for the first time that IL-26 is involved in the generation of malignant pleural effusions [64]. They reported that IL-26 promotes the generation of malignant pleural effusion by mediating the infiltration of CD4+IL-22+T cells in malignant pleural effusion and stimulating CD4+ IL-22+ T cells to secrete IL-22. Recently, the Notch-AhR-IL-22 axis is thought to be involved in the pathogenesis of LUAD. It is corroborated that in LUAD patients, elevated Notch1 facilitates IL-22 generation by CD4+ T cells via aryl hydrocarbon receptors (AhR) [65]. In NSCLC, Notch signaling can both promote tumorigenesis and inhibit tumor progression, which mainly depends on its regulation of the\\n\\n|Class I: Proliferation, apoptosis, and invasion|Class II: Regulating tumor microenvironment|\\n|---|---|\\n|Proliferation|Lung cancer tissue|\\n|NK cells| |\\n|T cells|Apoptosis|\\n|Lung cancer cells| |\\n|C01se|Metastasis|\\n|Lung cancer cells|Infiltrated immune cells|\\n|CASPASE| |\\n|Multidrug resistance| |\\n|IL-22 Ko| |\\n|IL-6|Lymphocyte|\\n|TNF-a|Total WBC|\\n|IL-1a|Macrophage|\\n|Neutrophil| |\\n\\n|Class III: Angiogenesis|Class IV: Cancer stem cell|\\n|---|---|\\n|IL-22|STAT3 signaling pathway|\\n|Lung cancer tissue| |\\n|Aangiogenic switch| |\\n|IL-22| |\\n|Vascular endothelial cell|Cancer stem cells|\\n| |Lung cancer cells|\\n\\nFig. 1. IL-22 plays four main functions during the progression of lung cancer. 1) Promote lung cancer cell proliferation and invasion, and inhibit lung cancer cell apoptosis; 2) Regulate the abundance of immune cells in lung cancer tissues and activate the inflammatory microenvironment; 3) Promote cancer angiogenesis; 4) Activate lung cancer stem cells.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='40493e25-7e57-4f65-9d37-8e21a13e8a3a', embedding=None, metadata={'file_path': 'D:\\\\Project Multimedika\\\\Projek 2\\\\fullstack_summarizer_and_bot_development\\\\backend\\\\research\\\\data\\\\main.pdf', 'file_name': 'main.pdf', 'file_type': 'application/pdf', 'file_size': 3342958, 'creation_date': '2024-09-25', 'last_modified_date': '2024-09-24'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\nTransformation between neuroendocrine and non-neuroendocrine. For patients with SCLC containing Notch active tumor cells, the application of Notch inhibitors may be an effective treatment [66]. Moreover, the expression of IL-22 is also regulated by miR-26. In cutaneous T-cell lymphoma (CTCL) cells, transfection of miR-26 resulted in a remarkable decrease in the expression levels of IL-22 and IL-22 mRNA [67]. In human NSCLC, Yi He et al. found that the expression levels of miR-26 were lower in tumor tissues compared to paracancerous tissue. As a functional miRNA, miR-26 was further proved by the team to inhibit autophagy and induce apoptosis of NSCLC cells both in vitro and in vivo [68]. On the other hand, IL-22 has also been shown to regulate other cytokines. Studies have shown that the production of IL-22 generally reduces Th1-type immune responses. This action may be coordinated with the protective effect of IL-22R-expressing tissue cells to reduce collateral damage in the context of infection and inflammation [69]. Besides, animal experiments have indicated that IL-22 can also promote B-cell responses by inducing CXCL13 in tertiary lymphoid follicles [70,71]. In the latest murine lung cancer model, IL-22 was discovered to induce NK cells to overexpress CD155, thus mediating the immune evasion of tumor cells [72]. As a transmembrane adhesive molecule, CD155 has been proven to inhibit T and NK cell-mediated anti-tumor immune responses, thereby promoting tumor progression (Fig. 2) [73–75].\\n\\nIn the occurrence and development of pulmonary diseases, IL-22 is considered to play an important role. As previously demonstrated in an epicutaneously sensitized mice experiment, IL-22 promotes the development of neutrophil and eosinophile-mediated airway inflammation and airway hyperresponsiveness stimulated by intranasal antigens [76]. The conclusion implies that blocking IL-22 may be helpful for the treatment of bronchial asthma. When it comes to chronic obstructive pulmonary disease (COPD), the expression levels of both IL-22 and its receptor in COPD patients were higher than those of healthy controls. This result was confirmed in mice with experimental COPD induced by cigarette smoke. What’s more, researchers also found that cigarette smoke-induced inappropriate activation of pulmonary neutrophils decreased in IL-22-deficient mice with COPD. This suggests that IL-22 may be involved in the pathogenesis of COPD. The research further manifested that IL-22 promotes cigarette smoke-induced airway remodeling, pulmonary neutrophil inflammation, and the impairment of pulmonary function, and is involved in the pathogenesis of COPD [77]. While in pulmonary infectious diseases such as pneumonia, tuberculosis, and pulmonary mycosis, it is thought that IL-22 appears to take a protective and preventive part [78–83]. For good measure, in the bleomycin-induced pulmonary fibrosis model, the degree of pulmonary fibrosis in IL-22 knockout mice was aggravated, and injection of recombinant IL-22 alleviated the severe fibrosis in IL-22 knockout mice. This latest research has suggested the potential anti-fibrotic effect of IL-22 [84].\\n\\nIn recent years, differential expression of IL-22 has also been discovered in various specimens of lung cancer (Table 1). In the first place, the mean levels of IL-22 in the plasma of NSCLC patients were significantly higher than that of the reference cohort [21,85]. The plasma levels of IL-22 were observed to elevate along with the increase in lung cancer staging [85]. In addition, Immunohistochemistry analysis showed that IL-22 expression was up-regulated in NSCLC tumor specimens in comparison to that in the adjacent tissues. RT-qPCR analysis also revealed similar differences in IL-22 mRNA expression between lung cancer tissues and normal tissues [24,86]. Interestingly, Yi Bi et al. compared IL-22 levels between tissues and serum of patients with primary NSCLC and their paired recurrent lung cancer specimens and the expression levels of IL-22 were found to be obviously up-regulated in the latter group [23]. Apart from this, IL-22 expression was also detected in bronchoalveolar lavage fluid (BALF). As reported by an article in 2016, IL-22 levels were...\\n\\n|CD155|NK Cell|L|\\n|---|---|---|\\n|T Cell|IL-22|Impaired function|\\n| |Lung metastases| |\\n\\nFig. 2. IL-22 induces NK cells to overexpress CD155, which binds to NK cell activation receptor CD226. Over-activation leads to a decrease in the amount of CD226 and impaired NK cell function, thereby mediating tumor cell immune escape.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='2743fb75-4561-4ebf-b3a3-98c9ab31ae9c', embedding=None, metadata={'file_path': 'D:\\\\Project Multimedika\\\\Projek 2\\\\fullstack_summarizer_and_bot_development\\\\backend\\\\research\\\\data\\\\main.pdf', 'file_name': 'main.pdf', 'file_type': 'application/pdf', 'file_size': 3342958, 'creation_date': '2024-09-25', 'last_modified_date': '2024-09-24'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\n# Table 1\\n\\nDifferential expression of IL-22/IL-22 mRNA/IL-22R1 mRNA in various samples in lung cancer. +: Up-regulated.\\n\\n|Molecule|Samples|Expression|P value|Ref. (PMID)|\\n|---|---|---|---|---|\\n|IL-22|Plasma|+|0.0013|24956177|\\n|IL-22 mRNA|Tissues|+|0.0313|18927282|\\n|IL-22|Pleural effusion|+|0.0051|18927282|\\n|IL-22 mRNA, IL-22|Tissues, serum|+|<0.01|26983629|\\n|IL-22R1 mRNA|Tissues|+|<0.05|26983629|\\n|IL-22|BALF|+|<0.001|27388918|\\n\\nSignificantly higher in BALF from lung cancer patients compared with control group. The researchers expanded the cohort to patients with lung metastases from other malignancies and found that IL-22 concentrations remained higher than controls [87]. These results implied that IL-22 in BALF may be a biomarker for lung cancer. Over and above, researchers also found the trace of IL-22 in pleural effusion [88,89]. One study has revealed that IL-22 levels were higher in malignant pleural effusion as against tuberculous pleural effusion [24]. These differential expressions prompt that IL-22 may participate in the occurrence and development of lung cancer (Table 2).\\n\\nThe link between inflammatory processes and cancer has long been recognized [90]. Related studies hint that inflammatory responses play a vital role in different phases of tumor occurrence, development, and metastasis [91–93]. The function of IL-22 in cancer is extremely complicated. Initially, IL-22 may prevent tumorigenesis by reducing chronic inflammation, promoting barrier function, and inducing tissue regeneration. On the contrary, if IL-22 is excessively expressed under persistent chronic inflammation, then malignant cells may utilize this signal to facilitate its progression [11]. In the lung tumor microenvironment, uncontrolled expression of IL-22 can amplify inflammation by inducing various inflammatory mediators alone or in concert with other cytokines [94]. As illustrated by a cellular experiment, IL-22 could promote the proliferation of A549 and H125 cells belonging to the NSCLC cell lines, thereby enhancing the ability of tumor cell migration and invasion [23]. An in vitro experiment in 2018 has confirmed that IL-22 can directly act on endothelial cells to stimulate tumor angiogenesis [95]. To some extent, this enhances the ability of tumor cells to absorb nutrients and distant metastasis. From another perspective, this provides new ideas for anti-angiogenic therapy of tumors. Nasim Khosravi suggested that IL-22 promotes tumor progression by inducing a pro-tumor immune response and protective stem cell properties of tumor cells [94]. It is also reported that after 12h of serum starvation, the proportion of apoptotic lung cancer cells transfected with the IL-22 gene was significantly lower than that of control lung cancer cells. In addition, the apoptosis-inducing and anti-proliferative effects of chemotherapeutic drugs on lung cancer cells were inhibited in IL-22 transgenic cell lines [24]. Simultaneously, the apoptosis of lung cancer cells induced by gefitinib was also significantly reduced 48 h after IL-22 exposure [96]. On the contrary, exposure to IL-22R1 blocking antibodies or in vitro transfection of IL-22-RNA interference plasmid leads to apoptosis of lung cancer cells [24]. Zhiliang Huang et al. found that the apoptosis rate of paclitaxel-treated lung cancer cells in the IL-22 siRNA transfection group was significantly increased compared with the control group [22]. Apart from this, IL-22 antibody treated mice and IL-22-deficient mice were found to be protected from the formation of pulmonary metastases caused by colon cancer, while IL-22 overexpression promoted metastases [20]. In short, IL-22 not only antagonizes the induction of apoptosis and cell cycle arrest of lung cancer cells by anti-tumor drugs but also promotes the proliferation and migration of lung cancer cells, the growth of tumor tissues, and the generation of lung metastatic cancer.\\n\\n# 4. Regulatory role of IL-22 in lung cancer\\n\\nNumerous signaling pathways are involved in the regulation of IL-22 in lung cancer, including PI3K/AKT, JAK-STAT3, p38 MAPK signaling pathways, and so on. In the following, we will elaborate on the regulatory role of IL-22 in lung cancer from the point of view of each major signaling pathway (Fig. 3).\\n\\n# Table 2\\n\\nPotential clinical role of IL-22, its receptors and producing cells in lung cancer.\\n\\n|Sample sources|Clinical function|Conclusion|Ref. (PMID)|\\n|---|---|---|---|\\n|Patients|Diagnosis|IL-22 levels were significantly higher in lung cancer patients than control group.|24956177, 27388918|\\n|Patients|Prognosis assessment|IL-22R1 levels were associated with poorer prognosis.|26846835|\\n|Patients|Disease assessment|The levels of IL-22-producing Th22 cells were positively correlated with TNM stage and lymph node metastasis.|35669104|\\n|Patients|Efficacy prediction|IL-22 expression levels were associated with EGFR-TKI efficacy.|31750252|\\n|Mice model|Treatment|IL-22-deficient mice had a lower metastatic load of lung cancer.|36630913|\\n|Mice model|Treatment|Gene ablation of IL-22 resulted in a marked reduction in the number and size of lung tumors.|29764837|', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='31560940-3f9f-4575-97e3-351a97a0607e', embedding=None, metadata={'file_path': 'D:\\\\Project Multimedika\\\\Projek 2\\\\fullstack_summarizer_and_bot_development\\\\backend\\\\research\\\\data\\\\main.pdf', 'file_name': 'main.pdf', 'file_type': 'application/pdf', 'file_size': 3342958, 'creation_date': '2024-09-25', 'last_modified_date': '2024-09-24'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\n# 4.1. PI3K/Akt signaling pathway\\n\\nPI3K/Akt signaling pathway is one of the core intracellular signaling pathways, which plays a critical role in regulating cell growth, survival, metabolism, movement, and proliferation [97]. As a downstream effector of receptor tyrosine kinases (RTKs) and G-protein-coupled receptors (GPCRs), PI3K is a group of lipid kinases consisting of three subunits. It can be divided into three categories according to various functions and structures. Thereinto Class IA PI3K is a heterodimer of the p110 catalytic subunit and the p58 regulatory subunit, and it is primarily related to human tumors [98,99]. As we all know, PI3K can catalyze phosphatidylinositol [4, 5]-bisphosphate (PIP2) to phosphatidylinositol [3–5]-trisphosphate (PIP3). Serine/threonine protein kinase (Akt), as the main downstream molecule of the PI3K signaling pathway, is mainly activated by PIP3-driven plasma membrane recruitment and phosphorylation. The mammalian target of rapamycin (mTOR), a major downstream signaling molecule in the PI3K/Akt signaling pathway, is considered to be a modified protein kinase in the form of mTORC1 and mTORC2. The first is mainly activated by the PI3K/Akt signaling pathway, and mTORC2 further activates Akt by directly phosphorylating its hydrophobic motif (Ser473) [100].\\n\\nPI3K/Akt signaling pathway is considered to be the chief regulatory factor of idiopathic pulmonary fibrosis (IPF), it may directly participate in the formation of IPF or promote the occurrence and development of fibrosis in collaboration with other pathways [97]. Several studies have declared that certain natural products like resveratrol and Danhong injection can provide neuroprotective effects by activating the PI3K/Akt/mTOR signaling pathway [101,102]. Furthermore, the relationship between the PI3K/Akt/mTOR signaling pathway and cancer has been most intensively studied. Activation of the PI3K/Akt/mTOR signaling pathway is believed to promote the occurrence, proliferation, and progression of a variety of cancers, including breast cancer, ovarian cancer, prostate cancer, etc. [99,100,103]. In addition, it is also an important cause of tumor drug resistance [104]. In NSCLC, KRAS, EGFR, and PTEN mutations are believed to activate the PI3K/Akt/mTOR signaling pathway [105]. As demonstrated in a previous article, upregulation of the PI3K signaling pathway was identified as an early and reversible event in the pathogenesis of NSCLC [106]. One experiment has confirmed that the PI3K/Akt signaling pathway promotes the proliferation of LUAD cells mainly through anti-apoptosis [107]. Additionally, as revealed in a cellular study, IL-22 produced by CAFs markedly improves the proliferation and invasion of lung cancer cell, and lessens apoptosis by activating the PI3K/Akt/mTOR signaling pathway [86]. For good measure, it has been found that Akt phosphorylation in NSCLC cells is facilitated by different concentrations of IL-22 in a time- and dose-dependent way [23]. Collectively, the PI3K/Akt/mTOR signaling pathway plays a significant role in the relationship between IL-22 and lung cancer. It is worth mentioning that IL-22 does not seem to always activate the PI3K/Akt/mTOR signaling pathway. Meng Yuxia et al. found that IL-22 inhibits the activity of the PI3K/Akt/mTOR signaling pathway in mouse liver fibrosis tissue [108]. This opposite finding may be related to the dual function of IL-22. Further study on the impact of IL-22 on the PI3K/Akt/mTOR signaling pathway in different disease processes will help us better understand the specific mechanism of IL-22’s function in the human body. This will facilitate.\\n\\n|IL-22|PI3K|JAK|P38 MAPK|\\n|---|---|---|---|\\n|NK cell|AKT|mTOR| |\\n|Antitumor drugs|Gene expression| |Metastasis|\\n|Apoptosis|Proliferation|EMT|Invasion|\\n| |Lung tumor cell| | |\\n\\nFig. 3. IL-22 promotes the proliferation, migration and epithelial-mesenchymal transition of lung cancer cells through PI3K/Akt, JAK-STAT3, p38 MAPK and other signaling pathways, and antagonizes the apoptosis of lung cancer cells induced by anti-tumor drugs.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='0f295d75-2e39-485d-ab98-37f250a244d3', embedding=None, metadata={'file_path': 'D:\\\\Project Multimedika\\\\Projek 2\\\\fullstack_summarizer_and_bot_development\\\\backend\\\\research\\\\data\\\\main.pdf', 'file_name': 'main.pdf', 'file_type': 'application/pdf', 'file_size': 3342958, 'creation_date': '2024-09-25', 'last_modified_date': '2024-09-24'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={}, text='# L. Xu et al. Heliyon 10 (2024) e35901\\n\\n# IL-22-related clinical drug development.\\n\\n# 4.2. JAK/STAT signaling pathway\\n\\nThe JAK/STAT signaling pathway is also an important communication center for cell function, and aberrant alterations in its components are associated with numerous human diseases. JAK/STAT is an evolutionarily conserved signaling pathway consisting of JAKs, STATs, and ligand-receptor complexes. There are four major members of the JAK family, all of which are composed of non-receptor tyrosine protein kinases. The STAT family contains six members which consist of 750–900 amino acids. The JAK/STAT signaling pathway is mainly thought to mediate inflammation, apoptosis, hematopoiesis, tissue repair, immune regulation, and adipogenesis [109]. In autoimmune diseases such as rheumatoid arthritis (RA), activation of the JAK-STAT signaling pathway leads to the progression of joint injury through overexpression of the matrix metalloproteinase gene, apoptosis of chondrocytes, and apoptotic resistance in synovial tissue [110,111]. In addition, in a 2020 study by Meyer LK, the inhibition of the JAK-STAT signaling pathway was found to sensitize CD8+ T cells to dexamethasone-induced excessive inflammatory cell apoptosis [112]. Song et al. have long discovered that the lifespan of NSCLC cells was notably reduced after inhibiting STAT3 [113]. In a murine lung model, overexpression of STAT3 in alveolar type II cells led to severe lung inflammation and eventually to the formation of LUAD [114]. Further, down-regulation of STAT3 was found to result in enhanced NK cell immunity in both human and murine NSCLC cells, which suggests that STAT3 plays an inhibitory role against tumor NK cell immunity [115,116]. A study last year disclosed that IL-22 triggers JAK-STAT3 pathway phosphorylation in NSCLC cells in a time- and dose-dependent manner, thus promoting the proliferation and metastasis of tumor cells [23,96]. Another study demonstrated that the overexpression of IL-22 protected lung cancer cells against apoptosis induced by serum starvation and chemotherapy drugs by activating STAT3 and its downstream anti-apoptotic proteins [24].\\n\\n# 4.3. p38 MAPK signaling pathway\\n\\nThe p38 mitogen-activated protein kinases (MAPK) signaling pathway takes a crucial role in signaling cascades induced by various cellular stimuli. There are four p38 kinase members in the mammalian mitogen-activated protein (MAP) family, which play momentous roles in extracellular stimulation-mediated proliferation, inflammation, differentiation, apoptosis, senescence, and tumorigenesis [117]. In the classical pathway, the p38 MAPK signaling pathway is activated by cascade phosphorylation [118]. In a hepatitis C virus (HCV) experiment, researchers demonstrated that virus-induced activation of the p38 MAPK signaling pathway promotes viral infection, and blocking activation of this pathway may be an antiviral approach [117]. According to Dan He in 2020, mTORC1 drives intestinal stem cell aging via the p38 MAPK-p53 signaling pathway [119]. The p38 MAPK signaling pathway has long been demonstrated to exhibit a major oncogenic role in LUAD [120–122]. Yinan Guo et al. found evidence that the p38 MAPK signaling pathway can promote EMT and metastasis of NSCLC both in vitro and in vivo [123]. In addition, a study published in 2017 proposed that the p38 MAPK signaling pathway activates stem cell properties of LUAD cells by regulating GLI1 [124]. What’s more, in lung cancer models, researchers found that the p38 MAPK signaling pathway inhibited the stem cell properties of lung CSCs and promoted their proliferation and differentiation, thereby leading to tumorigenesis. More importantly, they also elucidated that the p38 MAPK and PI3K/AKT signaling pathways have unique and synergistic roles in regulating lung CSCs self-renewal as carcinogenic and/or stem cell signaling pathways [107]. This provides a new idea for the stem cell-based treatment of lung cancer. In NSCLC, IL-22 in vivo and in vitro were both verified to activate the p38 MAPK signaling pathway. The collected evidence from this study confirmed the negative immunomodulatory role of IL-22 in the disease [96].\\n\\n# 5. Clinical role of IL-22 in lung cancer\\n\\nCurrently, there is still a lack of efficient biomarkers for the diagnosis and treatment of lung cancer. In recent years, the value of the interleukin family as biomarkers and therapeutic targets of lung cancer has been deeply investigated [125–132]. Of these, IL-1 and IL-6 have been studied most extensively in lung cancer. Bo Yuan’s findings in mice experiments supported IL-1β as a potential target for the prevention and treatment of LUAD patients with Kras mutations [129]. In a clinical trial of the anti-IL-1β antibody canakinumab, researchers found that 300 mg canakinumab significantly reduced lung cancer mortality compared with the control group (HR 0.49 [95%CI 0.31–0.75]; p = 0.0009) [133]. In plasma samples or tumor tissues from NSCLC, researchers revealed that patients with lower baseline IL-6 concentrations benefited more from immunotherapy. The study elucidated the role of IL-6 in predicting the efficacy of immunotherapy in patients with NSCLC [128]. Furthermore, in one lung cancer study, the survival hazard ratio before and after chemotherapy for high versus low IL-6 levels was 1.25 (95%CI 0.73–2.13) and 3.66 (95%CI 2.18–6.15), respectively. It is suggested that IL-6 may be a prognostic indicator of survival in patients with advanced NSCLC receiving chemotherapy [127]. Some scholars have also described the potential value of IL-11 as a biomarker for the diagnosis and prognosis of NSCLC [125]. In addition, another research has shown that changes in serum IL-8 levels in NSCLC patients could reflect and predict the response to immunotherapy [130]. Kaplan-Meier survival analysis showed that the overall survival outcome of NSCLC patients with high IL-22R1 expression was significantly lower than that of patients with low IL-22R1 expression (p = 0.022). Multivariate regression analysis also confirmed an association between IL-22R1 levels and poorer outcomes (HR 1.5, 95%CI 1.2–1.9; p = 0.0011). This suggested that high expression of IL-22R1 is an independent factor for low overall survival in NSCLC [134]. What’s more, the levels of IL-22-producing Th22 cells in peripheral blood were positively correlated with TNM stage, lymph node metastasis, and clinical tumor markers of lung cancer (p < 0.01) [96]. The above indicates the significance of IL-22 as a biomarker in the diagnosis and disease assessment of lung cancer. Apart from this, Renhua Guo’s team found that the expression of IL-22 in the EGFR-TKI resistant group was higher than that in sensitive.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='0e1070b2-dc17-429f-942b-e95c1b8d1a47', embedding=None, metadata={'file_path': 'D:\\\\Project Multimedika\\\\Projek 2\\\\fullstack_summarizer_and_bot_development\\\\backend\\\\research\\\\data\\\\main.pdf', 'file_name': 'main.pdf', 'file_type': 'application/pdf', 'file_size': 3342958, 'creation_date': '2024-09-25', 'last_modified_date': '2024-09-24'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\ngroup in NSCLC, and the expression level was correlated with the efficacy of EGFR-TKI in plasma [135]. Therefore, it is reasonable to suspect that IL-22 may be a new biomarker to overcome EGFR-TKI resistance in NSCLC. In terms of animal models, some investigators implanted Line-1 lung cancer cells into wild-type and IL-22-deficient mice simultaneously, and found reduced intrapulmonary metastasis in the latter group, which is independent of primary tumor size. Besides, they performed forced metastasis by intravenous injection of lung cancer cells, and the results further confirmed the lower metastatic load in mice with IL-22 deletion [72]. In another model of Kras-mutated lung cancer in mice, gene ablation of IL-22 resulted in a marked reduction in tumor number and size. The authors also analyzed the association between IL-22R1 expression and survival in patients with KRAS mutant lung adenocarcinoma, the results showed that high expression of IL-22R1 was an independent indicator of poorer relapse-free survival [94]. Taken together, these pieces of evidence highlight the potential clinical role of IL-22, IL-22R, and IL-22-producing cells in the treatment of lung cancer (Table 2).\\n\\n# 6. Future perspectives\\n\\n# 6.1. CRISPR-Cas13a technical\\n\\nAt present, mounting clinical trials based on IL-22 are being carried out in full swing worldwide, mainly involving ulcerative colitis, alcoholic cirrhosis, GVHD, and psoriasis [12,14,54,60]. However, there are presently no clinical trials based on IL-22 in lung cancer. As described previously, reduced intrapulmonary metastasis was found in IL-22-deficient mice as well as in IL-22-suppressed NSCLC cells [20,72]. In addition, blocking IL-22R1 or knockout of the IL-22 gene both retarded the progression of lung cancer [24,94]. These findings provide a new train of thought for the down-regulation of IL-22 in treating lung cancer.\\n\\nIn recent years, the research on gene editing treatment for various diseases has become more and more popular [136–138]. CRISPR-Cas13a is an effective tool for knocking out specific RNA sequences, it has been shown to induce the death of glioma cells that overexpress EGFR, which is one of the subtypes of EGFR mutation in glioma. Apart from this, the CRISPR-Cas13a gene-editing system can also inhibit the formation of intracranial tumors in mice with glioma [139]. In a collagen-induced mouse model, injection of gene-edited human amniotic mesenchymal stem cells that overexpressed IL-10 increased proteoglycan expression in joint tissue and reduced the inflammatory response and production of various inflammatory cytokines [137]. In the world’s first human phase I clinical trial utilizing CRISPR-Cas9 in the treatment of advanced NSCLC, researchers have demonstrated the feasibility and safety of gene-edited T-cell therapy targeting the PD-1 gene [140]. Thus, genome editing strategies have the potential to treat lung cancer by altering IL-22 expression levels. In the future, the role of pulmonary precision delivery based on CRISPR-Cas13 gene-editing components targeting the IL-22 mRNA in lung cancer therapy should not be ignored. CRISPR-Cas13 is expected to be further integrated.\\n\\n# IL-22 mRNA\\n\\n# Cas13a\\n\\n# Crispr-Cas13a Combined With\\n\\n# Figure\\n\\n# Single-base edition\\n\\n# Single-cell sequencing\\n\\n# Lung cancer\\n\\nFig. 4. Crispr-cas13-based IL-22 mRNA editing can be utilized for lung cancer therapy by combining with emerging technologies such as single-base editing and single-cell sequencing.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='188092c1-09ae-4347-a9ed-1a92ffd10697', embedding=None, metadata={'file_path': 'D:\\\\Project Multimedika\\\\Projek 2\\\\fullstack_summarizer_and_bot_development\\\\backend\\\\research\\\\data\\\\main.pdf', 'file_name': 'main.pdf', 'file_type': 'application/pdf', 'file_size': 3342958, 'creation_date': '2024-09-25', 'last_modified_date': '2024-09-24'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\nwith the latest technologies such as single-base editing and single-cell sequencing to promote the treatment of lung cancer to a new level (Fig. 4).\\n\\n# 6.2. Small interfering RNA\\n\\nSmall interfering RNA (siRNA) is a double-stranded RNA molecule composed of 21–23 nucleotides. In cells, siRNA forms functional complexes by binding to the RNA-induced silencing complex (RISC). RISC in the functional complex specifically recognizes and binds to the target mRNA, leading to degradation of the target mRNA and thereby silencing the expression of the target gene. Compared with traditional therapies such as small molecules and protein drugs, siRNA technology has many advantages:\\n\\n1. siRNA is highly specific. siRNA can only silence homologous genes, while unrelated genes are not affected.\\n2. siRNA can silence genes by using RISC.\\n3. siRNA can be designed to target different genes through sequence design, and can even target targets that were previously considered “undruggable”.\\n4. siRNA does not activate the innate immune system.\\n\\nTwenty years after the discovery of the RNA interference mechanism, the first siRNA drugs (including Patisiran, Givosiran, Lumasiran, Inclisiran, Vutrisiran) were approved for clinical use by the U.S. Food and Drug Administration (FDA) and the European Medicines Agency from 2018 to 2022 [141,142]. NFKBIZ is an upstream target of IL-23, IL-36 and IL-17A. In the study of Mandal A et al. [143], NFKBIZ-siRNA significantly reduces the mRNA levels of multiple pro-inflammatory cytokines, including IL-17, IL-19, IL-22, etc., in the skin tissue of psoriasis mice, thereby alleviating the condition of the mice. The safety evaluation results of NFKBIZ-siRNA preparations show that NFKBIZ-siRNA preparations can complex with nucleic acids without affecting biological activity and show no toxicity. TGF-β is a pleiotropic regulatory cytokine that can regulate a variety of ILs including IL-22 and IL-17 to affect the composition of the tumor microenvironment [144]. Currently, Sirnaomics has developed an siRNA drug that targets TGF-β (called STP705). Recently, the drug has completed phase II clinical trials in the United States and achieved positive results. The role of ILs in cancer has been extensively studied. In recent years, the positive role of IL-22 in lung cancer has received attention. The researchers believe that knocking down IL-22 mRNA levels in the lesions of lung cancer patients will help prolong the survival of lung cancer patients and improve the cure rate of lung cancer patients. For example, Zhang Wei et al. found that IL-22-siRNA slowed tumor growth in NSCLC model mice. In addition, they reported that the therapeutic effect of IL-22-siRNA combined with chemotherapy drugs (5-FU and carboplatin) on NSCLC mice was better than that of chemotherapy drugs alone [24]. In an in vitro assay [145], cell line PC9 cells (NSCLC) transfected with PDLIM5-siRNA targeting the PDLIM5 gene had reduced growth viability and exhibited higher apoptotic rates. In the chemotherapy drug gefitinib-resistant cell line PC9 cells, PDLIM5-siRNA still showed significant anti-tumor effects. These results indicate that siRNA-based therapy has good application in the clinical treatment of NSCLC, especially in drug-resistant patients. Based on these findings, we believe that the development of IL-22-siRNA drugs for lung cancer treatment has clinical potential and theoretical basis.\\n\\n# 6.3. Nanoparticle drug delivery systems\\n\\nOn the other hand, given the toxicity and erratic efficacy of current anti-tumor drugs, research on novel drug carriers in lung cancer.\\n\\n|Different types of nanomaterials|Targeting agent|IL-22-related drug|\\n|---|---|---|\\n|Lung precision delivery|Lung precision delivery|Lung precision delivery|\\n\\nFig. 5. Precision delivery of various nanomaterials containing IL-22 related drugs for the treatment of lung cancer.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='8e85abce-e0a4-48b0-b5e2-1e1eb022a31f', embedding=None, metadata={'file_path': 'D:\\\\Project Multimedika\\\\Projek 2\\\\fullstack_summarizer_and_bot_development\\\\backend\\\\research\\\\data\\\\main.pdf', 'file_name': 'main.pdf', 'file_type': 'application/pdf', 'file_size': 3342958, 'creation_date': '2024-09-25', 'last_modified_date': '2024-09-24'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\nis also of vital significance. Nanoparticles containing targeted drugs can be delivered to the intended site using carriers with affinity for various specific tissues or lesions [146,147]. In an in vivo mice lung model, combined delivery of sorafenib and crizotinib by polymer nanoparticles significantly reduced tumor progression and toxic side effects, and improved survival rate [148]. Moreover, Maofan Zhang demonstrated that the efficacy of dual-drug-loaded polymeric nanoparticles with etoposide and cisplatin was significantly superior to conventional chemotherapy modality without causing additional toxicity [149]. These imply that nanomaterials loaded with IL-22-related drugs may also have more unique advantages. Therefore, the utilization of novel nanomaterials loaded with IL-22 antibodies and IL-22 inhibitors like IL-22BP for targeted therapy of lung tumors is also a promising research direction (Fig. 5).\\n\\n# 7. Conclusion\\n\\nIn this review, we provided a comprehensive analysis of the role of IL-22 in the immune microenvironment and its involvement in major signaling pathways in the context of lung cancer. Put in a nutshell, IL-22 not only antagonizes the induction of apoptosis and cell cycle arrest of lung cancer cells by anti-tumor drugs but also promotes the proliferation and metastasis of lung cancer cells and the growth of tumor tissues. Additionally, the potential clinical significance of IL-22 in the diagnosis, treatment, and prognosis evaluation of lung cancer was further confirmed. Next, the prospects of IL-22 in combination with gene editing and novel nanomaterials in the treatment of lung cancer have been discussed. With the general increase in drug resistance to chemotherapy, targeted therapy, and immunotherapy in lung cancer, it is also necessary to study in depth to discover the correlation between IL-22 and the mechanism of drug resistance. To sum up, the potential of IL-22 as a biomarker for lung cancer still remains to be explored. Further research on the molecular, physiological effects and mechanism of IL-22 in lung cancer as well as the conduction of standardized clinical trials are expected to inject fresh blood into the diagnosis and treatment of lung cancer.\\n\\n# Financial support\\n\\nNone.\\n\\n# Data availability statement\\n\\nNot applicable.\\n\\n# CRediT authorship contribution statement\\n\\nLing Xu: Writing – original draft.\\n\\nPeng Cao: Visualization.\\n\\nJianpeng Wang: Writing – review & editing.\\n\\nPeng Zhang: Validation.\\n\\nShuhui Hu: Validation.\\n\\nChao Cheng: Writing – review & editing.\\n\\nHua Wang: Writing – review & editing, Supervision, Conceptualization.\\n\\n# Declaration of competing interest\\n\\nThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.\\n\\n# Acknowledgements\\n\\nNone.\\n\\n# Abbreviations\\n\\n|non-small cell lung cancer|NSCLC|\\n|---|---|\\n|Interleukin-22|IL-22|\\n|chimeric antigen receptor|CAR|\\n|IL-10-related T cell-derived inducible factor|IL-10-TIF|\\n|Group 3 innate lymphoid cells|ILC3|\\n|IL-22 receptor|IL-22R|\\n|aryl hydrocarbon receptors|AhR|\\n|chronic obstructive pulmonary disease|COPD|\\n|cutaneous T-cell lymphoma|CTCL|\\n|bronchoalveolar lavage fluid|BALF|\\n|receptor tyrosine kinases|RTKs|\\n|G-protein-coupled receptors|GPCRs|\\n|Mammalian target of rapamycin|mTOR|\\n|idiopathic pulmonary fibrosis|IPF|\\n|rheumatoid arthritis|RA|', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='4fd1b797-86e4-4eb9-ad08-b114d5981521', embedding=None, metadata={'file_path': 'D:\\\\Project Multimedika\\\\Projek 2\\\\fullstack_summarizer_and_bot_development\\\\backend\\\\research\\\\data\\\\main.pdf', 'file_name': 'main.pdf', 'file_type': 'application/pdf', 'file_size': 3342958, 'creation_date': '2024-09-25', 'last_modified_date': '2024-09-24'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\n# Abbreviations\\n\\n|Term|Abbreviation|\\n|---|---|\\n|mitogen-activated protein kinases|MAPK|\\n|mitogen-activated protein|MAP|\\n|hepatitis C virus|HCV|\\n\\n# References\\n\\n1. S. Lareau, C. Slatore, R. Smyth, Lung cancer, Am. J. Respir. Crit. Care Med. 204 (12) (2021) P21–P22.\\n2. J. Huang, Y. Deng, M.S. Tin, V. Lok, C.H. Ngai, L. Zhang, et al., Distribution, risk factors, and temporal trends for lung cancer incidence and mortality: a global analysis, Chest 161 (4) (2022) 1101–1111.\\n3. B.C. Bade, C.S. Dela Cruz, Lung cancer 2020: epidemiology, etiology, and prevention, Clin. Chest Med. 41 (1) (2020) 1–24.\\n4. J. Malhotra, M. Malvezzi, E. Negri, C. La Vecchia, P. Boffetta, Risk factors for lung cancer worldwide, Eur. Respir. J. 48 (3) (2016) 889–902.\\n5. H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA A Cancer J. Clin. 71 (3) (2021) 209–249.\\n6. Y. Jin, Y. Chen, H. Tang, X. Hu, S.M. Hubert, Q. Li, et al., Activation of PI3K/AKT pathway is a potential mechanism of treatment resistance in small cell lung cancer, Clin. Cancer Res. 28 (3) (2022) 526–539.\\n7. S. Kobold, S. Volk, T. Clauditz, N.J. Kupper, S. Minner, A. Tufman, et al., Interleukin-22 is frequently expressed in small- and large-cell lung cancer and promotes growth in chemotherapy-resistant cancer cells, J. Thorac. Oncol. 8 (8) (2013) 1032–1042.\\n8. K.Y. Lee, P.W. Shueng, C.M. Chou, B.X. Lin, M.H. Lin, D.Y. Kuo, et al., Elevation of CD109 promotes metastasis and drug resistance in lung cancer via activation of EGFR-AKT-mTOR signaling, Cancer Sci. 111 (5) (2020) 1652–1662.\\n9. R.A. Nagem, D. Colau, L. Dumoutier, J.C. Renauld, C. Ogata, I. Polikarpov, Crystal structure of recombinant human interleukin-22, Structure 10 (8) (2002) 1051–1062.\\n10. D. Lejeune, L. Dumoutier, S. Constantinescu, W. Kruijer, J.J. Schuringa, J.C. Renauld, Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line. Pathways that are shared with and distinct from IL-10, J. Biol. Chem. 277 (37) (2002) 33676–33682.\\n11. J.A. Dudakov, A.M. Hanash, M.R. van den Brink, Interleukin-22: immunobiology and pathology, Annu. Rev. Immunol. 33 (2015) 747–785.\\n12. Lanfranca M. Perusina, Y. Lin, J. Fang, W. Zou, T. Frankel, Biological and pathological activities of interleukin-22, J. Mol. Med. (Berl.) 94 (5) (2016) 523–534.\\n13. L.A. Zenewicz, R.A. Flavell, Recent advances in IL-22 biology, Int. Immunol. 23 (3) (2011) 159–163.\\n14. Y. Wu, J. Min, C. Ge, J. Shu, D. Tian, Y. Yuan, et al., Interleukin 22 in liver injury, inflammation and cancer, Int. J. Biol. Sci. 16 (13) (2020) 2405–2413.\\n15. Y. Zhu, T. Shi, X. Lu, Z. Xu, J. Qu, Z. Zhang, et al., Fungal-induced glycolysis in macrophages promotes colon cancer by enhancing innate lymphoid cell secretion of IL-22, EMBO J. 40 (11) (2021) e105320.\\n16. A.D. Giannou, J. Lucke, D. Kleinschmidt, A.M. Shiri, B. Steglich, M. Nawrocki, et al., A critical role of the IL-22-IL-22 binding protein Axis in hepatocellular carcinoma, Cancers 14 (24) (2022).\\n17. X. Xuan, J. Zhou, Z. Tian, Y. Lin, J. Song, Z. Ruan, et al., ILC3 cells promote the proliferation and invasion of pancreatic cancer cells through IL-22/AKT signaling, Clin. Transl. Oncol. 22 (4) (2020) 563–575.\\n18. L.G. Perez, J. Kempski, H.M. McGee, P. Pelzcar, T. Agalioti, A. Giannou, et al., TGF-beta signaling in Th17 cells promotes IL-22 production and colitis-associated colon cancer, Nat. Commun. 11 (1) (2020) 2608.\\n19. K. Kim, G. Kim, J.Y. Kim, H.J. Yun, S.C. Lim, H.S. Choi, Interleukin-22 promotes epithelial cell transformation and breast tumorigenesis via MAP3K8 activation, Carcinogenesis 35 (6) (2014) 1352–1361.\\n20. A.D. Giannou, J. Kempski, A.M. Shiri, J. Lucke, T. Zhang, L. Zhao, et al., Tissue resident iNKT17 cells facilitate cancer cell extravasation in liver metastasis via interleukin-22, Immunity 56 (1) (2023) 125–142 e12.\\n21. P. Hernandez, K. Gronke, A. Diefenbach, A catch-22: interleukin-22 and cancer, Eur. J. Immunol. 48 (1) (2018) 15–31.\\n22. Z. Huang, Y. Gao, D. Hou, Interleukin-22 enhances chemoresistance of lung adenocarcinoma cells to paclitaxel, Hum. Cell 33 (3) (2020) 850–858.\\n23. Y. Bi, J. Cao, S. Jin, L. Lv, L. Qi, F. Liu, et al., Interleukin-22 promotes lung cancer cell proliferation and migration via the IL-22R1/STAT3 and IL-22R1/AKT signaling pathways, Mol. Cell. Biochem. 415 (1–2) (2016) 1–11.\\n24. W. Zhang, Y. Chen, H. Wei, C. Zheng, R. Sun, J. Zhang, et al., Antiapoptotic activity of autocrine interleukin-22 and therapeutic effects of interleukin-22-small interfering RNA on human lung cancer xenografts, Clin. Cancer Res. 14 (20) (2008) 6432–6439.\\n25. A.A. Thai, B.J. Solomon, L.V. Sequist, J.F. Gainor, R.S. Heist, Lung cancer, Lancet 398 (10299) (2021) 535–554.\\n26. F.R. Hirsch, G.V. Scagliotti, J.L. Mulshine, R. Kwon, W.J. Curran Jr., Y.L. Wu, et al., Lung cancer: current therapies and new targeted treatments, Lancet 389 (10066) (2017) 299–311.\\n27. R.L. Siegel, K.D. Miller, N.S. Wagle, A. Jemal, Cancer statistics, 2023, CA A Cancer J. Clin. 73 (1) (2023) 17–48.\\n28. S. Zochbauer-Muller, A.F. Gazdar, J.D. Minna, Molecular pathogenesis of lung cancer, Annu. Rev. Physiol. 64 (2002) 681–708.\\n29. S.P. D’Angelo, M.C. Pietanza, The molecular pathogenesis of small cell lung cancer, Cancer Biol. Ther. 10 (1) (2010) 1–10.\\n30. Y.E. Miller, Pathogenesis of lung cancer: 100 year report, Am. J. Respir. Cell Mol. Biol. 33 (3) (2005) 216–223.\\n31. M. Sato, D.S. Shames, A.F. Gazdar, J.D. Minna, A translational view of the molecular pathogenesis of lung cancer, J. Thorac. Oncol. 2 (4) (2007) 327–343.\\n32. E. Taucher, I. Mykoliuk, J. Lindenmann, F.M. Smolle-Juettner, Implications of the immune landscape in COPD and lung cancer: smoking versus other causes, Front. Immunol. 13 (2022) 846605.\\n33. F. Nasim, B.F. Sabath, G.A. Eapen, Lung cancer, Med. Clin. 103 (3) (2019) 463–473.\\n34. G. Butschak, A. Kuster, B. Schulze, A. Graffi, Temperature dependent pH-instability of some alpha-L-arabinofuranosidases, Arch. Geschwulstforsch. 59 (3) (1989) 165–170.\\n35. S.M. Gadgeel, S.S. Ramalingam, G.P. Kalemkerian, Treatment of lung cancer, Radiol. Clin. 50 (5) (2012) 961–974.\\n36. C. Zappa, S.A. Mousa, Non-small cell lung cancer: current treatment and future advances, Transl. Lung Cancer Res. 5 (3) (2016) 288–300.\\n37. N. Duma, R. Santana-Davila, J.R. Molina, Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment, Mayo Clin. Proc. 94 (8) (2019) 1623–1640.\\n38. S. Wang, S. Zimmermann, K. Parikh, A.S. Mansfield, A.A. Adjei, Current diagnosis and management of small-cell lung cancer, Mayo Clin. Proc. 94 (8) (2019) 1599–1622.\\n39. M. Wang, R.S. Herbst, C. Boshoff, Toward personalized treatment approaches for non-small-cell lung cancer, Nat. Med. 27 (8) (2021) 1345–1356.\\n40. L.V. Sequist, J.C. Yang, N. Yamamoto, K. O’Byrne, V. Hirsh, T. Mok, et al., Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations, J. Clin. Oncol. 31 (27) (2013) 3327–3334.\\n41. J. He, C. Su, W. Liang, S. Xu, L. Wu, X. Fu, et al., Icotinib versus chemotherapy as adjuvant treatment for stage II-IIIA EGFR-mutant non-small-cell lung cancer (EVIDENCE): a randomised, open-label, phase 3 trial, Lancet Respir. Med. 9 (9) (2021) 1021–1029.\\n42. L. Gandhi, D. Rodriguez-Abreu, S. Gadgeel, E. Esteban, E. Felip, F. De Angelis, et al., Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer, N. Engl. J. Med. 378 (22) (2018) 2078–2092.\\n43. Y. Yang, Z. Wang, J. Fang, Q. Yu, B. Han, S. Cang, et al., Efficacy and safety of sintilimab plus pemetrexed and platinum as first-line treatment for locally advanced or metastatic nonsquamous NSCLC: a randomized, double-blind, phase 3 study (oncology program by InnovENT anti-PD-1-11), J. Thorac. Oncol. 15 (10) (2020) 1636–1646.\\n44. S. Dong, X. Guo, F. Han, Z. He, Y. Wang, Emerging role of natural products in cancer immunotherapy, Acta Pharm. Sin. B 12 (3) (2022) 1163–1185.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='d068c578-5351-4263-9068-62fc7a494d90', embedding=None, metadata={'file_path': 'D:\\\\Project Multimedika\\\\Projek 2\\\\fullstack_summarizer_and_bot_development\\\\backend\\\\research\\\\data\\\\main.pdf', 'file_name': 'main.pdf', 'file_type': 'application/pdf', 'file_size': 3342958, 'creation_date': '2024-09-25', 'last_modified_date': '2024-09-24'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\n# References\\n\\n1. Y. Yang, N. Li, T.M. Wang, L. Di, Natural products with activity against lung cancer: a review focusing on the tumor microenvironment, Int. J. Mol. Sci. 22 (19) (2021).\\n2. L. Xiang, Y. Gao, S. Chen, J. Sun, J. Wu, X. Meng, Therapeutic potential of Scutellaria baicalensis Georgi in lung cancer therapy, Phytomedicine 95 (2022) 153727.\\n3. Z. Chen, K.A. Vallega, H. Chen, J. Zhou, S.S. Ramalingam, S.Y. Sun, The natural product berberine synergizes with osimertinib preferentially against MET-amplified osimertinib-resistant lung cancer via direct MET inhibition, Pharmacol. Res. 175 (2022) 105998.\\n4. Z. Li, Z. Feiyue, L. Gaofeng, Traditional Chinese medicine and lung cancer–From theory to practice, Biomed. Pharmacother. 137 (2021) 111381.\\n5. J. Qu, Q. Mei, L. Chen, J. Zhou, Chimeric antigen receptor (CAR)-T-cell therapy in non-small-cell lung cancer (NSCLC): current status and future perspectives, Cancer Immunol. Immunother. 70 (3) (2021) 619–631.\\n6. S. Srivastava, S.N. Furlan, C.A. Jaeger-Ruckstuhl, M. Sarvothama, C. Berger, K.S. Smythe, et al., Immunogenic chemotherapy enhances recruitment of CAR-T cells to lung tumors and improves antitumor efficacy when combined with checkpoint blockade, Cancer Cell 39 (2) (2021) 193–208 e10.\\n7. H. Li, E.B. Harrison, H. Li, K. Hirabayashi, J. Chen, Q.X. Li, et al., Targeting brain lesions of non-small cell lung cancer by enhancing CCL2-mediated CAR-T cell migration, Nat. Commun. 13 (1) (2022) 2154.\\n8. D. Denk, F.R. Greten, Inflammation: the incubator of the tumor microenvironment, Trends Cancer 8 (11) (2022) 901–914.\\n9. L. Dumoutier, J. Louahed, J.C. Renauld, Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9, J. Immunol. 164 (4) (2000) 1814–1819.\\n10. W. Ouyang, A. O’Garra, IL-10 family cytokines IL-10 and IL-22: from basic science to clinical translation, Immunity 50 (4) (2019) 871–891.\\n11. S.Z. Hasnain, J. Begun, Interleukin-22: friend or foe? Immunol. Cell Biol. 97 (4) (2019) 355–357.\\n12. S. Mossner, M. Kuchner, N. Fazel Modares, B. Knebel, H. Al-Hasani, D.M. Floss, et al., Synthetic interleukin 22 (IL-22) signaling reveals biological activity of homodimeric IL-10 receptor 2 and functional cross-talk with the IL-6 receptor gp130, J. Biol. Chem. 295 (35) (2020) 12378–12397.\\n13. D. Lee, H. Jo, C. Go, Y. Jang, N. Chu, S. Bae, et al., The roles of IL-22 and its receptor in the regulation of inflammatory responses in the brain, Int. J. Mol. Sci. 23 (2) (2022).\\n14. S. Huber, N. Gagliani, L.A. Zenewicz, F.J. Huber, L. Bosurgi, B. Hu, et al., IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine, Nature 491 (7423) (2012) 259–263.\\n15. L.A. Zenewicz, IL-22 binding protein (IL-22BP) in the regulation of IL-22 biology, Front. Immunol. 12 (2021) 766586.\\n16. H.X. Wei, B. Wang, B. Li, IL-10 and IL-22 in mucosal immunity: driving protection and pathology, Front. Immunol. 11 (2020) 1315.\\n17. C. Voigt, P. May, A. Gottschlich, A. Markota, D. Wenk, I. Gerlach, et al., Cancer cells induce interleukin-22 production from memory CD4(+) T cells via interleukin-1 to promote tumor growth, Proc. Natl. Acad. Sci. U. S. A. 114 (49) (2017) 12994–12999.\\n18. A.G. McLoed, T.P. Sherrill, D.S. Cheng, W. Han, J.A. Saxon, L.A. Gleaves, et al., Neutrophil-derived IL-1beta impairs the efficacy of NF-kappaB inhibitors against lung cancer, Cell Rep. 16 (1) (2016) 120–132.\\n19. A.M. Baird, J. Leonard, K.M. Naicker, L. Kilmartin, K.J. O’Byrne, S.G. Gray, IL-23 is pro-proliferative, epigenetically regulated and modulated by chemotherapy in non-small cell lung cancer, Lung Cancer 79 (1) (2013) 83–90.\\n20. Y. Niu, L. Ye, W. Peng, Z. Wang, X. Wei, X. Wang, et al., IL-26 promotes the pathogenesis of malignant pleural effusion by enhancing CD4(+) IL-22(+) T-cell differentiation and inhibiting CD8(+) T-cell cytotoxicity, J. Leukoc. Biol. 110 (1) (2021) 39–52.\\n21. B. Pang, C. Hu, N. Xing, L. Xu, S. Zhang, X. Yu, Elevated Notch1 enhances interleukin-22 production by CD4(+) T cells via aryl hydrocarbon receptor in patients with lung adenocarcinoma, Biosci. Rep. 38 (6) (2018).\\n22. J.S. Lim, A. Ibaseta, M.M. Fischer, B. Cancilla, G. O’Young, S. Cristea, et al., Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer, Nature 545 (7654) (2017) 360–364.\\n23. Y. Matsuda, S. Ikeda, F. Abe, Y. Takahashi, A. Kitadate, N. Takahashi, et al., Downregulation of miR-26 promotes invasion and metastasis via targeting interleukin-22 in cutaneous T-cell lymphoma, Cancer Sci. 113 (4) (2022) 1208–1219.\\n24. Y. He, H. Liu, L. Jiang, B. Rui, J. Mei, H. Xiao, miR-26 induces apoptosis and inhibits autophagy in non-small cell lung cancer cells by suppressing TGF-beta1-JNK signaling pathway, Front. Pharmacol. 9 (2018) 1509.\\n25. H. Lindahl, T. Olsson, Interleukin-22 influences the Th1/Th17 Axis, Front. Immunol. 12 (2021) 618110.\\n26. E. Klimatcheva, T. Pandina, C. Reilly, S. Torno, H. Bussler, M. Scrivens, et al., CXCL13 antibody for the treatment of autoimmune disorders, BMC Immunol. 16 (1) (2015) 6.\\n27. F. Barone, S. Nayar, J. Campos, T. Cloake, D.R. Withers, K.M. Toellner, et al., IL-22 regulates lymphoid chemokine production and assembly of tertiary lymphoid organs, Proc. Natl. Acad. Sci. U. S. A 112 (35) (2015) 11024–11029.\\n28. D. Briukhovetska, J. Suarez-Gosalvez, C. Voigt, A. Markota, A.D. Giannou, M. Schubel, et al., T cell-derived interleukin-22 drives the expression of CD155 by cancer cells to suppress NK cell function and promote metastasis, Immunity 56 (1) (2023) 143–161 e11.\\n29. M. Kasprzak, M. Rudzinska, D. Kmiecik, R. Przybylski, A. Olejnik, Acyl moiety and temperature affects thermo-oxidative degradation of steryl esters. Cytotoxicity of the degradation products, Food Chem. Toxicol. 136 (2020) 111074.\\n30. R. Molfetta, B. Zitti, M. Lecce, N.D. Milito, H. Stabile, C. Fionda, et al., CD155: a multi-functional molecule in tumor progression, Int. J. Mol. Sci. 21 (3) (2020).\\n31. J. Gao, Q. Zheng, N. Xin, W. Wang, C. Zhao, CD155, an onco-immunologic molecule in human tumors, Cancer Sci. 108 (10) (2017) 1934–1938.\\n32. J.M. Leyva-Castillo, J. Yoon, R.S. Geha, IL-22 promotes allergic airway inflammation in epicutaneously sensitized mice, J. Allergy Clin. Immunol. 143 (2) (2019) 619–630 e7.\\n33. M.R. Starkey, M.W. Plank, P. Casolari, A. Papi, S. Pavlidis, Y. Guo, et al., IL-22 and its receptors are increased in human and experimental COPD and contribute to pathogenesis, Eur. Respir. J. 54 (1) (2019).\\n34. X. Xu, I.D. Weiss, H.H. Zhang, S.P. Singh, T.A. Wynn, M.S. Wilson, et al., Conventional NK cells can produce IL-22 and promote host defense in Klebsiella pneumoniae pneumonia, J. Immunol. 192 (4) (2014) 1778–1786.\\n35. P. Treerat, O. Prince, A. Cruz-Lagunas, M. Munoz-Torrico, M.A. Salazar-Lezama, M. Selman, et al., Novel role for IL-22 in protection during chronic Mycobacterium tuberculosis HN878 infection, Mucosal Immunol. 10 (4) (2017) 1069–1081.\\n36. B. Kone, M. Perez-Cruz, R. Porte, F. Hennegrave, C. Carnoy, P. Gosset, et al., Boosting the IL-22 response using flagellin prevents bacterial infection in cigarette smoke-exposed mice, Clin. Exp. Immunol. 201 (2) (2020) 171–186.\\n37. M.A. Gessner, J.L. Werner, L.M. Lilly, M.P. Nelson, A.E. Metz, C.W. Dunaway, et al., Dectin-1-dependent interleukin-22 contributes to early innate lung defense against Aspergillus fumigatus, Infect. Immun. 80 (1) (2012) 410–417.\\n38. S. Ivanov, J. Renneson, J. Fontaine, A. Barthelemy, C. Paget, E.M. Fernandez, et al., Interleukin-22 reduces lung inflammation during influenza A virus infection and protects against secondary bacterial infection, J. Virol. 87 (12) (2013) 6911–6924.\\n39. H. Guo, D.J. Topham, Interleukin-22 (IL-22) production by pulmonary Natural Killer cells and the potential role of IL-22 during primary influenza virus infection, J. Virol. 84 (15) (2010) 7750–7759.\\n40. Z. Qu, W. Dou, K. Zhang, L. Duan, D. Zhou, S. Yin, IL-22 inhibits bleomycin-induced pulmonary fibrosis in association with inhibition of IL-17A in mice, Arthritis Res. Ther. 24 (1) (2022) 280.\\n41. F. Liu, X. Pan, L. Zhou, J. Zhou, B. Chen, J. Shi, et al., Genetic polymorphisms and plasma levels of interleukin-22 contribute to the development of nonsmall cell lung cancer, DNA Cell Biol. 33 (10) (2014) 705–714.\\n42. H. Li, Q. Zhang, Q. Wu, Y. Cui, H. Zhu, M. Fang, et al., Interleukin-22 secreted by cancer-associated fibroblasts regulates the proliferation and metastasis of lung cancer cells via the PI3K-Akt-mTOR signaling pathway, Am J Transl Res 11 (7) (2019) 4077–4088.\\n43. A. Tufman, R.M. Huber, S. Volk, F. Aigner, M. Edelmann, F. Gamarra, et al., Interleukin-22 is elevated in lavage from patients with lung cancer and other pulmonary diseases, BMC Cancer 16 (2016) 409.\\n44. Z.J. Ye, Q. Zhou, W. Yin, M.L. Yuan, W.B. Yang, F. Xiang, et al., Interleukin 22-producing CD4+ T cells in malignant pleural effusion, Cancer Lett. 326 (1) (2012) 23–32.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='2b78082a-df27-45ec-91e0-63b42a5e3ba2', embedding=None, metadata={'file_path': 'D:\\\\Project Multimedika\\\\Projek 2\\\\fullstack_summarizer_and_bot_development\\\\backend\\\\research\\\\data\\\\main.pdf', 'file_name': 'main.pdf', 'file_type': 'application/pdf', 'file_size': 3342958, 'creation_date': '2024-09-25', 'last_modified_date': '2024-09-24'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\n# References\\n\\n1. Y. Niu, Q. Zhou, Th17 cells and their related cytokines: vital players in progression of malignant pleural effusion, Cell. Mol. Life Sci. 79 (4) (2022) 194.\\n2. R. Khandia, A. Munjal, Interplay between inflammation and cancer, Adv Protein Chem Struct Biol 119 (2020) 199–245.\\n3. R. Singh, M.K. Mishra, H. Aggarwal, Inflammation, immunity, and cancer, Mediat. Inflamm. 2017 (2017) 6027305.\\n4. A. Fishbein, B.D. Hammock, C.N. Serhan, D. Panigrahy, Carcinogenesis: failure of resolution of inflammation? Pharmacol. Ther. 218 (2021) 107670.\\n5. D. Hanahan, L.M. Coussens, Accessories to the crime: functions of cells recruited to the tumor microenvironment, Cancer Cell 21 (3) (2012) 309–322.\\n6. N. Khosravi, M.S. Caetano, A.M. Cumpian, N. Unver, C. De la Garza Ramos, O. Noble, et al., IL22 promotes Kras-mutant lung cancer by induction of a protumor immune response and protection of stemness properties, Cancer Immunol. Res. 6 (7) (2018) 788–797.\\n7. N.J. Protopsaltis, W. Liang, E. Nudleman, N. Ferrara, Interleukin-22 promotes tumor angiogenesis, Angiogenesis 22 (2) (2019) 311–323.\\n8. Y. Yao, G. Yang, G. Lu, J. Ye, L. Cui, Z. Zeng, et al., Th22 cells/IL-22 serves as a protumor regulator to drive poor prognosis through the JAK-STAT3/MAPK/AKT signaling pathway in non-small-cell lung cancer, J Immunol Res 2022 (2022) 8071234.\\n9. J. Wang, K. Hu, X. Cai, B. Yang, Q. He, J. Wang, et al., Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis, Acta Pharm. Sin. B 12 (1) (2022) 18–32.\\n10. J. Yang, J. Nie, X. Ma, Y. Wei, Y. Peng, X. Wei, Targeting PI3K in cancer: mechanisms and advances in clinical trials, Mol. Cancer 18 (1) (2019) 26.\\n11. M.K. Ediriweera, K.H. Tennekoon, S.R. Samarakoon, Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: biological and therapeutic significance, Semin. Cancer Biol. 59 (2019) 147–160.\\n12. D. Miricescu, A. Totan, S. Stanescu, II, S.C. Badoiu, C. Stefani, M. Greabu, PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects, Int. J. Mol. Sci. 22 (1) (2020).\\n13. Y. Hou, K. Wang, W. Wan, Y. Cheng, X. Pu, X. Ye, Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3K/AKT/mTOR pathway after stroke in rats, Genes Dis 5 (3) (2018) 245–255.\\n14. C. Feng, H. Wan, Y. Zhang, L. Yu, C. Shao, Y. He, et al., Neuroprotective effect of Danhong injection on cerebral ischemia-reperfusion injury in rats by activation of the PI3K-Akt pathway, Front. Pharmacol. 11 (2020) 298.\\n15. B.Y. Shorning, M.S. Dass, M.J. Smalley, H.B. Pearson, The PI3K-AKT-mTOR pathway and prostate cancer: at the crossroads of AR, MAPK, and WNT signaling, Int. J. Mol. Sci. 21 (12) (2020).\\n16. R. Liu, Y. Chen, G. Liu, C. Li, Y. Song, Z. Cao, et al., PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers, Cell Death Dis. 11 (9) (2020) 797.\\n17. M.J. Sanaei, S. Razi, A. Pourbagheri-Sigaroodi, D. Bashash, The PI3K/Akt/mTOR pathway in lung cancer; oncogenic alterations, therapeutic opportunities, challenges, and a glance at the application of nanoparticles, Transl Oncol 18 (2022) 101364.\\n18. A.M. Gustafson, R. Soldi, C. Anderlin, M.B. Scholand, J. Qian, X. Zhang, et al., Airway PI3K pathway activation is an early and reversible event in lung cancer development, Sci. Transl. Med. 2 (26) (2010) 26ra5.\\n19. J. Li, J. Wang, D. Xie, Q. Pei, X. Wan, H.R. Xing, et al., Characteristics of the PI3K/AKT and MAPK/ERK pathways involved in the maintenance of self-renewal in lung cancer stem-like cells, Int. J. Biol. Sci. 17 (5) (2021) 1191–1202.\\n20. Y.X. Meng, R. Zhao, L.J. Huo, Interleukin-22 alleviates alcohol-associated hepatic fibrosis, inhibits autophagy, and suppresses the PI3K/AKT/mTOR pathway in mice, Alcohol Clin. Exp. Res. 47 (3) (2023) 448–458.\\n21. X. Hu, J. Li, M. Fu, X. Zhao, W. Wang, The JAK/STAT signaling pathway: from bench to clinic, Signal Transduct. Targeted Ther. 6 (1) (2021) 402.\\n22. C. Baldini, F.R. Moriconi, S. Galimberti, P. Libby, R. De Caterina, The JAK-STAT pathway: an emerging target for cardiovascular disease in rheumatoid arthritis and myeloproliferative neoplasms, Eur. Heart J. 42 (42) (2021) 4389–4400.\\n23. L. Hu, R. Liu, L. Zhang, Advance in bone destruction participated by JAK/STAT in rheumatoid arthritis and therapeutic effect of JAK/STAT inhibitors, Int. Immunopharm. 111 (2022) 109095.\\n24. L.K. Meyer, K.C. Verbist, S. Albeituni, B.P. Scull, R.C. Bassett, A.N. Stroh, et al., JAK/STAT pathway inhibition sensitizes CD8 T cells to dexamethasone-induced apoptosis in hyperinflammation, Blood 136 (6) (2020) 657–668.\\n25. L. Song, J. Turkson, J.G. Karras, R. Jove, E.B. Haura, Activation of Stat3 by receptor tyrosine kinases and cytokines regulates survival in human non-small cell carcinoma cells, Oncogene 22 (27) (2003) 4150–4165.\\n26. Y. Li, H. Du, Y. Qin, J. Roberts, O.W. Cummings, C. Yan, Activation of the signal transducers and activators of the transcription 3 pathway in alveolar epithelial cells induces inflammation and adenocarcinomas in mouse lung, Cancer Res. 67 (18) (2007) 8494–8503.\\n27. S. Ihara, H. Kida, H. Arase, L.P. Tripathi, Y.A. Chen, T. Kimura, et al., Inhibitory roles of signal transducer and activator of transcription 3 in antitumor immunity during carcinogen-induced lung tumorigenesis, Cancer Res. 72 (12) (2012) 2990–2999.\\n28. J. Mohrherr, I.Z. Uras, H.P. Moll, E. Casanova, STAT3: versatile functions in non-small cell lung cancer, Cancers 12 (5) (2020).\\n29. Y. Cheng, F. Sun, L. Wang, M. Gao, Y. Xie, Y. Sun, et al., Virus-induced p38 MAPK activation facilitates viral infection, Theranostics 10 (26) (2020) 12223–12240.\\n30. Y. Xu, Q. Sun, F. Yuan, H. Dong, H. Zhang, R. Geng, et al., RND2 attenuates apoptosis and autophagy in glioblastoma cells by targeting the p38 MAPK signalling pathway, J. Exp. Clin. Cancer Res. : CR 39 (1) (2020) 174.\\n31. D. He, H. Wu, J. Xiang, X. Ruan, P. Peng, Y. Ruan, et al., Gut stem cell aging is driven by mTORC1 via a p38 MAPK-p53 pathway, Nat. Commun. 11 (1) (2020) 37.\\n32. O. Dreesen, A.H. Brivanlou, Signaling pathways in cancer and embryonic stem cells, Stem Cell Rev. 3 (1) (2007) 7–17.\\n33. X.M. Hou, T. Zhang, Z. Da, X.A. Wu, CHPF promotes lung adenocarcinoma proliferation and anti-apoptosis via the MAPK pathway, Pathol. Res. Pract. 215 (5) (2019) 988–994.\\n34. Y.C. Wang, D.W. Wu, T.C. Wu, L. Wang, C.Y. Chen, H. Lee, Dioscin overcome TKI resistance in EGFR-mutated lung adenocarcinoma cells via down-regulation of tyrosine phosphatase SHP2 expression, Int. J. Biol. Sci. 14 (1) (2018) 47–56.\\n35. Y. Guo, M. Jiang, X. Zhao, M. Gu, Z. Wang, S. Xu, et al., Cyclophilin A promotes non-small cell lung cancer metastasis via p38 MAPK, Thorac Cancer 9 (1) (2018) 120–128.\\n36. A. Po, M. Silvano, E. Miele, C. Capalbo, A. Eramo, V. Salvati, et al., Noncanonical GLI1 signaling promotes stemness features and in vivo growth in lung adenocarcinoma, Oncogene 36 (32) (2017) 4641–4652.\\n37. J.H. Leung, B. Ng, W.W. Lim, Interleukin-11: a potential biomarker and molecular therapeutic target in non-small cell lung cancer, Cells 11 (14) (2022).\\n38. H. Wang, F. Zhou, C. Zhao, L. Cheng, C. Zhou, M. Qiao, et al., Interleukin-10 is a promising marker for immune-related adverse events in patients with non-small cell lung cancer receiving immunotherapy, Front. Immunol. 13 (2022) 840313.\\n39. C.H. Chang, C.F. Hsiao, Y.M. Yeh, G.C. Chang, Y.H. Tsai, Y.M. Chen, et al., Circulating interleukin-6 level is a prognostic marker for survival in advanced nonsmall cell lung cancer patients treated with chemotherapy, Int. J. Cancer 132 (9) (2013) 1977–1985.\\n40. C. Liu, L. Yang, H. Xu, S. Zheng, Z. Wang, S. Wang, et al., Systematic analysis of IL-6 as a predictive biomarker and desensitizer of immunotherapy responses in patients with non-small cell lung cancer, BMC Med. 20 (1) (2022) 187.\\n41. B. Yuan, M.J. Clowers, W.V. Velasco, S. Peng, Q. Peng, Y. Shi, et al., Targeting IL-1beta as an immunopreventive and therapeutic modality for K-ras-mutant lung cancer, JCI Insight 7 (11) (2022).\\n42. M.F. Sanmamed, J.L. Perez-Gracia, K.A. Schalper, J.P. Fusco, A. Gonzalez, M.E. Rodriguez-Ruiz, et al., Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients, Ann. Oncol. 28 (8) (2017) 1988–1995.\\n43. M. Joerger, S.P. Finn, S. Cuffe, A.T. Byrne, S.G. Gray, The IL-17-Th1/Th17 pathway: an attractive target for lung cancer therapy? Expert Opin. Ther. Targets 20 (11) (2016) 1339–1356.\\n44. M.S. Kim, E. Kim, J.S. Heo, D.J. Bae, J.U. Lee, T.H. Lee, et al., Circulating IL-33 level is associated with the progression of lung cancer, Lung Cancer 90 (2) (2015) 346–351.\\n45. P.M. Ridker, J.G. MacFadyen, T. Thuren, B.M. Everett, P. Libby, R.J. Glynn, et al., Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial, Lancet 390 (10105) (2017) 1833–1842.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='25ed2ac4-2335-4978-a8a5-0efb3e061be1', embedding=None, metadata={'file_path': 'D:\\\\Project Multimedika\\\\Projek 2\\\\fullstack_summarizer_and_bot_development\\\\backend\\\\research\\\\data\\\\main.pdf', 'file_name': 'main.pdf', 'file_type': 'application/pdf', 'file_size': 3342958, 'creation_date': '2024-09-25', 'last_modified_date': '2024-09-24'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\n# References\\n\\n1. А. Guillon, F. Gueugnon, K. Mavridis, E. Dalloneau, Y. Jouan, P. Diot, et al., Interleukin-22 receptor is overexpressed in nonsmall cell lung cancer and portends a poor prognosis, Eur. Respir. J. 47 (4) (2016) 1277–1280.\\n2. X. Wang, J. Xu, J. Chen, S. Jin, J. Yao, T. Yu, et al., IL-22 confers EGFR-TKI resistance in NSCLC via the АKT and ERK signaling pathways, Front. Oncol. 9 (2019) 1167.\\n3. N. Zabaleta, L. Torella, N.D. Weber, G. Gonzalez-Аseguinolaza, mRNА and gene editing: late breaking therapies in liver diseases, Hepatology 76 (3) (2022) 869–887.\\n4. D.S. Chae, Y.J. Park, S.W. Kim, Аnti-arthritogenic property of interleukin 10-expressing human amniotic MSCs generated by gene editing in collagen-induced arthritis, Int. J. Mol. Sci. 23 (14) (2022).\\n5. E. Vermersch, C. Jouve, J.S. Hulot, CRISPR/Cas9 gene-editing strategies in cardiovascular cells, Cardiovasc. Res. 116 (5) (2020) 894–907.\\n6. Q. Wang, X. Liu, J. Zhou, C. Yang, G. Wang, Y. Tan, et al., The CRISPR-Cas13a gene-editing system induces collateral cleavage of RNА in glioma cells, Аdv. Sci. 6 (20) (2019) 1901299.\\n7. Y. Lu, J. Xue, T. Deng, X. Zhou, K. Yu, L. Deng, et al., Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer, Nat. Med. 26 (5) (2020) 732–740.\\n8. S.M. Hoy, Patisiran: first global approval, Drugs 78 (15) (2018) 1625–1631.\\n9. H. Wood, FDА approves patisiran to treat hereditary transthyretin amyloidosis, Nat. Rev. Neurol. 14 (10) (2018) 570.\\n10. А. Mandal, N. Kumbhojkar, C. Reilly, V. Dharamdasani, А. Ukidve, D.E. Ingber, et al., Treatment of psoriasis with NFKBIZ siRNА using topical ionic liquid formulations, Sci. Аdv. 6 (30) (2020) eabb6049.\\n11. T. Fabre, M.F. Molina, G. Soucy, J.P. Goulet, B. Willems, J.P. Villeneuve, et al., Type 3 cytokines IL-17А and IL-22 drive TGF-beta-dependent liver fibrosis, Sci Immunol. 3 (28) (2018).\\n12. C. Su, X. Ren, F. Yang, B. Li, H. Wu, H. Li, et al., Ultrasound-sensitive siRNА-loaded nanobubbles fabrication and antagonism in drug resistance for NSCLC, Drug Deliv. 29 (1) (2022) 99–110.\\n13. M.E. Аikins, C. Xu, J.J. Moon, Engineered nanoparticles for cancer vaccination and immunotherapy, Аcc. Chem. Res. 53 (10) (2020) 2094–2105.\\n14. S. Li, S. Xu, X. Liang, Y. Xue, J. Mei, Y. Ma, et al., Nanotechnology: breaking the current treatment limits of lung cancer, Аdv. Healthcare Mater. 10 (12) (2021) e2100078.\\n15. T. Zhong, X. Liu, H. Li, J. Zhang, Co-delivery of sorafenib and crizotinib encapsulated with polymeric nanoparticles for the treatment of in vivo lung cancer animal model, Drug Deliv. 28 (1) (2021) 2108–2118.\\n16. M. Zhang, CTt Hagan, H. Foley, X. Tian, F. Yang, K.M. Аu, et al., Co-delivery of etoposide and cisplatin in dual-drug loaded nanoparticles synergistically improves chemoradiotherapy in non-small cell lung cancer models, Аcta Biomater. 124 (2021) 327–335.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n')]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "documents" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Error while parsing the file '': file_name must be provided in extra_info when passing bytes\n", + "Read document 1 : \n", + "\n", + "\n", + "[]\n", + "Error while parsing the file '': file_name must be provided in extra_info when passing bytes\n", + "Read document 2 : \n", + "\n", + "\n", + "[]\n" + ] + } + ], + "source": [ + "import nest_asyncio\n", + "\n", + "nest_asyncio.apply()\n", + "\n", + "from llama_parse import LlamaParse\n", + "\n", + "parser = LlamaParse(\n", + " api_key=os.getenv(\"LLAMA_PARSE_API_KEY\"), # can also be set in your env as LLAMA_CLOUD_API_KEY\n", + " result_type=\"markdown\", # \"markdown\" and \"text\" are available\n", + " num_workers=4, # if multiple files passed, split in `num_workers` API calls\n", + " verbose=True,\n", + " language=\"en\", # Optionally you can define a language, default=en\n", + ")\n", + "\n", + "with open(\"./research/data/main.pdf\", \"rb\") as f:\n", + " documents = parser.load_data(f)\n", + " print(\"Read document 1 : \\n\\n\")\n", + " print(documents)\n", + "\n", + "# you can also pass file bytes directly\n", + "with open(\"./research/data/main.pdf\", \"rb\") as f:\n", + " file_bytes = f.read()\n", + " documents = parser.load_data(file_bytes)\n", + " print(\"Read document 2 : \\n\\n\")\n", + " print(documents)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Started parsing the file under job_id bc7110d4-30b8-4094-9b16-f8019bca2217\n" + ] + }, + { + "data": { + "text/plain": [ + "[Document(id_='87da7732-6866-43c2-9991-17b3c06a9fdb', embedding=None, metadata={}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# IL-22: A key inflammatory mediator as a biomarker and potential therapeutic target for lung cancer\\n\\n# Ling Xu a,1, Peng Cao a,1, Jianpeng Wang b,1, Peng Zhang a, Shuhui Hu a, Chao Cheng a, Hua Wang c,*\\n\\n# a Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China\\n\\n# b First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China\\n\\n# c Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China\\n\\n# A R T I C L E I N F O\\n\\n# A B S T R A C T\\n\\n# Keywords:\\n\\nLung cancer, one of the most prevalent cancers worldwide, stands as the primary cause of cancer-related deaths. As is well-known, the utmost crucial risk factor contributing to lung cancer is smoking. In recent years, remarkable progress has been made in treating lung cancer, particularly non-small cell lung cancer (NSCLC). Nevertheless, the absence of effective and accurate biomarkers for diagnosing and treating lung cancer remains a pressing issue. Interleukin 22 (IL-22) is a member of the IL-10 cytokine family. It exerts biological functions (including induction of proliferation and anti-apoptotic signaling pathways, enhancement of tissue regeneration and immunity defense) by binding to heterodimeric receptors containing type 1 receptor chain (R1) and type 2 receptor chain (R2). IL-22 has been identified as a pro-cancer factor since dysregulation of the IL-22-IL-22R system has been implicated in the development of different cancers, including lung, breast, gastric, pancreatic, and colon cancers. In this review, we discuss the differential expression, regulatory role, and potential clinical significance of IL-22 in lung cancer, while shedding light on innovative approaches for the future.\\n\\n# 1. Introduction\\n\\nLung cancer is a heterogeneous disease in which cells in the lung grow aberrantly culminating in the formation of tumors. Typically, these tumors present as nodules or masses discernible through pulmonary imaging techniques [1]. In the year 2020, the global incidence of lung cancer surpassed a staggering 2.2 million cases, leading to approximately 1.8 million tragic fatalities. When considering age-standardized rates, the morbidity and mortality figures stand at 22.4 and 18.0 per 100,000 individuals respectively [2]. Generally, lung cancer is considered to be intricately linked to a multitude of factors including but not limited to smoking, genetic predisposition, occupational exposures, as well as the deleterious effects of air and environmental pollution [3,4]. Among the risk factors for lung cancer, smoking dominates overwhelmingly, with about two-thirds of lung cancer deaths globally caused by it [5]. In recent years, the drug resistance phenomenon of lung cancer to chemotherapy and targeted therapy has become more and more prominent [6–8]. Therefore, it is of heightened importance to find new therapeutic targets.\\n\\n# * Corresponding author. Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.\\n\\n# E-mail address: wanghua@ahmu.edu.cn (H. Wang).\\n\\n# 1 These authors have contributed equally to this work and share first authorship.\\n\\nhttps://doi.org/10.1016/j.heliyon.2024.e35901\\n\\nReceived 13 August 2023; Received in revised form 5 August 2024; Accepted 6 August 2024\\n\\nAvailable online 10 August 2024\\n\\n2405-8440/© 2024 The Authors. Published by Elsevier Ltd. (http://creativecommons.org/licenses/by-nc-nd/4.0/).\\n\\nThis is an open access article under the CC BY-NC-ND license', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='03ae712d-04f2-4fd1-92a2-03c925d72a92', embedding=None, metadata={}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\n# 1. Introduction\\n\\nIL-22 is an IL-10 family cytokine produced by T cells and innate lymphocytes. Like all other IL-10 family members, the IL-22 structure contains six α-helices (termed helices A to F). They are arranged in an antiparallel conformation and produce a single bundled protein [9]. IL-22 coordinates mucosal immune defense and tissue regeneration through pleiotropic effects including pro-survival signaling, cell migration, dysplasia, and angiogenesis. These molecules act by targeting the heterodimeric transmembrane receptor complex composed of IL-22R1 and IL-10R2 and by activating subsequent signaling pathways (including JAK/STAT signaling pathway, p38 MAPK signaling pathway, and PI3K/AKT signaling pathway) [10]. It is well known that IL-22 is widely expressed in human tissues and organs, including lung, liver, heart, kidney, pancreas, gastrointestinal tract, skin, blood, adipose, and synovial tissues [11]. Meanwhile, IL-22 is also found to be broadly expressed in pathological states such as cancer, infectious diseases, tissue injury, chronic inflammatory diseases, and Graft-Versus-Host Disease [11–14]. In most cancer diseases, excessively elevated levels of IL-22 are considered to be detrimental [15–19]. For instance, a recent study has demonstrated that IL-22 promotes extravasation of tumor cells in liver metastasis [20]. Over the past few years, there has been a surge in research focusing on the relationship between IL-22 and lung cancer. Particularly in patients with NSCLC, researchers have discovered up-regulated expression of IL-22 in serum, malignant pleural effusion, and tumor tissues, and the levels of IL-22Rα1 in tumor cells and tissues are also increased [21–24]. Although emerging studies have revealed that IL-22 is closely correlated with lung cancer in terms of tissue, cell and pathological changes, the specific function and mechanism remain to be explored. In the present review, we mainly summarized the regulatory function and clinical role of IL-22 in lung cancer. In addition, the feasibility of IL-22 as a biomarker for lung cancer and directions for future research were also discussed. It is reasonable to hypothesize that IL-22 may serve as a potential target in the treatment of lung cancer.\\n\\n# 2. Overview of lung cancer\\n\\nLung cancer is a malignant disease characterized by high morbidity and mortality [25]. According to the data of GLOBOCAN, lung cancer is the second most common cancer in 2020 and the main cause of cancer death worldwide, with about one-tenth (11.4 %) of cancer diagnoses and one-fifth (18.0 %) of deaths [5]. When it comes to gender, the incidence and mortality rates of lung cancer were on the rise in females but declining in males in most countries over the past decade [2]. The 5-year survival rate of lung cancer patients varies by 4–17 % in light of stage and region [26]. As predicted by the American Cancer Society, more than 120,000 people will die of lung cancer in the United States in 2023. The good news is that although the incidence is stable or increasing, the overall mortality is decreasing at an accelerated pace [27]. From the perspective of histopathology and biological behavior, lung cancer can be divided into NSCLC and SCLC, among which the former mainly includes several common types such as adenocarcinoma, squamous cell carcinoma, and large cell carcinoma [25]. The pathogenesis of lung cancer primarily involves the following aspects: chromosome changes; abnormal immune response; abnormal activation of developmental pathways; dysregulation of tumor suppressor genes, proto-oncogenes, and signaling pathways; and the up-regulation of receptor tyrosine kinases, growth factors, and cell markers. These abnormal changes cause an imbalance between lung cell proliferation and apoptosis, which leads to lung cancer [28–31]. For example, when exposed to risk factors continuously, the production of ROS, chemokines, and cytokines increases in lung cells, which leads to DNA damage and gives rise to inflammation and other pathobiological changes that ultimately promote carcinogenesis. At the same time, the anti-tumor immune function of macrophages, T lymphocytes, B lymphocytes, and NK cells gets suppressed, failing recognition and clearance of malignant cells, and eventually bringing about the formation of tumors [32]. In the early stage of the disease, it is usually considered to be asymptomatic, while may manifest as cough, dyspnea, chest pain, hemoptysis, hoarseness, and so on in the middle and advanced period [33]. In principle, the treatment of lung cancer depends largely on the type, stage and condition of the patient’s disease. Currently, the main treatment approaches for lung cancer include surgery, chemotherapy, and radiotherapy. Among them, platinum-containing double drugs are preferred for chemotherapy. Radiation therapy is mainly applied in the control of the local lesion. Furthermore, targeted therapy for EGFR, ALK, ROS1, and other gene mutations and immunotherapy to inhibit PD-1/PD-L1 also plays an irreplaceable role as emerging breakthrough therapeutic means [25,34–39]. Compared with chemotherapy, targeted therapy can prominently enhance the survival rate and tolerance of patients with NSCLC [40,41]. The combination of chemotherapy and immunotherapy has also shown a more notable curative effect over chemotherapy alone [42,43]. Additionally, there has been a growing body of research focusing on natural product therapy, local ablative therapy, and chimeric antigen receptor (CAR)-T-cell therapy lately [44–51]. In principle, the treatments of lung cancer are individualized depending largely on the type, stage, and condition of patients. Unfortunately, the limited sensitivity of NSCLC patients to chemotherapy and immunotherapy drugs has proven to be a major obstacle to clinical treatment. Denk D et al. suggested that inflammation is ubiquitous in carcinogenesis. In his study, he noted that interfering with individual cytokines and their respective signaling pathways holds great promise for the development and improvement of current clinical cancer therapies [52]. IL-22 is a new type of cytokine discovered in 2000 and has gradually attracted attention due to its role in tumor diseases. In recent years, multiple studies have reported the positive role of IL-22 in enhancing chemotherapy resistance in human lung cancer patients. This positive effect is related to the function of IL-22 in promoting lung cancer cell proliferation and inhibiting lung cancer cell apoptosis. Results showed that IL-22 activated the EGFR/AKT/ERK signaling pathway [52], STAT3, and ERK1/2 signaling pathways [24] in drug-treated lung cancer cells, thereby attenuating the pro-apoptotic effect of the drug on lung cancer cells.\\n\\n# 3. Function role of IL-22 in lung cancer\\n\\nIL-22 is a cytokine first identified by Dumoutier et al. in IL-9-induced murine T cells over 20 years ago and was once called IL-10-related T cell-derived inducible factor (IL-10-TIF) [53]. In human beings, the IL-22 gene lies in chromosome 12q15, next to the gene.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='8f865355-e081-4d71-b589-9c696acf72dd', embedding=None, metadata={}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\nthat encodes IFN-γ [54]. When the body is in homeostasis, the most important source of IL-22 is Group 3 innate lymphoid cells (ILC3) [14]. Different from other common cytokines, IL-22 is generally thought to be produced only by hematopoietic origin immune cells, whereas it mainly acts on non-hematopoietic cells due to its receptor distribution [55]. Recently, researchers have found that non-hematopoietic cells represented by fibroblasts can also produce IL-22 under certain circumstances [11]. IL-22 is known to act by binding to its receptor (IL-22R), which is synthesized from the IL-22R1 and IL-10R2 subunits [56]. Thereinto, IL-22R1 expression is thought to be restricted to epithelial cells in organs such as the lung, liver, intestine, and skin, while the latter is universally expressed [11,57]. IL-22BP, also known as IL-22RA2, is a soluble IL-22 receptor that binds specifically to IL-22 and prevents it from binding to IL-22R1. All currently known functions of IL-22BP are achieved by inhibiting IL-22 [58,59]. Broadly speaking, the primary function of IL-22 in the body is to promote cell proliferation and tissue protection [60]. Sometimes, excessive activation of this function may lead to pathological results. This dual effect is reflected in both inflammatory and tumor-related diseases. In the short term, the production of IL-22 can play a protective role in anti-inflammatory and tumor prevention, while the uncontrolled generation of IL-22 may promote inflammation and tumor formation [13,18]. The duality of IL-22 reveals that it could be a potential drug target, and the tight regulation of IL-22 is crucial in the treatment of a variety of diseases. In Fig. 1, We summarize the role of IL-22 in lung cancer.\\n\\nIn general, the expression levels of IL-22 in vivo are regulated by a variety of cytokines and genes. For instance, IL-1β and IL-23 can induce the production of IL-22 independently, and the two act synergistically [11]. What’s more, Cornelia Voigt described a novel mechanism whereby cancer cells promote tumor growth by releasing IL-1β to induce IL-22 production by memory CD4+ T cells [61]. According to an animal experiment, IL-1β can enhance the proliferation of epithelial cells and promote lung tumorigenesis [62]. IL-23 has been proven to promote proliferation in NSCLC by Anne-Marie Baird et al. [63]. Although IL-23 is thought to be able to induce macrophages to produce IL-22, this study by Anne-Marie Baird et al. cannot directly prove whether the proliferation-promoting effect of IL-23 on NSCLC cells is related to IL-23’s promotion of IL-22 production. IL-23 is also thought to promote the expression of IL-26 by macrophages. Like IL-22, IL-26 is part of the IL-10 family. Researchers demonstrated for the first time that IL-26 is involved in the generation of malignant pleural effusions [64]. They reported that IL-26 promotes the generation of malignant pleural effusion by mediating the infiltration of CD4+IL-22+T cells in malignant pleural effusion and stimulating CD4+ IL-22+ T cells to secrete IL-22. Recently, the Notch-AhR-IL-22 axis is thought to be involved in the pathogenesis of LUAD. It is corroborated that in LUAD patients, elevated Notch1 facilitates IL-22 generation by CD4+ T cells via aryl hydrocarbon receptors (AhR) [65]. In NSCLC, Notch signaling can both promote tumorigenesis and inhibit tumor progression, which mainly depends on its regulation of the\\n\\n|Class I: Proliferation, apoptosis, and invasion|Class II: Regulating tumor microenvironment|\\n|---|---|\\n|Proliferation|Lung cancer tissue|\\n|NK cells| |\\n|T cells|Apoptosis|\\n|Lung cancer cells| |\\n|C01se|Metastasis|\\n|Lung cancer cells|Infiltrated immune cells|\\n|CASPASE| |\\n|Multidrug resistance| |\\n|IL-22 Ko| |\\n|IL-6|Lymphocyte|\\n|TNF-a|Total WBC|\\n|IL-1a|Macrophage|\\n|Neutrophil| |\\n\\n|Class III: Angiogenesis|Class IV: Cancer stem cell|\\n|---|---|\\n|IL-22|STAT3 signaling pathway|\\n|Lung cancer tissue| |\\n|Aangiogenic switch| |\\n|IL-22| |\\n|Vascular endothelial cell|Cancer stem cells|\\n| |Lung cancer cells|\\n\\nFig. 1. IL-22 plays four main functions during the progression of lung cancer. 1) Promote lung cancer cell proliferation and invasion, and inhibit lung cancer cell apoptosis; 2) Regulate the abundance of immune cells in lung cancer tissues and activate the inflammatory microenvironment; 3) Promote cancer angiogenesis; 4) Activate lung cancer stem cells.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='89a03af3-1e13-4347-9561-8a166e8c035b', embedding=None, metadata={}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\nTransformation between neuroendocrine and non-neuroendocrine. For patients with SCLC containing Notch active tumor cells, the application of Notch inhibitors may be an effective treatment [66]. Moreover, the expression of IL-22 is also regulated by miR-26. In cutaneous T-cell lymphoma (CTCL) cells, transfection of miR-26 resulted in a remarkable decrease in the expression levels of IL-22 and IL-22 mRNA [67]. In human NSCLC, Yi He et al. found that the expression levels of miR-26 were lower in tumor tissues compared to paracancerous tissue. As a functional miRNA, miR-26 was further proved by the team to inhibit autophagy and induce apoptosis of NSCLC cells both in vitro and in vivo [68]. On the other hand, IL-22 has also been shown to regulate other cytokines. Studies have shown that the production of IL-22 generally reduces Th1-type immune responses. This action may be coordinated with the protective effect of IL-22R-expressing tissue cells to reduce collateral damage in the context of infection and inflammation [69]. Besides, animal experiments have indicated that IL-22 can also promote B-cell responses by inducing CXCL13 in tertiary lymphoid follicles [70,71]. In the latest murine lung cancer model, IL-22 was discovered to induce NK cells to overexpress CD155, thus mediating the immune evasion of tumor cells [72]. As a transmembrane adhesive molecule, CD155 has been proven to inhibit T and NK cell-mediated anti-tumor immune responses, thereby promoting tumor progression (Fig. 2) [73–75].\\n\\nIn the occurrence and development of pulmonary diseases, IL-22 is considered to play an important role. As previously demonstrated in an epicutaneously sensitized mice experiment, IL-22 promotes the development of neutrophil and eosinophile-mediated airway inflammation and airway hyperresponsiveness stimulated by intranasal antigens [76]. The conclusion implies that blocking IL-22 may be helpful for the treatment of bronchial asthma. When it comes to chronic obstructive pulmonary disease (COPD), the expression levels of both IL-22 and its receptor in COPD patients were higher than those of healthy controls. This result was confirmed in mice with experimental COPD induced by cigarette smoke. What’s more, researchers also found that cigarette smoke-induced inappropriate activation of pulmonary neutrophils decreased in IL-22-deficient mice with COPD. This suggests that IL-22 may be involved in the pathogenesis of COPD. The research further manifested that IL-22 promotes cigarette smoke-induced airway remodeling, pulmonary neutrophil inflammation, and the impairment of pulmonary function, and is involved in the pathogenesis of COPD [77]. While in pulmonary infectious diseases such as pneumonia, tuberculosis, and pulmonary mycosis, it is thought that IL-22 appears to take a protective and preventive part [78–83]. For good measure, in the bleomycin-induced pulmonary fibrosis model, the degree of pulmonary fibrosis in IL-22 knockout mice was aggravated, and injection of recombinant IL-22 alleviated the severe fibrosis in IL-22 knockout mice. This latest research has suggested the potential anti-fibrotic effect of IL-22 [84].\\n\\nIn recent years, differential expression of IL-22 has also been discovered in various specimens of lung cancer (Table 1). In the first place, the mean levels of IL-22 in the plasma of NSCLC patients were significantly higher than that of the reference cohort [21,85]. The plasma levels of IL-22 were observed to elevate along with the increase in lung cancer staging [85]. In addition, Immunohistochemistry analysis showed that IL-22 expression was up-regulated in NSCLC tumor specimens in comparison to that in the adjacent tissues. RT-qPCR analysis also revealed similar differences in IL-22 mRNA expression between lung cancer tissues and normal tissues [24,86]. Interestingly, Yi Bi et al. compared IL-22 levels between tissues and serum of patients with primary NSCLC and their paired recurrent lung cancer specimens and the expression levels of IL-22 were found to be obviously up-regulated in the latter group [23]. Apart from this, IL-22 expression was also detected in bronchoalveolar lavage fluid (BALF). As reported by an article in 2016, IL-22 levels were...\\n\\n|CD155|NK Cell|L|\\n|---|---|---|\\n|T Cell|IL-22|Impaired function|\\n| |Lung metastases| |\\n\\nFig. 2. IL-22 induces NK cells to overexpress CD155, which binds to NK cell activation receptor CD226. Over-activation leads to a decrease in the amount of CD226 and impaired NK cell function, thereby mediating tumor cell immune escape.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='87dc46a7-0628-4738-b798-3a7498229f8b', embedding=None, metadata={}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\n# Table 1\\n\\nDifferential expression of IL-22/IL-22 mRNA/IL-22R1 mRNA in various samples in lung cancer. +: Up-regulated.\\n\\n|Molecule|Samples|Expression|P value|Ref. (PMID)|\\n|---|---|---|---|---|\\n|IL-22|Plasma|+|0.0013|24956177|\\n|IL-22 mRNA|Tissues|+|0.0313|18927282|\\n|IL-22|Pleural effusion|+|0.0051|18927282|\\n|IL-22 mRNA, IL-22|Tissues, serum|+|<0.01|26983629|\\n|IL-22R1 mRNA|Tissues|+|<0.05|26983629|\\n|IL-22|BALF|+|<0.001|27388918|\\n\\nSignificantly higher in BALF from lung cancer patients compared with control group. The researchers expanded the cohort to patients with lung metastases from other malignancies and found that IL-22 concentrations remained higher than controls [87]. These results implied that IL-22 in BALF may be a biomarker for lung cancer. Over and above, researchers also found the trace of IL-22 in pleural effusion [88,89]. One study has revealed that IL-22 levels were higher in malignant pleural effusion as against tuberculous pleural effusion [24]. These differential expressions prompt that IL-22 may participate in the occurrence and development of lung cancer (Table 2).\\n\\nThe link between inflammatory processes and cancer has long been recognized [90]. Related studies hint that inflammatory responses play a vital role in different phases of tumor occurrence, development, and metastasis [91–93]. The function of IL-22 in cancer is extremely complicated. Initially, IL-22 may prevent tumorigenesis by reducing chronic inflammation, promoting barrier function, and inducing tissue regeneration. On the contrary, if IL-22 is excessively expressed under persistent chronic inflammation, then malignant cells may utilize this signal to facilitate its progression [11]. In the lung tumor microenvironment, uncontrolled expression of IL-22 can amplify inflammation by inducing various inflammatory mediators alone or in concert with other cytokines [94]. As illustrated by a cellular experiment, IL-22 could promote the proliferation of A549 and H125 cells belonging to the NSCLC cell lines, thereby enhancing the ability of tumor cell migration and invasion [23]. An in vitro experiment in 2018 has confirmed that IL-22 can directly act on endothelial cells to stimulate tumor angiogenesis [95]. To some extent, this enhances the ability of tumor cells to absorb nutrients and distant metastasis. From another perspective, this provides new ideas for anti-angiogenic therapy of tumors. Nasim Khosravi suggested that IL-22 promotes tumor progression by inducing a pro-tumor immune response and protective stem cell properties of tumor cells [94]. It is also reported that after 12h of serum starvation, the proportion of apoptotic lung cancer cells transfected with the IL-22 gene was significantly lower than that of control lung cancer cells. In addition, the apoptosis-inducing and anti-proliferative effects of chemotherapeutic drugs on lung cancer cells were inhibited in IL-22 transgenic cell lines [24]. Simultaneously, the apoptosis of lung cancer cells induced by gefitinib was also significantly reduced 48 h after IL-22 exposure [96]. On the contrary, exposure to IL-22R1 blocking antibodies or in vitro transfection of IL-22-RNA interference plasmid leads to apoptosis of lung cancer cells [24]. Zhiliang Huang et al. found that the apoptosis rate of paclitaxel-treated lung cancer cells in the IL-22 siRNA transfection group was significantly increased compared with the control group [22]. Apart from this, IL-22 antibody treated mice and IL-22-deficient mice were found to be protected from the formation of pulmonary metastases caused by colon cancer, while IL-22 overexpression promoted metastases [20]. In short, IL-22 not only antagonizes the induction of apoptosis and cell cycle arrest of lung cancer cells by anti-tumor drugs but also promotes the proliferation and migration of lung cancer cells, the growth of tumor tissues, and the generation of lung metastatic cancer.\\n\\n# 4. Regulatory role of IL-22 in lung cancer\\n\\nNumerous signaling pathways are involved in the regulation of IL-22 in lung cancer, including PI3K/AKT, JAK-STAT3, p38 MAPK signaling pathways, and so on. In the following, we will elaborate on the regulatory role of IL-22 in lung cancer from the point of view of each major signaling pathway (Fig. 3).\\n\\n# Table 2\\n\\nPotential clinical role of IL-22, its receptors and producing cells in lung cancer.\\n\\n|Sample sources|Clinical function|Conclusion|Ref. (PMID)|\\n|---|---|---|---|\\n|Patients|Diagnosis|IL-22 levels were significantly higher in lung cancer patients than control group.|24956177, 27388918|\\n|Patients|Prognosis assessment|IL-22R1 levels were associated with poorer prognosis.|26846835|\\n|Patients|Disease assessment|The levels of IL-22-producing Th22 cells were positively correlated with TNM stage and lymph node metastasis.|35669104|\\n|Patients|Efficacy prediction|IL-22 expression levels were associated with EGFR-TKI efficacy.|31750252|\\n|Mice model|Treatment|IL-22-deficient mice had a lower metastatic load of lung cancer.|36630913|\\n|Mice model|Treatment|Gene ablation of IL-22 resulted in a marked reduction in the number and size of lung tumors.|29764837|', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='75a235a9-b907-42f9-bf9e-c4383d2f37c6', embedding=None, metadata={}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\n# 4.1. PI3K/Akt signaling pathway\\n\\nPI3K/Akt signaling pathway is one of the core intracellular signaling pathways, which plays a critical role in regulating cell growth, survival, metabolism, movement, and proliferation [97]. As a downstream effector of receptor tyrosine kinases (RTKs) and G-protein-coupled receptors (GPCRs), PI3K is a group of lipid kinases consisting of three subunits. It can be divided into three categories according to various functions and structures. Thereinto Class IA PI3K is a heterodimer of the p110 catalytic subunit and the p58 regulatory subunit, and it is primarily related to human tumors [98,99]. As we all know, PI3K can catalyze phosphatidylinositol [4, 5]-bisphosphate (PIP2) to phosphatidylinositol [3–5]-trisphosphate (PIP3). Serine/threonine protein kinase (Akt), as the main downstream molecule of the PI3K signaling pathway, is mainly activated by PIP3-driven plasma membrane recruitment and phosphorylation. The mammalian target of rapamycin (mTOR), a major downstream signaling molecule in the PI3K/Akt signaling pathway, is considered to be a modified protein kinase in the form of mTORC1 and mTORC2. The first is mainly activated by the PI3K/Akt signaling pathway, and mTORC2 further activates Akt by directly phosphorylating its hydrophobic motif (Ser473) [100].\\n\\nPI3K/Akt signaling pathway is considered to be the chief regulatory factor of idiopathic pulmonary fibrosis (IPF), it may directly participate in the formation of IPF or promote the occurrence and development of fibrosis in collaboration with other pathways [97]. Several studies have declared that certain natural products like resveratrol and Danhong injection can provide neuroprotective effects by activating the PI3K/Akt/mTOR signaling pathway [101,102]. Furthermore, the relationship between the PI3K/Akt/mTOR signaling pathway and cancer has been most intensively studied. Activation of the PI3K/Akt/mTOR signaling pathway is believed to promote the occurrence, proliferation, and progression of a variety of cancers, including breast cancer, ovarian cancer, prostate cancer, etc. [99,100,103]. In addition, it is also an important cause of tumor drug resistance [104]. In NSCLC, KRAS, EGFR, and PTEN mutations are believed to activate the PI3K/Akt/mTOR signaling pathway [105]. As demonstrated in a previous article, upregulation of the PI3K signaling pathway was identified as an early and reversible event in the pathogenesis of NSCLC [106]. One experiment has confirmed that the PI3K/Akt signaling pathway promotes the proliferation of LUAD cells mainly through anti-apoptosis [107]. Additionally, as revealed in a cellular study, IL-22 produced by CAFs markedly improves the proliferation and invasion of lung cancer cell, and lessens apoptosis by activating the PI3K/Akt/mTOR signaling pathway [86]. For good measure, it has been found that Akt phosphorylation in NSCLC cells is facilitated by different concentrations of IL-22 in a time- and dose-dependent way [23]. Collectively, the PI3K/Akt/mTOR signaling pathway plays a significant role in the relationship between IL-22 and lung cancer. It is worth mentioning that IL-22 does not seem to always activate the PI3K/Akt/mTOR signaling pathway. Meng Yuxia et al. found that IL-22 inhibits the activity of the PI3K/Akt/mTOR signaling pathway in mouse liver fibrosis tissue [108]. This opposite finding may be related to the dual function of IL-22. Further study on the impact of IL-22 on the PI3K/Akt/mTOR signaling pathway in different disease processes will help us better understand the specific mechanism of IL-22’s function in the human body. This will facilitate.\\n\\n|IL-22|PI3K|JAK|P38 MAPK|\\n|---|---|---|---|\\n|NK cell|AKT|mTOR| |\\n|Antitumor drugs|Gene expression| |Metastasis|\\n|Apoptosis|Proliferation|EMT|Invasion|\\n| |Lung tumor cell| | |\\n\\nFig. 3. IL-22 promotes the proliferation, migration and epithelial-mesenchymal transition of lung cancer cells through PI3K/Akt, JAK-STAT3, p38 MAPK and other signaling pathways, and antagonizes the apoptosis of lung cancer cells induced by anti-tumor drugs.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='8ceb46e8-38ee-4d80-9676-6c5c6d179d80', embedding=None, metadata={}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al. Heliyon 10 (2024) e35901\\n\\n# IL-22-related clinical drug development.\\n\\n# 4.2. JAK/STAT signaling pathway\\n\\nThe JAK/STAT signaling pathway is also an important communication center for cell function, and aberrant alterations in its components are associated with numerous human diseases. JAK/STAT is an evolutionarily conserved signaling pathway consisting of JAKs, STATs, and ligand-receptor complexes. There are four major members of the JAK family, all of which are composed of non-receptor tyrosine protein kinases. The STAT family contains six members which consist of 750–900 amino acids. The JAK/STAT signaling pathway is mainly thought to mediate inflammation, apoptosis, hematopoiesis, tissue repair, immune regulation, and adipogenesis [109]. In autoimmune diseases such as rheumatoid arthritis (RA), activation of the JAK-STAT signaling pathway leads to the progression of joint injury through overexpression of the matrix metalloproteinase gene, apoptosis of chondrocytes, and apoptotic resistance in synovial tissue [110,111]. In addition, in a 2020 study by Meyer LK, the inhibition of the JAK-STAT signaling pathway was found to sensitize CD8+ T cells to dexamethasone-induced excessive inflammatory cell apoptosis [112]. Song et al. have long discovered that the lifespan of NSCLC cells was notably reduced after inhibiting STAT3 [113]. In a murine lung model, overexpression of STAT3 in alveolar type II cells led to severe lung inflammation and eventually to the formation of LUAD [114]. Further, down-regulation of STAT3 was found to result in enhanced NK cell immunity in both human and murine NSCLC cells, which suggests that STAT3 plays an inhibitory role against tumor NK cell immunity [115,116]. A study last year disclosed that IL-22 triggers JAK-STAT3 pathway phosphorylation in NSCLC cells in a time- and dose-dependent manner, thus promoting the proliferation and metastasis of tumor cells [23,96]. Another study demonstrated that the overexpression of IL-22 protected lung cancer cells against apoptosis induced by serum starvation and chemotherapy drugs by activating STAT3 and its downstream anti-apoptotic proteins [24].\\n\\n# 4.3. p38 MAPK signaling pathway\\n\\nThe p38 mitogen-activated protein kinases (MAPK) signaling pathway takes a crucial role in signaling cascades induced by various cellular stimuli. There are four p38 kinase members in the mammalian mitogen-activated protein (MAP) family, which play momentous roles in extracellular stimulation-mediated proliferation, inflammation, differentiation, apoptosis, senescence, and tumorigenesis [117]. In the classical pathway, the p38 MAPK signaling pathway is activated by cascade phosphorylation [118]. In a hepatitis C virus (HCV) experiment, researchers demonstrated that virus-induced activation of the p38 MAPK signaling pathway promotes viral infection, and blocking activation of this pathway may be an antiviral approach [117]. According to Dan He in 2020, mTORC1 drives intestinal stem cell aging via the p38 MAPK-p53 signaling pathway [119]. The p38 MAPK signaling pathway has long been demonstrated to exhibit a major oncogenic role in LUAD [120–122]. Yinan Guo et al. found evidence that the p38 MAPK signaling pathway can promote EMT and metastasis of NSCLC both in vitro and in vivo [123]. In addition, a study published in 2017 proposed that the p38 MAPK signaling pathway activates stem cell properties of LUAD cells by regulating GLI1 [124]. What’s more, in lung cancer models, researchers found that the p38 MAPK signaling pathway inhibited the stem cell properties of lung CSCs and promoted their proliferation and differentiation, thereby leading to tumorigenesis. More importantly, they also elucidated that the p38 MAPK and PI3K/AKT signaling pathways have unique and synergistic roles in regulating lung CSCs self-renewal as carcinogenic and/or stem cell signaling pathways [107]. This provides a new idea for the stem cell-based treatment of lung cancer. In NSCLC, IL-22 in vivo and in vitro were both verified to activate the p38 MAPK signaling pathway. The collected evidence from this study confirmed the negative immunomodulatory role of IL-22 in the disease [96].\\n\\n# 5. Clinical role of IL-22 in lung cancer\\n\\nCurrently, there is still a lack of efficient biomarkers for the diagnosis and treatment of lung cancer. In recent years, the value of the interleukin family as biomarkers and therapeutic targets of lung cancer has been deeply investigated [125–132]. Of these, IL-1 and IL-6 have been studied most extensively in lung cancer. Bo Yuan’s findings in mice experiments supported IL-1β as a potential target for the prevention and treatment of LUAD patients with Kras mutations [129]. In a clinical trial of the anti-IL-1β antibody canakinumab, researchers found that 300 mg canakinumab significantly reduced lung cancer mortality compared with the control group (HR 0.49 [95%CI 0.31–0.75]; p = 0.0009) [133]. In plasma samples or tumor tissues from NSCLC, researchers revealed that patients with lower baseline IL-6 concentrations benefited more from immunotherapy. The study elucidated the role of IL-6 in predicting the efficacy of immunotherapy in patients with NSCLC [128]. Furthermore, in one lung cancer study, the survival hazard ratio before and after chemotherapy for high versus low IL-6 levels was 1.25 (95%CI 0.73–2.13) and 3.66 (95%CI 2.18–6.15), respectively. It is suggested that IL-6 may be a prognostic indicator of survival in patients with advanced NSCLC receiving chemotherapy [127]. Some scholars have also described the potential value of IL-11 as a biomarker for the diagnosis and prognosis of NSCLC [125]. In addition, another research has shown that changes in serum IL-8 levels in NSCLC patients could reflect and predict the response to immunotherapy [130]. Kaplan-Meier survival analysis showed that the overall survival outcome of NSCLC patients with high IL-22R1 expression was significantly lower than that of patients with low IL-22R1 expression (p = 0.022). Multivariate regression analysis also confirmed an association between IL-22R1 levels and poorer outcomes (HR 1.5, 95%CI 1.2–1.9; p = 0.0011). This suggested that high expression of IL-22R1 is an independent factor for low overall survival in NSCLC [134]. What’s more, the levels of IL-22-producing Th22 cells in peripheral blood were positively correlated with TNM stage, lymph node metastasis, and clinical tumor markers of lung cancer (p < 0.01) [96]. The above indicates the significance of IL-22 as a biomarker in the diagnosis and disease assessment of lung cancer. Apart from this, Renhua Guo’s team found that the expression of IL-22 in the EGFR-TKI resistant group was higher than that in sensitive.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='da26883c-dab1-4da8-bcc5-fdbad1a58553', embedding=None, metadata={}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\ngroup in NSCLC, and the expression level was correlated with the efficacy of EGFR-TKI in plasma [135]. Therefore, it is reasonable to suspect that IL-22 may be a new biomarker to overcome EGFR-TKI resistance in NSCLC. In terms of animal models, some investigators implanted Line-1 lung cancer cells into wild-type and IL-22-deficient mice simultaneously, and found reduced intrapulmonary metastasis in the latter group, which is independent of primary tumor size. Besides, they performed forced metastasis by intravenous injection of lung cancer cells, and the results further confirmed the lower metastatic load in mice with IL-22 deletion [72]. In another model of Kras-mutated lung cancer in mice, gene ablation of IL-22 resulted in a marked reduction in tumor number and size. The authors also analyzed the association between IL-22R1 expression and survival in patients with KRAS mutant lung adenocarcinoma, the results showed that high expression of IL-22R1 was an independent indicator of poorer relapse-free survival [94]. Taken together, these pieces of evidence highlight the potential clinical role of IL-22, IL-22R, and IL-22-producing cells in the treatment of lung cancer (Table 2).\\n\\n# 6. Future perspectives\\n\\n# 6.1. CRISPR-Cas13a technical\\n\\nAt present, mounting clinical trials based on IL-22 are being carried out in full swing worldwide, mainly involving ulcerative colitis, alcoholic cirrhosis, GVHD, and psoriasis [12,14,54,60]. However, there are presently no clinical trials based on IL-22 in lung cancer. As described previously, reduced intrapulmonary metastasis was found in IL-22-deficient mice as well as in IL-22-suppressed NSCLC cells [20,72]. In addition, blocking IL-22R1 or knockout of the IL-22 gene both retarded the progression of lung cancer [24,94]. These findings provide a new train of thought for the down-regulation of IL-22 in treating lung cancer.\\n\\nIn recent years, the research on gene editing treatment for various diseases has become more and more popular [136–138]. CRISPR-Cas13a is an effective tool for knocking out specific RNA sequences, it has been shown to induce the death of glioma cells that overexpress EGFR, which is one of the subtypes of EGFR mutation in glioma. Apart from this, the CRISPR-Cas13a gene-editing system can also inhibit the formation of intracranial tumors in mice with glioma [139]. In a collagen-induced mouse model, injection of gene-edited human amniotic mesenchymal stem cells that overexpressed IL-10 increased proteoglycan expression in joint tissue and reduced the inflammatory response and production of various inflammatory cytokines [137]. In the world’s first human phase I clinical trial utilizing CRISPR-Cas9 in the treatment of advanced NSCLC, researchers have demonstrated the feasibility and safety of gene-edited T-cell therapy targeting the PD-1 gene [140]. Thus, genome editing strategies have the potential to treat lung cancer by altering IL-22 expression levels. In the future, the role of pulmonary precision delivery based on CRISPR-Cas13 gene-editing components targeting the IL-22 mRNA in lung cancer therapy should not be ignored. CRISPR-Cas13 is expected to be further integrated.\\n\\n# IL-22 mRNA\\n\\n# Cas13a\\n\\n# Crispr-Cas13a Combined With\\n\\n# Figure\\n\\n# Single-base edition\\n\\n# Single-cell sequencing\\n\\n# Lung cancer\\n\\nFig. 4. Crispr-cas13-based IL-22 mRNA editing can be utilized for lung cancer therapy by combining with emerging technologies such as single-base editing and single-cell sequencing.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='879717af-4d28-425c-85de-a9cd4fbb7ae8', embedding=None, metadata={}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\nwith the latest technologies such as single-base editing and single-cell sequencing to promote the treatment of lung cancer to a new level (Fig. 4).\\n\\n# 6.2. Small interfering RNA\\n\\nSmall interfering RNA (siRNA) is a double-stranded RNA molecule composed of 21–23 nucleotides. In cells, siRNA forms functional complexes by binding to the RNA-induced silencing complex (RISC). RISC in the functional complex specifically recognizes and binds to the target mRNA, leading to degradation of the target mRNA and thereby silencing the expression of the target gene. Compared with traditional therapies such as small molecules and protein drugs, siRNA technology has many advantages:\\n\\n1. siRNA is highly specific. siRNA can only silence homologous genes, while unrelated genes are not affected.\\n2. siRNA can silence genes by using RISC.\\n3. siRNA can be designed to target different genes through sequence design, and can even target targets that were previously considered “undruggable”.\\n4. siRNA does not activate the innate immune system.\\n\\nTwenty years after the discovery of the RNA interference mechanism, the first siRNA drugs (including Patisiran, Givosiran, Lumasiran, Inclisiran, Vutrisiran) were approved for clinical use by the U.S. Food and Drug Administration (FDA) and the European Medicines Agency from 2018 to 2022 [141,142]. NFKBIZ is an upstream target of IL-23, IL-36 and IL-17A. In the study of Mandal A et al. [143], NFKBIZ-siRNA significantly reduces the mRNA levels of multiple pro-inflammatory cytokines, including IL-17, IL-19, IL-22, etc., in the skin tissue of psoriasis mice, thereby alleviating the condition of the mice. The safety evaluation results of NFKBIZ-siRNA preparations show that NFKBIZ-siRNA preparations can complex with nucleic acids without affecting biological activity and show no toxicity. TGF-β is a pleiotropic regulatory cytokine that can regulate a variety of ILs including IL-22 and IL-17 to affect the composition of the tumor microenvironment [144]. Currently, Sirnaomics has developed an siRNA drug that targets TGF-β (called STP705). Recently, the drug has completed phase II clinical trials in the United States and achieved positive results. The role of ILs in cancer has been extensively studied. In recent years, the positive role of IL-22 in lung cancer has received attention. The researchers believe that knocking down IL-22 mRNA levels in the lesions of lung cancer patients will help prolong the survival of lung cancer patients and improve the cure rate of lung cancer patients. For example, Zhang Wei et al. found that IL-22-siRNA slowed tumor growth in NSCLC model mice. In addition, they reported that the therapeutic effect of IL-22-siRNA combined with chemotherapy drugs (5-FU and carboplatin) on NSCLC mice was better than that of chemotherapy drugs alone [24]. In an in vitro assay [145], cell line PC9 cells (NSCLC) transfected with PDLIM5-siRNA targeting the PDLIM5 gene had reduced growth viability and exhibited higher apoptotic rates. In the chemotherapy drug gefitinib-resistant cell line PC9 cells, PDLIM5-siRNA still showed significant anti-tumor effects. These results indicate that siRNA-based therapy has good application in the clinical treatment of NSCLC, especially in drug-resistant patients. Based on these findings, we believe that the development of IL-22-siRNA drugs for lung cancer treatment has clinical potential and theoretical basis.\\n\\n# 6.3. Nanoparticle drug delivery systems\\n\\nOn the other hand, given the toxicity and erratic efficacy of current anti-tumor drugs, research on novel drug carriers in lung cancer.\\n\\n|Different types of nanomaterials|Targeting agent|IL-22-related drug|\\n|---|---|---|\\n|Lung precision delivery|Lung precision delivery|Lung precision delivery|\\n\\nFig. 5. Precision delivery of various nanomaterials containing IL-22 related drugs for the treatment of lung cancer.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='2ca21b8f-6b73-4c9d-b1b4-5a18c9bc6af2', embedding=None, metadata={}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\nis also of vital significance. Nanoparticles containing targeted drugs can be delivered to the intended site using carriers with affinity for various specific tissues or lesions [146,147]. In an in vivo mice lung model, combined delivery of sorafenib and crizotinib by polymer nanoparticles significantly reduced tumor progression and toxic side effects, and improved survival rate [148]. Moreover, Maofan Zhang demonstrated that the efficacy of dual-drug-loaded polymeric nanoparticles with etoposide and cisplatin was significantly superior to conventional chemotherapy modality without causing additional toxicity [149]. These imply that nanomaterials loaded with IL-22-related drugs may also have more unique advantages. Therefore, the utilization of novel nanomaterials loaded with IL-22 antibodies and IL-22 inhibitors like IL-22BP for targeted therapy of lung tumors is also a promising research direction (Fig. 5).\\n\\n# 7. Conclusion\\n\\nIn this review, we provided a comprehensive analysis of the role of IL-22 in the immune microenvironment and its involvement in major signaling pathways in the context of lung cancer. Put in a nutshell, IL-22 not only antagonizes the induction of apoptosis and cell cycle arrest of lung cancer cells by anti-tumor drugs but also promotes the proliferation and metastasis of lung cancer cells and the growth of tumor tissues. Additionally, the potential clinical significance of IL-22 in the diagnosis, treatment, and prognosis evaluation of lung cancer was further confirmed. Next, the prospects of IL-22 in combination with gene editing and novel nanomaterials in the treatment of lung cancer have been discussed. With the general increase in drug resistance to chemotherapy, targeted therapy, and immunotherapy in lung cancer, it is also necessary to study in depth to discover the correlation between IL-22 and the mechanism of drug resistance. To sum up, the potential of IL-22 as a biomarker for lung cancer still remains to be explored. Further research on the molecular, physiological effects and mechanism of IL-22 in lung cancer as well as the conduction of standardized clinical trials are expected to inject fresh blood into the diagnosis and treatment of lung cancer.\\n\\n# Financial support\\n\\nNone.\\n\\n# Data availability statement\\n\\nNot applicable.\\n\\n# CRediT authorship contribution statement\\n\\nLing Xu: Writing – original draft.\\n\\nPeng Cao: Visualization.\\n\\nJianpeng Wang: Writing – review & editing.\\n\\nPeng Zhang: Validation.\\n\\nShuhui Hu: Validation.\\n\\nChao Cheng: Writing – review & editing.\\n\\nHua Wang: Writing – review & editing, Supervision, Conceptualization.\\n\\n# Declaration of competing interest\\n\\nThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.\\n\\n# Acknowledgements\\n\\nNone.\\n\\n# Abbreviations\\n\\n|non-small cell lung cancer|NSCLC|\\n|---|---|\\n|Interleukin-22|IL-22|\\n|chimeric antigen receptor|CAR|\\n|IL-10-related T cell-derived inducible factor|IL-10-TIF|\\n|Group 3 innate lymphoid cells|ILC3|\\n|IL-22 receptor|IL-22R|\\n|aryl hydrocarbon receptors|AhR|\\n|chronic obstructive pulmonary disease|COPD|\\n|cutaneous T-cell lymphoma|CTCL|\\n|bronchoalveolar lavage fluid|BALF|\\n|receptor tyrosine kinases|RTKs|\\n|G-protein-coupled receptors|GPCRs|\\n|Mammalian target of rapamycin|mTOR|\\n|idiopathic pulmonary fibrosis|IPF|\\n|rheumatoid arthritis|RA|', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='f1e0224e-8de8-4f70-90c9-5376b0ba332a', embedding=None, metadata={}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\n# Abbreviations\\n\\n|Term|Abbreviation|\\n|---|---|\\n|mitogen-activated protein kinases|MAPK|\\n|mitogen-activated protein|MAP|\\n|hepatitis C virus|HCV|\\n\\n# References\\n\\n1. S. Lareau, C. Slatore, R. Smyth, Lung cancer, Am. J. Respir. Crit. Care Med. 204 (12) (2021) P21–P22.\\n2. J. Huang, Y. Deng, M.S. Tin, V. Lok, C.H. Ngai, L. Zhang, et al., Distribution, risk factors, and temporal trends for lung cancer incidence and mortality: a global analysis, Chest 161 (4) (2022) 1101–1111.\\n3. B.C. Bade, C.S. Dela Cruz, Lung cancer 2020: epidemiology, etiology, and prevention, Clin. Chest Med. 41 (1) (2020) 1–24.\\n4. J. Malhotra, M. Malvezzi, E. Negri, C. La Vecchia, P. Boffetta, Risk factors for lung cancer worldwide, Eur. Respir. J. 48 (3) (2016) 889–902.\\n5. H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA A Cancer J. Clin. 71 (3) (2021) 209–249.\\n6. Y. Jin, Y. Chen, H. Tang, X. Hu, S.M. Hubert, Q. Li, et al., Activation of PI3K/AKT pathway is a potential mechanism of treatment resistance in small cell lung cancer, Clin. Cancer Res. 28 (3) (2022) 526–539.\\n7. S. Kobold, S. Volk, T. Clauditz, N.J. Kupper, S. Minner, A. Tufman, et al., Interleukin-22 is frequently expressed in small- and large-cell lung cancer and promotes growth in chemotherapy-resistant cancer cells, J. Thorac. Oncol. 8 (8) (2013) 1032–1042.\\n8. K.Y. Lee, P.W. Shueng, C.M. Chou, B.X. Lin, M.H. Lin, D.Y. Kuo, et al., Elevation of CD109 promotes metastasis and drug resistance in lung cancer via activation of EGFR-AKT-mTOR signaling, Cancer Sci. 111 (5) (2020) 1652–1662.\\n9. R.A. Nagem, D. Colau, L. Dumoutier, J.C. Renauld, C. Ogata, I. Polikarpov, Crystal structure of recombinant human interleukin-22, Structure 10 (8) (2002) 1051–1062.\\n10. D. Lejeune, L. Dumoutier, S. Constantinescu, W. Kruijer, J.J. Schuringa, J.C. Renauld, Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line. Pathways that are shared with and distinct from IL-10, J. Biol. Chem. 277 (37) (2002) 33676–33682.\\n11. J.A. Dudakov, A.M. Hanash, M.R. van den Brink, Interleukin-22: immunobiology and pathology, Annu. Rev. Immunol. 33 (2015) 747–785.\\n12. Lanfranca M. Perusina, Y. Lin, J. Fang, W. Zou, T. Frankel, Biological and pathological activities of interleukin-22, J. Mol. Med. (Berl.) 94 (5) (2016) 523–534.\\n13. L.A. Zenewicz, R.A. Flavell, Recent advances in IL-22 biology, Int. Immunol. 23 (3) (2011) 159–163.\\n14. Y. Wu, J. Min, C. Ge, J. Shu, D. Tian, Y. Yuan, et al., Interleukin 22 in liver injury, inflammation and cancer, Int. J. Biol. Sci. 16 (13) (2020) 2405–2413.\\n15. Y. Zhu, T. Shi, X. Lu, Z. Xu, J. Qu, Z. Zhang, et al., Fungal-induced glycolysis in macrophages promotes colon cancer by enhancing innate lymphoid cell secretion of IL-22, EMBO J. 40 (11) (2021) e105320.\\n16. A.D. Giannou, J. Lucke, D. Kleinschmidt, A.M. Shiri, B. Steglich, M. Nawrocki, et al., A critical role of the IL-22-IL-22 binding protein Axis in hepatocellular carcinoma, Cancers 14 (24) (2022).\\n17. X. Xuan, J. Zhou, Z. Tian, Y. Lin, J. Song, Z. Ruan, et al., ILC3 cells promote the proliferation and invasion of pancreatic cancer cells through IL-22/AKT signaling, Clin. Transl. Oncol. 22 (4) (2020) 563–575.\\n18. L.G. Perez, J. Kempski, H.M. McGee, P. Pelzcar, T. Agalioti, A. Giannou, et al., TGF-beta signaling in Th17 cells promotes IL-22 production and colitis-associated colon cancer, Nat. Commun. 11 (1) (2020) 2608.\\n19. K. Kim, G. Kim, J.Y. Kim, H.J. Yun, S.C. Lim, H.S. Choi, Interleukin-22 promotes epithelial cell transformation and breast tumorigenesis via MAP3K8 activation, Carcinogenesis 35 (6) (2014) 1352–1361.\\n20. A.D. Giannou, J. Kempski, A.M. Shiri, J. Lucke, T. Zhang, L. Zhao, et al., Tissue resident iNKT17 cells facilitate cancer cell extravasation in liver metastasis via interleukin-22, Immunity 56 (1) (2023) 125–142 e12.\\n21. P. Hernandez, K. Gronke, A. Diefenbach, A catch-22: interleukin-22 and cancer, Eur. J. Immunol. 48 (1) (2018) 15–31.\\n22. Z. Huang, Y. Gao, D. Hou, Interleukin-22 enhances chemoresistance of lung adenocarcinoma cells to paclitaxel, Hum. Cell 33 (3) (2020) 850–858.\\n23. Y. Bi, J. Cao, S. Jin, L. Lv, L. Qi, F. Liu, et al., Interleukin-22 promotes lung cancer cell proliferation and migration via the IL-22R1/STAT3 and IL-22R1/AKT signaling pathways, Mol. Cell. Biochem. 415 (1–2) (2016) 1–11.\\n24. W. Zhang, Y. Chen, H. Wei, C. Zheng, R. Sun, J. Zhang, et al., Antiapoptotic activity of autocrine interleukin-22 and therapeutic effects of interleukin-22-small interfering RNA on human lung cancer xenografts, Clin. Cancer Res. 14 (20) (2008) 6432–6439.\\n25. A.A. Thai, B.J. Solomon, L.V. Sequist, J.F. Gainor, R.S. Heist, Lung cancer, Lancet 398 (10299) (2021) 535–554.\\n26. F.R. Hirsch, G.V. Scagliotti, J.L. Mulshine, R. Kwon, W.J. Curran Jr., Y.L. Wu, et al., Lung cancer: current therapies and new targeted treatments, Lancet 389 (10066) (2017) 299–311.\\n27. R.L. Siegel, K.D. Miller, N.S. Wagle, A. Jemal, Cancer statistics, 2023, CA A Cancer J. Clin. 73 (1) (2023) 17–48.\\n28. S. Zochbauer-Muller, A.F. Gazdar, J.D. Minna, Molecular pathogenesis of lung cancer, Annu. Rev. Physiol. 64 (2002) 681–708.\\n29. S.P. D’Angelo, M.C. Pietanza, The molecular pathogenesis of small cell lung cancer, Cancer Biol. Ther. 10 (1) (2010) 1–10.\\n30. Y.E. Miller, Pathogenesis of lung cancer: 100 year report, Am. J. Respir. Cell Mol. Biol. 33 (3) (2005) 216–223.\\n31. M. Sato, D.S. Shames, A.F. Gazdar, J.D. Minna, A translational view of the molecular pathogenesis of lung cancer, J. Thorac. Oncol. 2 (4) (2007) 327–343.\\n32. E. Taucher, I. Mykoliuk, J. Lindenmann, F.M. Smolle-Juettner, Implications of the immune landscape in COPD and lung cancer: smoking versus other causes, Front. Immunol. 13 (2022) 846605.\\n33. F. Nasim, B.F. Sabath, G.A. Eapen, Lung cancer, Med. Clin. 103 (3) (2019) 463–473.\\n34. G. Butschak, A. Kuster, B. Schulze, A. Graffi, Temperature dependent pH-instability of some alpha-L-arabinofuranosidases, Arch. Geschwulstforsch. 59 (3) (1989) 165–170.\\n35. S.M. Gadgeel, S.S. Ramalingam, G.P. Kalemkerian, Treatment of lung cancer, Radiol. Clin. 50 (5) (2012) 961–974.\\n36. C. Zappa, S.A. Mousa, Non-small cell lung cancer: current treatment and future advances, Transl. Lung Cancer Res. 5 (3) (2016) 288–300.\\n37. N. Duma, R. Santana-Davila, J.R. Molina, Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment, Mayo Clin. Proc. 94 (8) (2019) 1623–1640.\\n38. S. Wang, S. Zimmermann, K. Parikh, A.S. Mansfield, A.A. Adjei, Current diagnosis and management of small-cell lung cancer, Mayo Clin. Proc. 94 (8) (2019) 1599–1622.\\n39. M. Wang, R.S. Herbst, C. Boshoff, Toward personalized treatment approaches for non-small-cell lung cancer, Nat. Med. 27 (8) (2021) 1345–1356.\\n40. L.V. Sequist, J.C. Yang, N. Yamamoto, K. O’Byrne, V. Hirsh, T. Mok, et al., Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations, J. Clin. Oncol. 31 (27) (2013) 3327–3334.\\n41. J. He, C. Su, W. Liang, S. Xu, L. Wu, X. Fu, et al., Icotinib versus chemotherapy as adjuvant treatment for stage II-IIIA EGFR-mutant non-small-cell lung cancer (EVIDENCE): a randomised, open-label, phase 3 trial, Lancet Respir. Med. 9 (9) (2021) 1021–1029.\\n42. L. Gandhi, D. Rodriguez-Abreu, S. Gadgeel, E. Esteban, E. Felip, F. De Angelis, et al., Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer, N. Engl. J. Med. 378 (22) (2018) 2078–2092.\\n43. Y. Yang, Z. Wang, J. Fang, Q. Yu, B. Han, S. Cang, et al., Efficacy and safety of sintilimab plus pemetrexed and platinum as first-line treatment for locally advanced or metastatic nonsquamous NSCLC: a randomized, double-blind, phase 3 study (oncology program by InnovENT anti-PD-1-11), J. Thorac. Oncol. 15 (10) (2020) 1636–1646.\\n44. S. Dong, X. Guo, F. Han, Z. He, Y. Wang, Emerging role of natural products in cancer immunotherapy, Acta Pharm. Sin. B 12 (3) (2022) 1163–1185.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='abd73e77-6637-453f-9f4a-53a09e2aefa6', embedding=None, metadata={}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\n# References\\n\\n1. Y. Yang, N. Li, T.M. Wang, L. Di, Natural products with activity against lung cancer: a review focusing on the tumor microenvironment, Int. J. Mol. Sci. 22 (19) (2021).\\n2. L. Xiang, Y. Gao, S. Chen, J. Sun, J. Wu, X. Meng, Therapeutic potential of Scutellaria baicalensis Georgi in lung cancer therapy, Phytomedicine 95 (2022) 153727.\\n3. Z. Chen, K.A. Vallega, H. Chen, J. Zhou, S.S. Ramalingam, S.Y. Sun, The natural product berberine synergizes with osimertinib preferentially against MET-amplified osimertinib-resistant lung cancer via direct MET inhibition, Pharmacol. Res. 175 (2022) 105998.\\n4. Z. Li, Z. Feiyue, L. Gaofeng, Traditional Chinese medicine and lung cancer–From theory to practice, Biomed. Pharmacother. 137 (2021) 111381.\\n5. J. Qu, Q. Mei, L. Chen, J. Zhou, Chimeric antigen receptor (CAR)-T-cell therapy in non-small-cell lung cancer (NSCLC): current status and future perspectives, Cancer Immunol. Immunother. 70 (3) (2021) 619–631.\\n6. S. Srivastava, S.N. Furlan, C.A. Jaeger-Ruckstuhl, M. Sarvothama, C. Berger, K.S. Smythe, et al., Immunogenic chemotherapy enhances recruitment of CAR-T cells to lung tumors and improves antitumor efficacy when combined with checkpoint blockade, Cancer Cell 39 (2) (2021) 193–208 e10.\\n7. H. Li, E.B. Harrison, H. Li, K. Hirabayashi, J. Chen, Q.X. Li, et al., Targeting brain lesions of non-small cell lung cancer by enhancing CCL2-mediated CAR-T cell migration, Nat. Commun. 13 (1) (2022) 2154.\\n8. D. Denk, F.R. Greten, Inflammation: the incubator of the tumor microenvironment, Trends Cancer 8 (11) (2022) 901–914.\\n9. L. Dumoutier, J. Louahed, J.C. Renauld, Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9, J. Immunol. 164 (4) (2000) 1814–1819.\\n10. W. Ouyang, A. O’Garra, IL-10 family cytokines IL-10 and IL-22: from basic science to clinical translation, Immunity 50 (4) (2019) 871–891.\\n11. S.Z. Hasnain, J. Begun, Interleukin-22: friend or foe? Immunol. Cell Biol. 97 (4) (2019) 355–357.\\n12. S. Mossner, M. Kuchner, N. Fazel Modares, B. Knebel, H. Al-Hasani, D.M. Floss, et al., Synthetic interleukin 22 (IL-22) signaling reveals biological activity of homodimeric IL-10 receptor 2 and functional cross-talk with the IL-6 receptor gp130, J. Biol. Chem. 295 (35) (2020) 12378–12397.\\n13. D. Lee, H. Jo, C. Go, Y. Jang, N. Chu, S. Bae, et al., The roles of IL-22 and its receptor in the regulation of inflammatory responses in the brain, Int. J. Mol. Sci. 23 (2) (2022).\\n14. S. Huber, N. Gagliani, L.A. Zenewicz, F.J. Huber, L. Bosurgi, B. Hu, et al., IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine, Nature 491 (7423) (2012) 259–263.\\n15. L.A. Zenewicz, IL-22 binding protein (IL-22BP) in the regulation of IL-22 biology, Front. Immunol. 12 (2021) 766586.\\n16. H.X. Wei, B. Wang, B. Li, IL-10 and IL-22 in mucosal immunity: driving protection and pathology, Front. Immunol. 11 (2020) 1315.\\n17. C. Voigt, P. May, A. Gottschlich, A. Markota, D. Wenk, I. Gerlach, et al., Cancer cells induce interleukin-22 production from memory CD4(+) T cells via interleukin-1 to promote tumor growth, Proc. Natl. Acad. Sci. U. S. A. 114 (49) (2017) 12994–12999.\\n18. A.G. McLoed, T.P. Sherrill, D.S. Cheng, W. Han, J.A. Saxon, L.A. Gleaves, et al., Neutrophil-derived IL-1beta impairs the efficacy of NF-kappaB inhibitors against lung cancer, Cell Rep. 16 (1) (2016) 120–132.\\n19. A.M. Baird, J. Leonard, K.M. Naicker, L. Kilmartin, K.J. O’Byrne, S.G. Gray, IL-23 is pro-proliferative, epigenetically regulated and modulated by chemotherapy in non-small cell lung cancer, Lung Cancer 79 (1) (2013) 83–90.\\n20. Y. Niu, L. Ye, W. Peng, Z. Wang, X. Wei, X. Wang, et al., IL-26 promotes the pathogenesis of malignant pleural effusion by enhancing CD4(+) IL-22(+) T-cell differentiation and inhibiting CD8(+) T-cell cytotoxicity, J. Leukoc. Biol. 110 (1) (2021) 39–52.\\n21. B. Pang, C. Hu, N. Xing, L. Xu, S. Zhang, X. Yu, Elevated Notch1 enhances interleukin-22 production by CD4(+) T cells via aryl hydrocarbon receptor in patients with lung adenocarcinoma, Biosci. Rep. 38 (6) (2018).\\n22. J.S. Lim, A. Ibaseta, M.M. Fischer, B. Cancilla, G. O’Young, S. Cristea, et al., Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer, Nature 545 (7654) (2017) 360–364.\\n23. Y. Matsuda, S. Ikeda, F. Abe, Y. Takahashi, A. Kitadate, N. Takahashi, et al., Downregulation of miR-26 promotes invasion and metastasis via targeting interleukin-22 in cutaneous T-cell lymphoma, Cancer Sci. 113 (4) (2022) 1208–1219.\\n24. Y. He, H. Liu, L. Jiang, B. Rui, J. Mei, H. Xiao, miR-26 induces apoptosis and inhibits autophagy in non-small cell lung cancer cells by suppressing TGF-beta1-JNK signaling pathway, Front. Pharmacol. 9 (2018) 1509.\\n25. H. Lindahl, T. Olsson, Interleukin-22 influences the Th1/Th17 Axis, Front. Immunol. 12 (2021) 618110.\\n26. E. Klimatcheva, T. Pandina, C. Reilly, S. Torno, H. Bussler, M. Scrivens, et al., CXCL13 antibody for the treatment of autoimmune disorders, BMC Immunol. 16 (1) (2015) 6.\\n27. F. Barone, S. Nayar, J. Campos, T. Cloake, D.R. Withers, K.M. Toellner, et al., IL-22 regulates lymphoid chemokine production and assembly of tertiary lymphoid organs, Proc. Natl. Acad. Sci. U. S. A 112 (35) (2015) 11024–11029.\\n28. D. Briukhovetska, J. Suarez-Gosalvez, C. Voigt, A. Markota, A.D. Giannou, M. Schubel, et al., T cell-derived interleukin-22 drives the expression of CD155 by cancer cells to suppress NK cell function and promote metastasis, Immunity 56 (1) (2023) 143–161 e11.\\n29. M. Kasprzak, M. Rudzinska, D. Kmiecik, R. Przybylski, A. Olejnik, Acyl moiety and temperature affects thermo-oxidative degradation of steryl esters. Cytotoxicity of the degradation products, Food Chem. Toxicol. 136 (2020) 111074.\\n30. R. Molfetta, B. Zitti, M. Lecce, N.D. Milito, H. Stabile, C. Fionda, et al., CD155: a multi-functional molecule in tumor progression, Int. J. Mol. Sci. 21 (3) (2020).\\n31. J. Gao, Q. Zheng, N. Xin, W. Wang, C. Zhao, CD155, an onco-immunologic molecule in human tumors, Cancer Sci. 108 (10) (2017) 1934–1938.\\n32. J.M. Leyva-Castillo, J. Yoon, R.S. Geha, IL-22 promotes allergic airway inflammation in epicutaneously sensitized mice, J. Allergy Clin. Immunol. 143 (2) (2019) 619–630 e7.\\n33. M.R. Starkey, M.W. Plank, P. Casolari, A. Papi, S. Pavlidis, Y. Guo, et al., IL-22 and its receptors are increased in human and experimental COPD and contribute to pathogenesis, Eur. Respir. J. 54 (1) (2019).\\n34. X. Xu, I.D. Weiss, H.H. Zhang, S.P. Singh, T.A. Wynn, M.S. Wilson, et al., Conventional NK cells can produce IL-22 and promote host defense in Klebsiella pneumoniae pneumonia, J. Immunol. 192 (4) (2014) 1778–1786.\\n35. P. Treerat, O. Prince, A. Cruz-Lagunas, M. Munoz-Torrico, M.A. Salazar-Lezama, M. Selman, et al., Novel role for IL-22 in protection during chronic Mycobacterium tuberculosis HN878 infection, Mucosal Immunol. 10 (4) (2017) 1069–1081.\\n36. B. Kone, M. Perez-Cruz, R. Porte, F. Hennegrave, C. Carnoy, P. Gosset, et al., Boosting the IL-22 response using flagellin prevents bacterial infection in cigarette smoke-exposed mice, Clin. Exp. Immunol. 201 (2) (2020) 171–186.\\n37. M.A. Gessner, J.L. Werner, L.M. Lilly, M.P. Nelson, A.E. Metz, C.W. Dunaway, et al., Dectin-1-dependent interleukin-22 contributes to early innate lung defense against Aspergillus fumigatus, Infect. Immun. 80 (1) (2012) 410–417.\\n38. S. Ivanov, J. Renneson, J. Fontaine, A. Barthelemy, C. Paget, E.M. Fernandez, et al., Interleukin-22 reduces lung inflammation during influenza A virus infection and protects against secondary bacterial infection, J. Virol. 87 (12) (2013) 6911–6924.\\n39. H. Guo, D.J. Topham, Interleukin-22 (IL-22) production by pulmonary Natural Killer cells and the potential role of IL-22 during primary influenza virus infection, J. Virol. 84 (15) (2010) 7750–7759.\\n40. Z. Qu, W. Dou, K. Zhang, L. Duan, D. Zhou, S. Yin, IL-22 inhibits bleomycin-induced pulmonary fibrosis in association with inhibition of IL-17A in mice, Arthritis Res. Ther. 24 (1) (2022) 280.\\n41. F. Liu, X. Pan, L. Zhou, J. Zhou, B. Chen, J. Shi, et al., Genetic polymorphisms and plasma levels of interleukin-22 contribute to the development of nonsmall cell lung cancer, DNA Cell Biol. 33 (10) (2014) 705–714.\\n42. H. Li, Q. Zhang, Q. Wu, Y. Cui, H. Zhu, M. Fang, et al., Interleukin-22 secreted by cancer-associated fibroblasts regulates the proliferation and metastasis of lung cancer cells via the PI3K-Akt-mTOR signaling pathway, Am J Transl Res 11 (7) (2019) 4077–4088.\\n43. A. Tufman, R.M. Huber, S. Volk, F. Aigner, M. Edelmann, F. Gamarra, et al., Interleukin-22 is elevated in lavage from patients with lung cancer and other pulmonary diseases, BMC Cancer 16 (2016) 409.\\n44. Z.J. Ye, Q. Zhou, W. Yin, M.L. Yuan, W.B. Yang, F. Xiang, et al., Interleukin 22-producing CD4+ T cells in malignant pleural effusion, Cancer Lett. 326 (1) (2012) 23–32.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='0c6c6457-634e-4ede-8fc3-15077e7a39e9', embedding=None, metadata={}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\n# References\\n\\n1. Y. Niu, Q. Zhou, Th17 cells and their related cytokines: vital players in progression of malignant pleural effusion, Cell. Mol. Life Sci. 79 (4) (2022) 194.\\n2. R. Khandia, A. Munjal, Interplay between inflammation and cancer, Adv Protein Chem Struct Biol 119 (2020) 199–245.\\n3. R. Singh, M.K. Mishra, H. Aggarwal, Inflammation, immunity, and cancer, Mediat. Inflamm. 2017 (2017) 6027305.\\n4. A. Fishbein, B.D. Hammock, C.N. Serhan, D. Panigrahy, Carcinogenesis: failure of resolution of inflammation? Pharmacol. Ther. 218 (2021) 107670.\\n5. D. Hanahan, L.M. Coussens, Accessories to the crime: functions of cells recruited to the tumor microenvironment, Cancer Cell 21 (3) (2012) 309–322.\\n6. N. Khosravi, M.S. Caetano, A.M. Cumpian, N. Unver, C. De la Garza Ramos, O. Noble, et al., IL22 promotes Kras-mutant lung cancer by induction of a protumor immune response and protection of stemness properties, Cancer Immunol. Res. 6 (7) (2018) 788–797.\\n7. N.J. Protopsaltis, W. Liang, E. Nudleman, N. Ferrara, Interleukin-22 promotes tumor angiogenesis, Angiogenesis 22 (2) (2019) 311–323.\\n8. Y. Yao, G. Yang, G. Lu, J. Ye, L. Cui, Z. Zeng, et al., Th22 cells/IL-22 serves as a protumor regulator to drive poor prognosis through the JAK-STAT3/MAPK/AKT signaling pathway in non-small-cell lung cancer, J Immunol Res 2022 (2022) 8071234.\\n9. J. Wang, K. Hu, X. Cai, B. Yang, Q. He, J. Wang, et al., Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis, Acta Pharm. Sin. B 12 (1) (2022) 18–32.\\n10. J. Yang, J. Nie, X. Ma, Y. Wei, Y. Peng, X. Wei, Targeting PI3K in cancer: mechanisms and advances in clinical trials, Mol. Cancer 18 (1) (2019) 26.\\n11. M.K. Ediriweera, K.H. Tennekoon, S.R. Samarakoon, Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: biological and therapeutic significance, Semin. Cancer Biol. 59 (2019) 147–160.\\n12. D. Miricescu, A. Totan, S. Stanescu, II, S.C. Badoiu, C. Stefani, M. Greabu, PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects, Int. J. Mol. Sci. 22 (1) (2020).\\n13. Y. Hou, K. Wang, W. Wan, Y. Cheng, X. Pu, X. Ye, Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3K/AKT/mTOR pathway after stroke in rats, Genes Dis 5 (3) (2018) 245–255.\\n14. C. Feng, H. Wan, Y. Zhang, L. Yu, C. Shao, Y. He, et al., Neuroprotective effect of Danhong injection on cerebral ischemia-reperfusion injury in rats by activation of the PI3K-Akt pathway, Front. Pharmacol. 11 (2020) 298.\\n15. B.Y. Shorning, M.S. Dass, M.J. Smalley, H.B. Pearson, The PI3K-AKT-mTOR pathway and prostate cancer: at the crossroads of AR, MAPK, and WNT signaling, Int. J. Mol. Sci. 21 (12) (2020).\\n16. R. Liu, Y. Chen, G. Liu, C. Li, Y. Song, Z. Cao, et al., PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers, Cell Death Dis. 11 (9) (2020) 797.\\n17. M.J. Sanaei, S. Razi, A. Pourbagheri-Sigaroodi, D. Bashash, The PI3K/Akt/mTOR pathway in lung cancer; oncogenic alterations, therapeutic opportunities, challenges, and a glance at the application of nanoparticles, Transl Oncol 18 (2022) 101364.\\n18. A.M. Gustafson, R. Soldi, C. Anderlin, M.B. Scholand, J. Qian, X. Zhang, et al., Airway PI3K pathway activation is an early and reversible event in lung cancer development, Sci. Transl. Med. 2 (26) (2010) 26ra5.\\n19. J. Li, J. Wang, D. Xie, Q. Pei, X. Wan, H.R. Xing, et al., Characteristics of the PI3K/AKT and MAPK/ERK pathways involved in the maintenance of self-renewal in lung cancer stem-like cells, Int. J. Biol. Sci. 17 (5) (2021) 1191–1202.\\n20. Y.X. Meng, R. Zhao, L.J. Huo, Interleukin-22 alleviates alcohol-associated hepatic fibrosis, inhibits autophagy, and suppresses the PI3K/AKT/mTOR pathway in mice, Alcohol Clin. Exp. Res. 47 (3) (2023) 448–458.\\n21. X. Hu, J. Li, M. Fu, X. Zhao, W. Wang, The JAK/STAT signaling pathway: from bench to clinic, Signal Transduct. Targeted Ther. 6 (1) (2021) 402.\\n22. C. Baldini, F.R. Moriconi, S. Galimberti, P. Libby, R. De Caterina, The JAK-STAT pathway: an emerging target for cardiovascular disease in rheumatoid arthritis and myeloproliferative neoplasms, Eur. Heart J. 42 (42) (2021) 4389–4400.\\n23. L. Hu, R. Liu, L. Zhang, Advance in bone destruction participated by JAK/STAT in rheumatoid arthritis and therapeutic effect of JAK/STAT inhibitors, Int. Immunopharm. 111 (2022) 109095.\\n24. L.K. Meyer, K.C. Verbist, S. Albeituni, B.P. Scull, R.C. Bassett, A.N. Stroh, et al., JAK/STAT pathway inhibition sensitizes CD8 T cells to dexamethasone-induced apoptosis in hyperinflammation, Blood 136 (6) (2020) 657–668.\\n25. L. Song, J. Turkson, J.G. Karras, R. Jove, E.B. Haura, Activation of Stat3 by receptor tyrosine kinases and cytokines regulates survival in human non-small cell carcinoma cells, Oncogene 22 (27) (2003) 4150–4165.\\n26. Y. Li, H. Du, Y. Qin, J. Roberts, O.W. Cummings, C. Yan, Activation of the signal transducers and activators of the transcription 3 pathway in alveolar epithelial cells induces inflammation and adenocarcinomas in mouse lung, Cancer Res. 67 (18) (2007) 8494–8503.\\n27. S. Ihara, H. Kida, H. Arase, L.P. Tripathi, Y.A. Chen, T. Kimura, et al., Inhibitory roles of signal transducer and activator of transcription 3 in antitumor immunity during carcinogen-induced lung tumorigenesis, Cancer Res. 72 (12) (2012) 2990–2999.\\n28. J. Mohrherr, I.Z. Uras, H.P. Moll, E. Casanova, STAT3: versatile functions in non-small cell lung cancer, Cancers 12 (5) (2020).\\n29. Y. Cheng, F. Sun, L. Wang, M. Gao, Y. Xie, Y. Sun, et al., Virus-induced p38 MAPK activation facilitates viral infection, Theranostics 10 (26) (2020) 12223–12240.\\n30. Y. Xu, Q. Sun, F. Yuan, H. Dong, H. Zhang, R. Geng, et al., RND2 attenuates apoptosis and autophagy in glioblastoma cells by targeting the p38 MAPK signalling pathway, J. Exp. Clin. Cancer Res. : CR 39 (1) (2020) 174.\\n31. D. He, H. Wu, J. Xiang, X. Ruan, P. Peng, Y. Ruan, et al., Gut stem cell aging is driven by mTORC1 via a p38 MAPK-p53 pathway, Nat. Commun. 11 (1) (2020) 37.\\n32. O. Dreesen, A.H. Brivanlou, Signaling pathways in cancer and embryonic stem cells, Stem Cell Rev. 3 (1) (2007) 7–17.\\n33. X.M. Hou, T. Zhang, Z. Da, X.A. Wu, CHPF promotes lung adenocarcinoma proliferation and anti-apoptosis via the MAPK pathway, Pathol. Res. Pract. 215 (5) (2019) 988–994.\\n34. Y.C. Wang, D.W. Wu, T.C. Wu, L. Wang, C.Y. Chen, H. Lee, Dioscin overcome TKI resistance in EGFR-mutated lung adenocarcinoma cells via down-regulation of tyrosine phosphatase SHP2 expression, Int. J. Biol. Sci. 14 (1) (2018) 47–56.\\n35. Y. Guo, M. Jiang, X. Zhao, M. Gu, Z. Wang, S. Xu, et al., Cyclophilin A promotes non-small cell lung cancer metastasis via p38 MAPK, Thorac Cancer 9 (1) (2018) 120–128.\\n36. A. Po, M. Silvano, E. Miele, C. Capalbo, A. Eramo, V. Salvati, et al., Noncanonical GLI1 signaling promotes stemness features and in vivo growth in lung adenocarcinoma, Oncogene 36 (32) (2017) 4641–4652.\\n37. J.H. Leung, B. Ng, W.W. Lim, Interleukin-11: a potential biomarker and molecular therapeutic target in non-small cell lung cancer, Cells 11 (14) (2022).\\n38. H. Wang, F. Zhou, C. Zhao, L. Cheng, C. Zhou, M. Qiao, et al., Interleukin-10 is a promising marker for immune-related adverse events in patients with non-small cell lung cancer receiving immunotherapy, Front. Immunol. 13 (2022) 840313.\\n39. C.H. Chang, C.F. Hsiao, Y.M. Yeh, G.C. Chang, Y.H. Tsai, Y.M. Chen, et al., Circulating interleukin-6 level is a prognostic marker for survival in advanced nonsmall cell lung cancer patients treated with chemotherapy, Int. J. Cancer 132 (9) (2013) 1977–1985.\\n40. C. Liu, L. Yang, H. Xu, S. Zheng, Z. Wang, S. Wang, et al., Systematic analysis of IL-6 as a predictive biomarker and desensitizer of immunotherapy responses in patients with non-small cell lung cancer, BMC Med. 20 (1) (2022) 187.\\n41. B. Yuan, M.J. Clowers, W.V. Velasco, S. Peng, Q. Peng, Y. Shi, et al., Targeting IL-1beta as an immunopreventive and therapeutic modality for K-ras-mutant lung cancer, JCI Insight 7 (11) (2022).\\n42. M.F. Sanmamed, J.L. Perez-Gracia, K.A. Schalper, J.P. Fusco, A. Gonzalez, M.E. Rodriguez-Ruiz, et al., Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients, Ann. Oncol. 28 (8) (2017) 1988–1995.\\n43. M. Joerger, S.P. Finn, S. Cuffe, A.T. Byrne, S.G. Gray, The IL-17-Th1/Th17 pathway: an attractive target for lung cancer therapy? Expert Opin. Ther. Targets 20 (11) (2016) 1339–1356.\\n44. M.S. Kim, E. Kim, J.S. Heo, D.J. Bae, J.U. Lee, T.H. Lee, et al., Circulating IL-33 level is associated with the progression of lung cancer, Lung Cancer 90 (2) (2015) 346–351.\\n45. P.M. Ridker, J.G. MacFadyen, T. Thuren, B.M. Everett, P. Libby, R.J. Glynn, et al., Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial, Lancet 390 (10105) (2017) 1833–1842.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='5382af97-d1ed-4bb8-8958-0b4588650fe5', embedding=None, metadata={}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\n# References\\n\\n1. А. Guillon, F. Gueugnon, K. Mavridis, E. Dalloneau, Y. Jouan, P. Diot, et al., Interleukin-22 receptor is overexpressed in nonsmall cell lung cancer and portends a poor prognosis, Eur. Respir. J. 47 (4) (2016) 1277–1280.\\n2. X. Wang, J. Xu, J. Chen, S. Jin, J. Yao, T. Yu, et al., IL-22 confers EGFR-TKI resistance in NSCLC via the АKT and ERK signaling pathways, Front. Oncol. 9 (2019) 1167.\\n3. N. Zabaleta, L. Torella, N.D. Weber, G. Gonzalez-Аseguinolaza, mRNА and gene editing: late breaking therapies in liver diseases, Hepatology 76 (3) (2022) 869–887.\\n4. D.S. Chae, Y.J. Park, S.W. Kim, Аnti-arthritogenic property of interleukin 10-expressing human amniotic MSCs generated by gene editing in collagen-induced arthritis, Int. J. Mol. Sci. 23 (14) (2022).\\n5. E. Vermersch, C. Jouve, J.S. Hulot, CRISPR/Cas9 gene-editing strategies in cardiovascular cells, Cardiovasc. Res. 116 (5) (2020) 894–907.\\n6. Q. Wang, X. Liu, J. Zhou, C. Yang, G. Wang, Y. Tan, et al., The CRISPR-Cas13a gene-editing system induces collateral cleavage of RNА in glioma cells, Аdv. Sci. 6 (20) (2019) 1901299.\\n7. Y. Lu, J. Xue, T. Deng, X. Zhou, K. Yu, L. Deng, et al., Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer, Nat. Med. 26 (5) (2020) 732–740.\\n8. S.M. Hoy, Patisiran: first global approval, Drugs 78 (15) (2018) 1625–1631.\\n9. H. Wood, FDА approves patisiran to treat hereditary transthyretin amyloidosis, Nat. Rev. Neurol. 14 (10) (2018) 570.\\n10. А. Mandal, N. Kumbhojkar, C. Reilly, V. Dharamdasani, А. Ukidve, D.E. Ingber, et al., Treatment of psoriasis with NFKBIZ siRNА using topical ionic liquid formulations, Sci. Аdv. 6 (30) (2020) eabb6049.\\n11. T. Fabre, M.F. Molina, G. Soucy, J.P. Goulet, B. Willems, J.P. Villeneuve, et al., Type 3 cytokines IL-17А and IL-22 drive TGF-beta-dependent liver fibrosis, Sci Immunol. 3 (28) (2018).\\n12. C. Su, X. Ren, F. Yang, B. Li, H. Wu, H. Li, et al., Ultrasound-sensitive siRNА-loaded nanobubbles fabrication and antagonism in drug resistance for NSCLC, Drug Deliv. 29 (1) (2022) 99–110.\\n13. M.E. Аikins, C. Xu, J.J. Moon, Engineered nanoparticles for cancer vaccination and immunotherapy, Аcc. Chem. Res. 53 (10) (2020) 2094–2105.\\n14. S. Li, S. Xu, X. Liang, Y. Xue, J. Mei, Y. Ma, et al., Nanotechnology: breaking the current treatment limits of lung cancer, Аdv. Healthcare Mater. 10 (12) (2021) e2100078.\\n15. T. Zhong, X. Liu, H. Li, J. Zhang, Co-delivery of sorafenib and crizotinib encapsulated with polymeric nanoparticles for the treatment of in vivo lung cancer animal model, Drug Deliv. 28 (1) (2021) 2108–2118.\\n16. M. Zhang, CTt Hagan, H. Foley, X. Tian, F. Yang, K.M. Аu, et al., Co-delivery of etoposide and cisplatin in dual-drug loaded nanoparticles synergistically improves chemoradiotherapy in non-small cell lung cancer models, Аcta Biomater. 124 (2021) 327–335.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n')]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import nest_asyncio\n", + "\n", + "nest_asyncio.apply()\n", + "\n", + "from llama_parse import LlamaParse\n", + "\n", + "parser = LlamaParse(\n", + " api_key=os.getenv(\"LLAMA_PARSE_API_KEY\"), # can also be set in your env as LLAMA_CLOUD_API_KEY\n", + " result_type=\"markdown\", # \"markdown\" and \"text\" are available\n", + " num_workers=4, # if multiple files passed, split in `num_workers` API calls\n", + " verbose=True,\n", + " language=\"en\", # Optionally you can define a language, default=en\n", + ")\n", + "\n", + "# sync\n", + "documents = parser.load_data(\"./research/data/main.pdf\")\n", + "documents\n", + "# # async\n", + "# documents = await parser.aload_data(\"./my_file.pdf\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Metadata added to page 1\n", + "Metadata added to page 2\n", + "Metadata added to page 3\n", + "Metadata added to page 4\n", + "Metadata added to page 5\n", + "Metadata added to page 6\n", + "Metadata added to page 7\n", + "Metadata added to page 8\n", + "Metadata added to page 9\n", + "Metadata added to page 10\n", + "Metadata added to page 11\n", + "Metadata added to page 12\n", + "Metadata added to page 13\n", + "Metadata added to page 14\n" + ] + }, + { + "data": { + "text/plain": [ + "[Document(id_='87da7732-6866-43c2-9991-17b3c06a9fdb', embedding=None, metadata={'title': 'title', 'author': 'tes author', 'category': 'tes kategori', 'year': 2010, 'publisher': 'tes publisher', 'page_number': 1}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# IL-22: A key inflammatory mediator as a biomarker and potential therapeutic target for lung cancer\\n\\n# Ling Xu a,1, Peng Cao a,1, Jianpeng Wang b,1, Peng Zhang a, Shuhui Hu a, Chao Cheng a, Hua Wang c,*\\n\\n# a Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China\\n\\n# b First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China\\n\\n# c Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China\\n\\n# A R T I C L E I N F O\\n\\n# A B S T R A C T\\n\\n# Keywords:\\n\\nLung cancer, one of the most prevalent cancers worldwide, stands as the primary cause of cancer-related deaths. As is well-known, the utmost crucial risk factor contributing to lung cancer is smoking. In recent years, remarkable progress has been made in treating lung cancer, particularly non-small cell lung cancer (NSCLC). Nevertheless, the absence of effective and accurate biomarkers for diagnosing and treating lung cancer remains a pressing issue. Interleukin 22 (IL-22) is a member of the IL-10 cytokine family. It exerts biological functions (including induction of proliferation and anti-apoptotic signaling pathways, enhancement of tissue regeneration and immunity defense) by binding to heterodimeric receptors containing type 1 receptor chain (R1) and type 2 receptor chain (R2). IL-22 has been identified as a pro-cancer factor since dysregulation of the IL-22-IL-22R system has been implicated in the development of different cancers, including lung, breast, gastric, pancreatic, and colon cancers. In this review, we discuss the differential expression, regulatory role, and potential clinical significance of IL-22 in lung cancer, while shedding light on innovative approaches for the future.\\n\\n# 1. Introduction\\n\\nLung cancer is a heterogeneous disease in which cells in the lung grow aberrantly culminating in the formation of tumors. Typically, these tumors present as nodules or masses discernible through pulmonary imaging techniques [1]. In the year 2020, the global incidence of lung cancer surpassed a staggering 2.2 million cases, leading to approximately 1.8 million tragic fatalities. When considering age-standardized rates, the morbidity and mortality figures stand at 22.4 and 18.0 per 100,000 individuals respectively [2]. Generally, lung cancer is considered to be intricately linked to a multitude of factors including but not limited to smoking, genetic predisposition, occupational exposures, as well as the deleterious effects of air and environmental pollution [3,4]. Among the risk factors for lung cancer, smoking dominates overwhelmingly, with about two-thirds of lung cancer deaths globally caused by it [5]. In recent years, the drug resistance phenomenon of lung cancer to chemotherapy and targeted therapy has become more and more prominent [6–8]. Therefore, it is of heightened importance to find new therapeutic targets.\\n\\n# * Corresponding author. Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.\\n\\n# E-mail address: wanghua@ahmu.edu.cn (H. Wang).\\n\\n# 1 These authors have contributed equally to this work and share first authorship.\\n\\nhttps://doi.org/10.1016/j.heliyon.2024.e35901\\n\\nReceived 13 August 2023; Received in revised form 5 August 2024; Accepted 6 August 2024\\n\\nAvailable online 10 August 2024\\n\\n2405-8440/© 2024 The Authors. Published by Elsevier Ltd. (http://creativecommons.org/licenses/by-nc-nd/4.0/).\\n\\nThis is an open access article under the CC BY-NC-ND license', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='03ae712d-04f2-4fd1-92a2-03c925d72a92', embedding=None, metadata={'title': 'title', 'author': 'tes author', 'category': 'tes kategori', 'year': 2010, 'publisher': 'tes publisher', 'page_number': 2}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\n# 1. Introduction\\n\\nIL-22 is an IL-10 family cytokine produced by T cells and innate lymphocytes. Like all other IL-10 family members, the IL-22 structure contains six α-helices (termed helices A to F). They are arranged in an antiparallel conformation and produce a single bundled protein [9]. IL-22 coordinates mucosal immune defense and tissue regeneration through pleiotropic effects including pro-survival signaling, cell migration, dysplasia, and angiogenesis. These molecules act by targeting the heterodimeric transmembrane receptor complex composed of IL-22R1 and IL-10R2 and by activating subsequent signaling pathways (including JAK/STAT signaling pathway, p38 MAPK signaling pathway, and PI3K/AKT signaling pathway) [10]. It is well known that IL-22 is widely expressed in human tissues and organs, including lung, liver, heart, kidney, pancreas, gastrointestinal tract, skin, blood, adipose, and synovial tissues [11]. Meanwhile, IL-22 is also found to be broadly expressed in pathological states such as cancer, infectious diseases, tissue injury, chronic inflammatory diseases, and Graft-Versus-Host Disease [11–14]. In most cancer diseases, excessively elevated levels of IL-22 are considered to be detrimental [15–19]. For instance, a recent study has demonstrated that IL-22 promotes extravasation of tumor cells in liver metastasis [20]. Over the past few years, there has been a surge in research focusing on the relationship between IL-22 and lung cancer. Particularly in patients with NSCLC, researchers have discovered up-regulated expression of IL-22 in serum, malignant pleural effusion, and tumor tissues, and the levels of IL-22Rα1 in tumor cells and tissues are also increased [21–24]. Although emerging studies have revealed that IL-22 is closely correlated with lung cancer in terms of tissue, cell and pathological changes, the specific function and mechanism remain to be explored. In the present review, we mainly summarized the regulatory function and clinical role of IL-22 in lung cancer. In addition, the feasibility of IL-22 as a biomarker for lung cancer and directions for future research were also discussed. It is reasonable to hypothesize that IL-22 may serve as a potential target in the treatment of lung cancer.\\n\\n# 2. Overview of lung cancer\\n\\nLung cancer is a malignant disease characterized by high morbidity and mortality [25]. According to the data of GLOBOCAN, lung cancer is the second most common cancer in 2020 and the main cause of cancer death worldwide, with about one-tenth (11.4 %) of cancer diagnoses and one-fifth (18.0 %) of deaths [5]. When it comes to gender, the incidence and mortality rates of lung cancer were on the rise in females but declining in males in most countries over the past decade [2]. The 5-year survival rate of lung cancer patients varies by 4–17 % in light of stage and region [26]. As predicted by the American Cancer Society, more than 120,000 people will die of lung cancer in the United States in 2023. The good news is that although the incidence is stable or increasing, the overall mortality is decreasing at an accelerated pace [27]. From the perspective of histopathology and biological behavior, lung cancer can be divided into NSCLC and SCLC, among which the former mainly includes several common types such as adenocarcinoma, squamous cell carcinoma, and large cell carcinoma [25]. The pathogenesis of lung cancer primarily involves the following aspects: chromosome changes; abnormal immune response; abnormal activation of developmental pathways; dysregulation of tumor suppressor genes, proto-oncogenes, and signaling pathways; and the up-regulation of receptor tyrosine kinases, growth factors, and cell markers. These abnormal changes cause an imbalance between lung cell proliferation and apoptosis, which leads to lung cancer [28–31]. For example, when exposed to risk factors continuously, the production of ROS, chemokines, and cytokines increases in lung cells, which leads to DNA damage and gives rise to inflammation and other pathobiological changes that ultimately promote carcinogenesis. At the same time, the anti-tumor immune function of macrophages, T lymphocytes, B lymphocytes, and NK cells gets suppressed, failing recognition and clearance of malignant cells, and eventually bringing about the formation of tumors [32]. In the early stage of the disease, it is usually considered to be asymptomatic, while may manifest as cough, dyspnea, chest pain, hemoptysis, hoarseness, and so on in the middle and advanced period [33]. In principle, the treatment of lung cancer depends largely on the type, stage and condition of the patient’s disease. Currently, the main treatment approaches for lung cancer include surgery, chemotherapy, and radiotherapy. Among them, platinum-containing double drugs are preferred for chemotherapy. Radiation therapy is mainly applied in the control of the local lesion. Furthermore, targeted therapy for EGFR, ALK, ROS1, and other gene mutations and immunotherapy to inhibit PD-1/PD-L1 also plays an irreplaceable role as emerging breakthrough therapeutic means [25,34–39]. Compared with chemotherapy, targeted therapy can prominently enhance the survival rate and tolerance of patients with NSCLC [40,41]. The combination of chemotherapy and immunotherapy has also shown a more notable curative effect over chemotherapy alone [42,43]. Additionally, there has been a growing body of research focusing on natural product therapy, local ablative therapy, and chimeric antigen receptor (CAR)-T-cell therapy lately [44–51]. In principle, the treatments of lung cancer are individualized depending largely on the type, stage, and condition of patients. Unfortunately, the limited sensitivity of NSCLC patients to chemotherapy and immunotherapy drugs has proven to be a major obstacle to clinical treatment. Denk D et al. suggested that inflammation is ubiquitous in carcinogenesis. In his study, he noted that interfering with individual cytokines and their respective signaling pathways holds great promise for the development and improvement of current clinical cancer therapies [52]. IL-22 is a new type of cytokine discovered in 2000 and has gradually attracted attention due to its role in tumor diseases. In recent years, multiple studies have reported the positive role of IL-22 in enhancing chemotherapy resistance in human lung cancer patients. This positive effect is related to the function of IL-22 in promoting lung cancer cell proliferation and inhibiting lung cancer cell apoptosis. Results showed that IL-22 activated the EGFR/AKT/ERK signaling pathway [52], STAT3, and ERK1/2 signaling pathways [24] in drug-treated lung cancer cells, thereby attenuating the pro-apoptotic effect of the drug on lung cancer cells.\\n\\n# 3. Function role of IL-22 in lung cancer\\n\\nIL-22 is a cytokine first identified by Dumoutier et al. in IL-9-induced murine T cells over 20 years ago and was once called IL-10-related T cell-derived inducible factor (IL-10-TIF) [53]. In human beings, the IL-22 gene lies in chromosome 12q15, next to the gene.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='8f865355-e081-4d71-b589-9c696acf72dd', embedding=None, metadata={'title': 'title', 'author': 'tes author', 'category': 'tes kategori', 'year': 2010, 'publisher': 'tes publisher', 'page_number': 3}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\nthat encodes IFN-γ [54]. When the body is in homeostasis, the most important source of IL-22 is Group 3 innate lymphoid cells (ILC3) [14]. Different from other common cytokines, IL-22 is generally thought to be produced only by hematopoietic origin immune cells, whereas it mainly acts on non-hematopoietic cells due to its receptor distribution [55]. Recently, researchers have found that non-hematopoietic cells represented by fibroblasts can also produce IL-22 under certain circumstances [11]. IL-22 is known to act by binding to its receptor (IL-22R), which is synthesized from the IL-22R1 and IL-10R2 subunits [56]. Thereinto, IL-22R1 expression is thought to be restricted to epithelial cells in organs such as the lung, liver, intestine, and skin, while the latter is universally expressed [11,57]. IL-22BP, also known as IL-22RA2, is a soluble IL-22 receptor that binds specifically to IL-22 and prevents it from binding to IL-22R1. All currently known functions of IL-22BP are achieved by inhibiting IL-22 [58,59]. Broadly speaking, the primary function of IL-22 in the body is to promote cell proliferation and tissue protection [60]. Sometimes, excessive activation of this function may lead to pathological results. This dual effect is reflected in both inflammatory and tumor-related diseases. In the short term, the production of IL-22 can play a protective role in anti-inflammatory and tumor prevention, while the uncontrolled generation of IL-22 may promote inflammation and tumor formation [13,18]. The duality of IL-22 reveals that it could be a potential drug target, and the tight regulation of IL-22 is crucial in the treatment of a variety of diseases. In Fig. 1, We summarize the role of IL-22 in lung cancer.\\n\\nIn general, the expression levels of IL-22 in vivo are regulated by a variety of cytokines and genes. For instance, IL-1β and IL-23 can induce the production of IL-22 independently, and the two act synergistically [11]. What’s more, Cornelia Voigt described a novel mechanism whereby cancer cells promote tumor growth by releasing IL-1β to induce IL-22 production by memory CD4+ T cells [61]. According to an animal experiment, IL-1β can enhance the proliferation of epithelial cells and promote lung tumorigenesis [62]. IL-23 has been proven to promote proliferation in NSCLC by Anne-Marie Baird et al. [63]. Although IL-23 is thought to be able to induce macrophages to produce IL-22, this study by Anne-Marie Baird et al. cannot directly prove whether the proliferation-promoting effect of IL-23 on NSCLC cells is related to IL-23’s promotion of IL-22 production. IL-23 is also thought to promote the expression of IL-26 by macrophages. Like IL-22, IL-26 is part of the IL-10 family. Researchers demonstrated for the first time that IL-26 is involved in the generation of malignant pleural effusions [64]. They reported that IL-26 promotes the generation of malignant pleural effusion by mediating the infiltration of CD4+IL-22+T cells in malignant pleural effusion and stimulating CD4+ IL-22+ T cells to secrete IL-22. Recently, the Notch-AhR-IL-22 axis is thought to be involved in the pathogenesis of LUAD. It is corroborated that in LUAD patients, elevated Notch1 facilitates IL-22 generation by CD4+ T cells via aryl hydrocarbon receptors (AhR) [65]. In NSCLC, Notch signaling can both promote tumorigenesis and inhibit tumor progression, which mainly depends on its regulation of the\\n\\n|Class I: Proliferation, apoptosis, and invasion|Class II: Regulating tumor microenvironment|\\n|---|---|\\n|Proliferation|Lung cancer tissue|\\n|NK cells| |\\n|T cells|Apoptosis|\\n|Lung cancer cells| |\\n|C01se|Metastasis|\\n|Lung cancer cells|Infiltrated immune cells|\\n|CASPASE| |\\n|Multidrug resistance| |\\n|IL-22 Ko| |\\n|IL-6|Lymphocyte|\\n|TNF-a|Total WBC|\\n|IL-1a|Macrophage|\\n|Neutrophil| |\\n\\n|Class III: Angiogenesis|Class IV: Cancer stem cell|\\n|---|---|\\n|IL-22|STAT3 signaling pathway|\\n|Lung cancer tissue| |\\n|Aangiogenic switch| |\\n|IL-22| |\\n|Vascular endothelial cell|Cancer stem cells|\\n| |Lung cancer cells|\\n\\nFig. 1. IL-22 plays four main functions during the progression of lung cancer. 1) Promote lung cancer cell proliferation and invasion, and inhibit lung cancer cell apoptosis; 2) Regulate the abundance of immune cells in lung cancer tissues and activate the inflammatory microenvironment; 3) Promote cancer angiogenesis; 4) Activate lung cancer stem cells.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='89a03af3-1e13-4347-9561-8a166e8c035b', embedding=None, metadata={'title': 'title', 'author': 'tes author', 'category': 'tes kategori', 'year': 2010, 'publisher': 'tes publisher', 'page_number': 4}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\nTransformation between neuroendocrine and non-neuroendocrine. For patients with SCLC containing Notch active tumor cells, the application of Notch inhibitors may be an effective treatment [66]. Moreover, the expression of IL-22 is also regulated by miR-26. In cutaneous T-cell lymphoma (CTCL) cells, transfection of miR-26 resulted in a remarkable decrease in the expression levels of IL-22 and IL-22 mRNA [67]. In human NSCLC, Yi He et al. found that the expression levels of miR-26 were lower in tumor tissues compared to paracancerous tissue. As a functional miRNA, miR-26 was further proved by the team to inhibit autophagy and induce apoptosis of NSCLC cells both in vitro and in vivo [68]. On the other hand, IL-22 has also been shown to regulate other cytokines. Studies have shown that the production of IL-22 generally reduces Th1-type immune responses. This action may be coordinated with the protective effect of IL-22R-expressing tissue cells to reduce collateral damage in the context of infection and inflammation [69]. Besides, animal experiments have indicated that IL-22 can also promote B-cell responses by inducing CXCL13 in tertiary lymphoid follicles [70,71]. In the latest murine lung cancer model, IL-22 was discovered to induce NK cells to overexpress CD155, thus mediating the immune evasion of tumor cells [72]. As a transmembrane adhesive molecule, CD155 has been proven to inhibit T and NK cell-mediated anti-tumor immune responses, thereby promoting tumor progression (Fig. 2) [73–75].\\n\\nIn the occurrence and development of pulmonary diseases, IL-22 is considered to play an important role. As previously demonstrated in an epicutaneously sensitized mice experiment, IL-22 promotes the development of neutrophil and eosinophile-mediated airway inflammation and airway hyperresponsiveness stimulated by intranasal antigens [76]. The conclusion implies that blocking IL-22 may be helpful for the treatment of bronchial asthma. When it comes to chronic obstructive pulmonary disease (COPD), the expression levels of both IL-22 and its receptor in COPD patients were higher than those of healthy controls. This result was confirmed in mice with experimental COPD induced by cigarette smoke. What’s more, researchers also found that cigarette smoke-induced inappropriate activation of pulmonary neutrophils decreased in IL-22-deficient mice with COPD. This suggests that IL-22 may be involved in the pathogenesis of COPD. The research further manifested that IL-22 promotes cigarette smoke-induced airway remodeling, pulmonary neutrophil inflammation, and the impairment of pulmonary function, and is involved in the pathogenesis of COPD [77]. While in pulmonary infectious diseases such as pneumonia, tuberculosis, and pulmonary mycosis, it is thought that IL-22 appears to take a protective and preventive part [78–83]. For good measure, in the bleomycin-induced pulmonary fibrosis model, the degree of pulmonary fibrosis in IL-22 knockout mice was aggravated, and injection of recombinant IL-22 alleviated the severe fibrosis in IL-22 knockout mice. This latest research has suggested the potential anti-fibrotic effect of IL-22 [84].\\n\\nIn recent years, differential expression of IL-22 has also been discovered in various specimens of lung cancer (Table 1). In the first place, the mean levels of IL-22 in the plasma of NSCLC patients were significantly higher than that of the reference cohort [21,85]. The plasma levels of IL-22 were observed to elevate along with the increase in lung cancer staging [85]. In addition, Immunohistochemistry analysis showed that IL-22 expression was up-regulated in NSCLC tumor specimens in comparison to that in the adjacent tissues. RT-qPCR analysis also revealed similar differences in IL-22 mRNA expression between lung cancer tissues and normal tissues [24,86]. Interestingly, Yi Bi et al. compared IL-22 levels between tissues and serum of patients with primary NSCLC and their paired recurrent lung cancer specimens and the expression levels of IL-22 were found to be obviously up-regulated in the latter group [23]. Apart from this, IL-22 expression was also detected in bronchoalveolar lavage fluid (BALF). As reported by an article in 2016, IL-22 levels were...\\n\\n|CD155|NK Cell|L|\\n|---|---|---|\\n|T Cell|IL-22|Impaired function|\\n| |Lung metastases| |\\n\\nFig. 2. IL-22 induces NK cells to overexpress CD155, which binds to NK cell activation receptor CD226. Over-activation leads to a decrease in the amount of CD226 and impaired NK cell function, thereby mediating tumor cell immune escape.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='87dc46a7-0628-4738-b798-3a7498229f8b', embedding=None, metadata={'title': 'title', 'author': 'tes author', 'category': 'tes kategori', 'year': 2010, 'publisher': 'tes publisher', 'page_number': 5}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\n# Table 1\\n\\nDifferential expression of IL-22/IL-22 mRNA/IL-22R1 mRNA in various samples in lung cancer. +: Up-regulated.\\n\\n|Molecule|Samples|Expression|P value|Ref. (PMID)|\\n|---|---|---|---|---|\\n|IL-22|Plasma|+|0.0013|24956177|\\n|IL-22 mRNA|Tissues|+|0.0313|18927282|\\n|IL-22|Pleural effusion|+|0.0051|18927282|\\n|IL-22 mRNA, IL-22|Tissues, serum|+|<0.01|26983629|\\n|IL-22R1 mRNA|Tissues|+|<0.05|26983629|\\n|IL-22|BALF|+|<0.001|27388918|\\n\\nSignificantly higher in BALF from lung cancer patients compared with control group. The researchers expanded the cohort to patients with lung metastases from other malignancies and found that IL-22 concentrations remained higher than controls [87]. These results implied that IL-22 in BALF may be a biomarker for lung cancer. Over and above, researchers also found the trace of IL-22 in pleural effusion [88,89]. One study has revealed that IL-22 levels were higher in malignant pleural effusion as against tuberculous pleural effusion [24]. These differential expressions prompt that IL-22 may participate in the occurrence and development of lung cancer (Table 2).\\n\\nThe link between inflammatory processes and cancer has long been recognized [90]. Related studies hint that inflammatory responses play a vital role in different phases of tumor occurrence, development, and metastasis [91–93]. The function of IL-22 in cancer is extremely complicated. Initially, IL-22 may prevent tumorigenesis by reducing chronic inflammation, promoting barrier function, and inducing tissue regeneration. On the contrary, if IL-22 is excessively expressed under persistent chronic inflammation, then malignant cells may utilize this signal to facilitate its progression [11]. In the lung tumor microenvironment, uncontrolled expression of IL-22 can amplify inflammation by inducing various inflammatory mediators alone or in concert with other cytokines [94]. As illustrated by a cellular experiment, IL-22 could promote the proliferation of A549 and H125 cells belonging to the NSCLC cell lines, thereby enhancing the ability of tumor cell migration and invasion [23]. An in vitro experiment in 2018 has confirmed that IL-22 can directly act on endothelial cells to stimulate tumor angiogenesis [95]. To some extent, this enhances the ability of tumor cells to absorb nutrients and distant metastasis. From another perspective, this provides new ideas for anti-angiogenic therapy of tumors. Nasim Khosravi suggested that IL-22 promotes tumor progression by inducing a pro-tumor immune response and protective stem cell properties of tumor cells [94]. It is also reported that after 12h of serum starvation, the proportion of apoptotic lung cancer cells transfected with the IL-22 gene was significantly lower than that of control lung cancer cells. In addition, the apoptosis-inducing and anti-proliferative effects of chemotherapeutic drugs on lung cancer cells were inhibited in IL-22 transgenic cell lines [24]. Simultaneously, the apoptosis of lung cancer cells induced by gefitinib was also significantly reduced 48 h after IL-22 exposure [96]. On the contrary, exposure to IL-22R1 blocking antibodies or in vitro transfection of IL-22-RNA interference plasmid leads to apoptosis of lung cancer cells [24]. Zhiliang Huang et al. found that the apoptosis rate of paclitaxel-treated lung cancer cells in the IL-22 siRNA transfection group was significantly increased compared with the control group [22]. Apart from this, IL-22 antibody treated mice and IL-22-deficient mice were found to be protected from the formation of pulmonary metastases caused by colon cancer, while IL-22 overexpression promoted metastases [20]. In short, IL-22 not only antagonizes the induction of apoptosis and cell cycle arrest of lung cancer cells by anti-tumor drugs but also promotes the proliferation and migration of lung cancer cells, the growth of tumor tissues, and the generation of lung metastatic cancer.\\n\\n# 4. Regulatory role of IL-22 in lung cancer\\n\\nNumerous signaling pathways are involved in the regulation of IL-22 in lung cancer, including PI3K/AKT, JAK-STAT3, p38 MAPK signaling pathways, and so on. In the following, we will elaborate on the regulatory role of IL-22 in lung cancer from the point of view of each major signaling pathway (Fig. 3).\\n\\n# Table 2\\n\\nPotential clinical role of IL-22, its receptors and producing cells in lung cancer.\\n\\n|Sample sources|Clinical function|Conclusion|Ref. (PMID)|\\n|---|---|---|---|\\n|Patients|Diagnosis|IL-22 levels were significantly higher in lung cancer patients than control group.|24956177, 27388918|\\n|Patients|Prognosis assessment|IL-22R1 levels were associated with poorer prognosis.|26846835|\\n|Patients|Disease assessment|The levels of IL-22-producing Th22 cells were positively correlated with TNM stage and lymph node metastasis.|35669104|\\n|Patients|Efficacy prediction|IL-22 expression levels were associated with EGFR-TKI efficacy.|31750252|\\n|Mice model|Treatment|IL-22-deficient mice had a lower metastatic load of lung cancer.|36630913|\\n|Mice model|Treatment|Gene ablation of IL-22 resulted in a marked reduction in the number and size of lung tumors.|29764837|', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='75a235a9-b907-42f9-bf9e-c4383d2f37c6', embedding=None, metadata={'title': 'title', 'author': 'tes author', 'category': 'tes kategori', 'year': 2010, 'publisher': 'tes publisher', 'page_number': 6}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\n# 4.1. PI3K/Akt signaling pathway\\n\\nPI3K/Akt signaling pathway is one of the core intracellular signaling pathways, which plays a critical role in regulating cell growth, survival, metabolism, movement, and proliferation [97]. As a downstream effector of receptor tyrosine kinases (RTKs) and G-protein-coupled receptors (GPCRs), PI3K is a group of lipid kinases consisting of three subunits. It can be divided into three categories according to various functions and structures. Thereinto Class IA PI3K is a heterodimer of the p110 catalytic subunit and the p58 regulatory subunit, and it is primarily related to human tumors [98,99]. As we all know, PI3K can catalyze phosphatidylinositol [4, 5]-bisphosphate (PIP2) to phosphatidylinositol [3–5]-trisphosphate (PIP3). Serine/threonine protein kinase (Akt), as the main downstream molecule of the PI3K signaling pathway, is mainly activated by PIP3-driven plasma membrane recruitment and phosphorylation. The mammalian target of rapamycin (mTOR), a major downstream signaling molecule in the PI3K/Akt signaling pathway, is considered to be a modified protein kinase in the form of mTORC1 and mTORC2. The first is mainly activated by the PI3K/Akt signaling pathway, and mTORC2 further activates Akt by directly phosphorylating its hydrophobic motif (Ser473) [100].\\n\\nPI3K/Akt signaling pathway is considered to be the chief regulatory factor of idiopathic pulmonary fibrosis (IPF), it may directly participate in the formation of IPF or promote the occurrence and development of fibrosis in collaboration with other pathways [97]. Several studies have declared that certain natural products like resveratrol and Danhong injection can provide neuroprotective effects by activating the PI3K/Akt/mTOR signaling pathway [101,102]. Furthermore, the relationship between the PI3K/Akt/mTOR signaling pathway and cancer has been most intensively studied. Activation of the PI3K/Akt/mTOR signaling pathway is believed to promote the occurrence, proliferation, and progression of a variety of cancers, including breast cancer, ovarian cancer, prostate cancer, etc. [99,100,103]. In addition, it is also an important cause of tumor drug resistance [104]. In NSCLC, KRAS, EGFR, and PTEN mutations are believed to activate the PI3K/Akt/mTOR signaling pathway [105]. As demonstrated in a previous article, upregulation of the PI3K signaling pathway was identified as an early and reversible event in the pathogenesis of NSCLC [106]. One experiment has confirmed that the PI3K/Akt signaling pathway promotes the proliferation of LUAD cells mainly through anti-apoptosis [107]. Additionally, as revealed in a cellular study, IL-22 produced by CAFs markedly improves the proliferation and invasion of lung cancer cell, and lessens apoptosis by activating the PI3K/Akt/mTOR signaling pathway [86]. For good measure, it has been found that Akt phosphorylation in NSCLC cells is facilitated by different concentrations of IL-22 in a time- and dose-dependent way [23]. Collectively, the PI3K/Akt/mTOR signaling pathway plays a significant role in the relationship between IL-22 and lung cancer. It is worth mentioning that IL-22 does not seem to always activate the PI3K/Akt/mTOR signaling pathway. Meng Yuxia et al. found that IL-22 inhibits the activity of the PI3K/Akt/mTOR signaling pathway in mouse liver fibrosis tissue [108]. This opposite finding may be related to the dual function of IL-22. Further study on the impact of IL-22 on the PI3K/Akt/mTOR signaling pathway in different disease processes will help us better understand the specific mechanism of IL-22’s function in the human body. This will facilitate.\\n\\n|IL-22|PI3K|JAK|P38 MAPK|\\n|---|---|---|---|\\n|NK cell|AKT|mTOR| |\\n|Antitumor drugs|Gene expression| |Metastasis|\\n|Apoptosis|Proliferation|EMT|Invasion|\\n| |Lung tumor cell| | |\\n\\nFig. 3. IL-22 promotes the proliferation, migration and epithelial-mesenchymal transition of lung cancer cells through PI3K/Akt, JAK-STAT3, p38 MAPK and other signaling pathways, and antagonizes the apoptosis of lung cancer cells induced by anti-tumor drugs.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='8ceb46e8-38ee-4d80-9676-6c5c6d179d80', embedding=None, metadata={'title': 'title', 'author': 'tes author', 'category': 'tes kategori', 'year': 2010, 'publisher': 'tes publisher', 'page_number': 7}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al. Heliyon 10 (2024) e35901\\n\\n# IL-22-related clinical drug development.\\n\\n# 4.2. JAK/STAT signaling pathway\\n\\nThe JAK/STAT signaling pathway is also an important communication center for cell function, and aberrant alterations in its components are associated with numerous human diseases. JAK/STAT is an evolutionarily conserved signaling pathway consisting of JAKs, STATs, and ligand-receptor complexes. There are four major members of the JAK family, all of which are composed of non-receptor tyrosine protein kinases. The STAT family contains six members which consist of 750–900 amino acids. The JAK/STAT signaling pathway is mainly thought to mediate inflammation, apoptosis, hematopoiesis, tissue repair, immune regulation, and adipogenesis [109]. In autoimmune diseases such as rheumatoid arthritis (RA), activation of the JAK-STAT signaling pathway leads to the progression of joint injury through overexpression of the matrix metalloproteinase gene, apoptosis of chondrocytes, and apoptotic resistance in synovial tissue [110,111]. In addition, in a 2020 study by Meyer LK, the inhibition of the JAK-STAT signaling pathway was found to sensitize CD8+ T cells to dexamethasone-induced excessive inflammatory cell apoptosis [112]. Song et al. have long discovered that the lifespan of NSCLC cells was notably reduced after inhibiting STAT3 [113]. In a murine lung model, overexpression of STAT3 in alveolar type II cells led to severe lung inflammation and eventually to the formation of LUAD [114]. Further, down-regulation of STAT3 was found to result in enhanced NK cell immunity in both human and murine NSCLC cells, which suggests that STAT3 plays an inhibitory role against tumor NK cell immunity [115,116]. A study last year disclosed that IL-22 triggers JAK-STAT3 pathway phosphorylation in NSCLC cells in a time- and dose-dependent manner, thus promoting the proliferation and metastasis of tumor cells [23,96]. Another study demonstrated that the overexpression of IL-22 protected lung cancer cells against apoptosis induced by serum starvation and chemotherapy drugs by activating STAT3 and its downstream anti-apoptotic proteins [24].\\n\\n# 4.3. p38 MAPK signaling pathway\\n\\nThe p38 mitogen-activated protein kinases (MAPK) signaling pathway takes a crucial role in signaling cascades induced by various cellular stimuli. There are four p38 kinase members in the mammalian mitogen-activated protein (MAP) family, which play momentous roles in extracellular stimulation-mediated proliferation, inflammation, differentiation, apoptosis, senescence, and tumorigenesis [117]. In the classical pathway, the p38 MAPK signaling pathway is activated by cascade phosphorylation [118]. In a hepatitis C virus (HCV) experiment, researchers demonstrated that virus-induced activation of the p38 MAPK signaling pathway promotes viral infection, and blocking activation of this pathway may be an antiviral approach [117]. According to Dan He in 2020, mTORC1 drives intestinal stem cell aging via the p38 MAPK-p53 signaling pathway [119]. The p38 MAPK signaling pathway has long been demonstrated to exhibit a major oncogenic role in LUAD [120–122]. Yinan Guo et al. found evidence that the p38 MAPK signaling pathway can promote EMT and metastasis of NSCLC both in vitro and in vivo [123]. In addition, a study published in 2017 proposed that the p38 MAPK signaling pathway activates stem cell properties of LUAD cells by regulating GLI1 [124]. What’s more, in lung cancer models, researchers found that the p38 MAPK signaling pathway inhibited the stem cell properties of lung CSCs and promoted their proliferation and differentiation, thereby leading to tumorigenesis. More importantly, they also elucidated that the p38 MAPK and PI3K/AKT signaling pathways have unique and synergistic roles in regulating lung CSCs self-renewal as carcinogenic and/or stem cell signaling pathways [107]. This provides a new idea for the stem cell-based treatment of lung cancer. In NSCLC, IL-22 in vivo and in vitro were both verified to activate the p38 MAPK signaling pathway. The collected evidence from this study confirmed the negative immunomodulatory role of IL-22 in the disease [96].\\n\\n# 5. Clinical role of IL-22 in lung cancer\\n\\nCurrently, there is still a lack of efficient biomarkers for the diagnosis and treatment of lung cancer. In recent years, the value of the interleukin family as biomarkers and therapeutic targets of lung cancer has been deeply investigated [125–132]. Of these, IL-1 and IL-6 have been studied most extensively in lung cancer. Bo Yuan’s findings in mice experiments supported IL-1β as a potential target for the prevention and treatment of LUAD patients with Kras mutations [129]. In a clinical trial of the anti-IL-1β antibody canakinumab, researchers found that 300 mg canakinumab significantly reduced lung cancer mortality compared with the control group (HR 0.49 [95%CI 0.31–0.75]; p = 0.0009) [133]. In plasma samples or tumor tissues from NSCLC, researchers revealed that patients with lower baseline IL-6 concentrations benefited more from immunotherapy. The study elucidated the role of IL-6 in predicting the efficacy of immunotherapy in patients with NSCLC [128]. Furthermore, in one lung cancer study, the survival hazard ratio before and after chemotherapy for high versus low IL-6 levels was 1.25 (95%CI 0.73–2.13) and 3.66 (95%CI 2.18–6.15), respectively. It is suggested that IL-6 may be a prognostic indicator of survival in patients with advanced NSCLC receiving chemotherapy [127]. Some scholars have also described the potential value of IL-11 as a biomarker for the diagnosis and prognosis of NSCLC [125]. In addition, another research has shown that changes in serum IL-8 levels in NSCLC patients could reflect and predict the response to immunotherapy [130]. Kaplan-Meier survival analysis showed that the overall survival outcome of NSCLC patients with high IL-22R1 expression was significantly lower than that of patients with low IL-22R1 expression (p = 0.022). Multivariate regression analysis also confirmed an association between IL-22R1 levels and poorer outcomes (HR 1.5, 95%CI 1.2–1.9; p = 0.0011). This suggested that high expression of IL-22R1 is an independent factor for low overall survival in NSCLC [134]. What’s more, the levels of IL-22-producing Th22 cells in peripheral blood were positively correlated with TNM stage, lymph node metastasis, and clinical tumor markers of lung cancer (p < 0.01) [96]. The above indicates the significance of IL-22 as a biomarker in the diagnosis and disease assessment of lung cancer. Apart from this, Renhua Guo’s team found that the expression of IL-22 in the EGFR-TKI resistant group was higher than that in sensitive.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='da26883c-dab1-4da8-bcc5-fdbad1a58553', embedding=None, metadata={'title': 'title', 'author': 'tes author', 'category': 'tes kategori', 'year': 2010, 'publisher': 'tes publisher', 'page_number': 8}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\ngroup in NSCLC, and the expression level was correlated with the efficacy of EGFR-TKI in plasma [135]. Therefore, it is reasonable to suspect that IL-22 may be a new biomarker to overcome EGFR-TKI resistance in NSCLC. In terms of animal models, some investigators implanted Line-1 lung cancer cells into wild-type and IL-22-deficient mice simultaneously, and found reduced intrapulmonary metastasis in the latter group, which is independent of primary tumor size. Besides, they performed forced metastasis by intravenous injection of lung cancer cells, and the results further confirmed the lower metastatic load in mice with IL-22 deletion [72]. In another model of Kras-mutated lung cancer in mice, gene ablation of IL-22 resulted in a marked reduction in tumor number and size. The authors also analyzed the association between IL-22R1 expression and survival in patients with KRAS mutant lung adenocarcinoma, the results showed that high expression of IL-22R1 was an independent indicator of poorer relapse-free survival [94]. Taken together, these pieces of evidence highlight the potential clinical role of IL-22, IL-22R, and IL-22-producing cells in the treatment of lung cancer (Table 2).\\n\\n# 6. Future perspectives\\n\\n# 6.1. CRISPR-Cas13a technical\\n\\nAt present, mounting clinical trials based on IL-22 are being carried out in full swing worldwide, mainly involving ulcerative colitis, alcoholic cirrhosis, GVHD, and psoriasis [12,14,54,60]. However, there are presently no clinical trials based on IL-22 in lung cancer. As described previously, reduced intrapulmonary metastasis was found in IL-22-deficient mice as well as in IL-22-suppressed NSCLC cells [20,72]. In addition, blocking IL-22R1 or knockout of the IL-22 gene both retarded the progression of lung cancer [24,94]. These findings provide a new train of thought for the down-regulation of IL-22 in treating lung cancer.\\n\\nIn recent years, the research on gene editing treatment for various diseases has become more and more popular [136–138]. CRISPR-Cas13a is an effective tool for knocking out specific RNA sequences, it has been shown to induce the death of glioma cells that overexpress EGFR, which is one of the subtypes of EGFR mutation in glioma. Apart from this, the CRISPR-Cas13a gene-editing system can also inhibit the formation of intracranial tumors in mice with glioma [139]. In a collagen-induced mouse model, injection of gene-edited human amniotic mesenchymal stem cells that overexpressed IL-10 increased proteoglycan expression in joint tissue and reduced the inflammatory response and production of various inflammatory cytokines [137]. In the world’s first human phase I clinical trial utilizing CRISPR-Cas9 in the treatment of advanced NSCLC, researchers have demonstrated the feasibility and safety of gene-edited T-cell therapy targeting the PD-1 gene [140]. Thus, genome editing strategies have the potential to treat lung cancer by altering IL-22 expression levels. In the future, the role of pulmonary precision delivery based on CRISPR-Cas13 gene-editing components targeting the IL-22 mRNA in lung cancer therapy should not be ignored. CRISPR-Cas13 is expected to be further integrated.\\n\\n# IL-22 mRNA\\n\\n# Cas13a\\n\\n# Crispr-Cas13a Combined With\\n\\n# Figure\\n\\n# Single-base edition\\n\\n# Single-cell sequencing\\n\\n# Lung cancer\\n\\nFig. 4. Crispr-cas13-based IL-22 mRNA editing can be utilized for lung cancer therapy by combining with emerging technologies such as single-base editing and single-cell sequencing.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='879717af-4d28-425c-85de-a9cd4fbb7ae8', embedding=None, metadata={'title': 'title', 'author': 'tes author', 'category': 'tes kategori', 'year': 2010, 'publisher': 'tes publisher', 'page_number': 9}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\nwith the latest technologies such as single-base editing and single-cell sequencing to promote the treatment of lung cancer to a new level (Fig. 4).\\n\\n# 6.2. Small interfering RNA\\n\\nSmall interfering RNA (siRNA) is a double-stranded RNA molecule composed of 21–23 nucleotides. In cells, siRNA forms functional complexes by binding to the RNA-induced silencing complex (RISC). RISC in the functional complex specifically recognizes and binds to the target mRNA, leading to degradation of the target mRNA and thereby silencing the expression of the target gene. Compared with traditional therapies such as small molecules and protein drugs, siRNA technology has many advantages:\\n\\n1. siRNA is highly specific. siRNA can only silence homologous genes, while unrelated genes are not affected.\\n2. siRNA can silence genes by using RISC.\\n3. siRNA can be designed to target different genes through sequence design, and can even target targets that were previously considered “undruggable”.\\n4. siRNA does not activate the innate immune system.\\n\\nTwenty years after the discovery of the RNA interference mechanism, the first siRNA drugs (including Patisiran, Givosiran, Lumasiran, Inclisiran, Vutrisiran) were approved for clinical use by the U.S. Food and Drug Administration (FDA) and the European Medicines Agency from 2018 to 2022 [141,142]. NFKBIZ is an upstream target of IL-23, IL-36 and IL-17A. In the study of Mandal A et al. [143], NFKBIZ-siRNA significantly reduces the mRNA levels of multiple pro-inflammatory cytokines, including IL-17, IL-19, IL-22, etc., in the skin tissue of psoriasis mice, thereby alleviating the condition of the mice. The safety evaluation results of NFKBIZ-siRNA preparations show that NFKBIZ-siRNA preparations can complex with nucleic acids without affecting biological activity and show no toxicity. TGF-β is a pleiotropic regulatory cytokine that can regulate a variety of ILs including IL-22 and IL-17 to affect the composition of the tumor microenvironment [144]. Currently, Sirnaomics has developed an siRNA drug that targets TGF-β (called STP705). Recently, the drug has completed phase II clinical trials in the United States and achieved positive results. The role of ILs in cancer has been extensively studied. In recent years, the positive role of IL-22 in lung cancer has received attention. The researchers believe that knocking down IL-22 mRNA levels in the lesions of lung cancer patients will help prolong the survival of lung cancer patients and improve the cure rate of lung cancer patients. For example, Zhang Wei et al. found that IL-22-siRNA slowed tumor growth in NSCLC model mice. In addition, they reported that the therapeutic effect of IL-22-siRNA combined with chemotherapy drugs (5-FU and carboplatin) on NSCLC mice was better than that of chemotherapy drugs alone [24]. In an in vitro assay [145], cell line PC9 cells (NSCLC) transfected with PDLIM5-siRNA targeting the PDLIM5 gene had reduced growth viability and exhibited higher apoptotic rates. In the chemotherapy drug gefitinib-resistant cell line PC9 cells, PDLIM5-siRNA still showed significant anti-tumor effects. These results indicate that siRNA-based therapy has good application in the clinical treatment of NSCLC, especially in drug-resistant patients. Based on these findings, we believe that the development of IL-22-siRNA drugs for lung cancer treatment has clinical potential and theoretical basis.\\n\\n# 6.3. Nanoparticle drug delivery systems\\n\\nOn the other hand, given the toxicity and erratic efficacy of current anti-tumor drugs, research on novel drug carriers in lung cancer.\\n\\n|Different types of nanomaterials|Targeting agent|IL-22-related drug|\\n|---|---|---|\\n|Lung precision delivery|Lung precision delivery|Lung precision delivery|\\n\\nFig. 5. Precision delivery of various nanomaterials containing IL-22 related drugs for the treatment of lung cancer.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='2ca21b8f-6b73-4c9d-b1b4-5a18c9bc6af2', embedding=None, metadata={'title': 'title', 'author': 'tes author', 'category': 'tes kategori', 'year': 2010, 'publisher': 'tes publisher', 'page_number': 10}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\nis also of vital significance. Nanoparticles containing targeted drugs can be delivered to the intended site using carriers with affinity for various specific tissues or lesions [146,147]. In an in vivo mice lung model, combined delivery of sorafenib and crizotinib by polymer nanoparticles significantly reduced tumor progression and toxic side effects, and improved survival rate [148]. Moreover, Maofan Zhang demonstrated that the efficacy of dual-drug-loaded polymeric nanoparticles with etoposide and cisplatin was significantly superior to conventional chemotherapy modality without causing additional toxicity [149]. These imply that nanomaterials loaded with IL-22-related drugs may also have more unique advantages. Therefore, the utilization of novel nanomaterials loaded with IL-22 antibodies and IL-22 inhibitors like IL-22BP for targeted therapy of lung tumors is also a promising research direction (Fig. 5).\\n\\n# 7. Conclusion\\n\\nIn this review, we provided a comprehensive analysis of the role of IL-22 in the immune microenvironment and its involvement in major signaling pathways in the context of lung cancer. Put in a nutshell, IL-22 not only antagonizes the induction of apoptosis and cell cycle arrest of lung cancer cells by anti-tumor drugs but also promotes the proliferation and metastasis of lung cancer cells and the growth of tumor tissues. Additionally, the potential clinical significance of IL-22 in the diagnosis, treatment, and prognosis evaluation of lung cancer was further confirmed. Next, the prospects of IL-22 in combination with gene editing and novel nanomaterials in the treatment of lung cancer have been discussed. With the general increase in drug resistance to chemotherapy, targeted therapy, and immunotherapy in lung cancer, it is also necessary to study in depth to discover the correlation between IL-22 and the mechanism of drug resistance. To sum up, the potential of IL-22 as a biomarker for lung cancer still remains to be explored. Further research on the molecular, physiological effects and mechanism of IL-22 in lung cancer as well as the conduction of standardized clinical trials are expected to inject fresh blood into the diagnosis and treatment of lung cancer.\\n\\n# Financial support\\n\\nNone.\\n\\n# Data availability statement\\n\\nNot applicable.\\n\\n# CRediT authorship contribution statement\\n\\nLing Xu: Writing – original draft.\\n\\nPeng Cao: Visualization.\\n\\nJianpeng Wang: Writing – review & editing.\\n\\nPeng Zhang: Validation.\\n\\nShuhui Hu: Validation.\\n\\nChao Cheng: Writing – review & editing.\\n\\nHua Wang: Writing – review & editing, Supervision, Conceptualization.\\n\\n# Declaration of competing interest\\n\\nThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.\\n\\n# Acknowledgements\\n\\nNone.\\n\\n# Abbreviations\\n\\n|non-small cell lung cancer|NSCLC|\\n|---|---|\\n|Interleukin-22|IL-22|\\n|chimeric antigen receptor|CAR|\\n|IL-10-related T cell-derived inducible factor|IL-10-TIF|\\n|Group 3 innate lymphoid cells|ILC3|\\n|IL-22 receptor|IL-22R|\\n|aryl hydrocarbon receptors|AhR|\\n|chronic obstructive pulmonary disease|COPD|\\n|cutaneous T-cell lymphoma|CTCL|\\n|bronchoalveolar lavage fluid|BALF|\\n|receptor tyrosine kinases|RTKs|\\n|G-protein-coupled receptors|GPCRs|\\n|Mammalian target of rapamycin|mTOR|\\n|idiopathic pulmonary fibrosis|IPF|\\n|rheumatoid arthritis|RA|', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='f1e0224e-8de8-4f70-90c9-5376b0ba332a', embedding=None, metadata={'title': 'title', 'author': 'tes author', 'category': 'tes kategori', 'year': 2010, 'publisher': 'tes publisher', 'page_number': 11}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\n# Abbreviations\\n\\n|Term|Abbreviation|\\n|---|---|\\n|mitogen-activated protein kinases|MAPK|\\n|mitogen-activated protein|MAP|\\n|hepatitis C virus|HCV|\\n\\n# References\\n\\n1. S. Lareau, C. Slatore, R. Smyth, Lung cancer, Am. J. Respir. Crit. Care Med. 204 (12) (2021) P21–P22.\\n2. J. Huang, Y. Deng, M.S. Tin, V. Lok, C.H. Ngai, L. Zhang, et al., Distribution, risk factors, and temporal trends for lung cancer incidence and mortality: a global analysis, Chest 161 (4) (2022) 1101–1111.\\n3. B.C. Bade, C.S. Dela Cruz, Lung cancer 2020: epidemiology, etiology, and prevention, Clin. Chest Med. 41 (1) (2020) 1–24.\\n4. J. Malhotra, M. Malvezzi, E. Negri, C. La Vecchia, P. Boffetta, Risk factors for lung cancer worldwide, Eur. Respir. J. 48 (3) (2016) 889–902.\\n5. H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA A Cancer J. Clin. 71 (3) (2021) 209–249.\\n6. Y. Jin, Y. Chen, H. Tang, X. Hu, S.M. Hubert, Q. Li, et al., Activation of PI3K/AKT pathway is a potential mechanism of treatment resistance in small cell lung cancer, Clin. Cancer Res. 28 (3) (2022) 526–539.\\n7. S. Kobold, S. Volk, T. Clauditz, N.J. Kupper, S. Minner, A. Tufman, et al., Interleukin-22 is frequently expressed in small- and large-cell lung cancer and promotes growth in chemotherapy-resistant cancer cells, J. Thorac. Oncol. 8 (8) (2013) 1032–1042.\\n8. K.Y. Lee, P.W. Shueng, C.M. Chou, B.X. Lin, M.H. Lin, D.Y. Kuo, et al., Elevation of CD109 promotes metastasis and drug resistance in lung cancer via activation of EGFR-AKT-mTOR signaling, Cancer Sci. 111 (5) (2020) 1652–1662.\\n9. R.A. Nagem, D. Colau, L. Dumoutier, J.C. Renauld, C. Ogata, I. Polikarpov, Crystal structure of recombinant human interleukin-22, Structure 10 (8) (2002) 1051–1062.\\n10. D. Lejeune, L. Dumoutier, S. Constantinescu, W. Kruijer, J.J. Schuringa, J.C. Renauld, Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line. Pathways that are shared with and distinct from IL-10, J. Biol. Chem. 277 (37) (2002) 33676–33682.\\n11. J.A. Dudakov, A.M. Hanash, M.R. van den Brink, Interleukin-22: immunobiology and pathology, Annu. Rev. Immunol. 33 (2015) 747–785.\\n12. Lanfranca M. Perusina, Y. Lin, J. Fang, W. Zou, T. Frankel, Biological and pathological activities of interleukin-22, J. Mol. Med. (Berl.) 94 (5) (2016) 523–534.\\n13. L.A. Zenewicz, R.A. Flavell, Recent advances in IL-22 biology, Int. Immunol. 23 (3) (2011) 159–163.\\n14. Y. Wu, J. Min, C. Ge, J. Shu, D. Tian, Y. Yuan, et al., Interleukin 22 in liver injury, inflammation and cancer, Int. J. Biol. Sci. 16 (13) (2020) 2405–2413.\\n15. Y. Zhu, T. Shi, X. Lu, Z. Xu, J. Qu, Z. Zhang, et al., Fungal-induced glycolysis in macrophages promotes colon cancer by enhancing innate lymphoid cell secretion of IL-22, EMBO J. 40 (11) (2021) e105320.\\n16. A.D. Giannou, J. Lucke, D. Kleinschmidt, A.M. Shiri, B. Steglich, M. Nawrocki, et al., A critical role of the IL-22-IL-22 binding protein Axis in hepatocellular carcinoma, Cancers 14 (24) (2022).\\n17. X. Xuan, J. Zhou, Z. Tian, Y. Lin, J. Song, Z. Ruan, et al., ILC3 cells promote the proliferation and invasion of pancreatic cancer cells through IL-22/AKT signaling, Clin. Transl. Oncol. 22 (4) (2020) 563–575.\\n18. L.G. Perez, J. Kempski, H.M. McGee, P. Pelzcar, T. Agalioti, A. Giannou, et al., TGF-beta signaling in Th17 cells promotes IL-22 production and colitis-associated colon cancer, Nat. Commun. 11 (1) (2020) 2608.\\n19. K. Kim, G. Kim, J.Y. Kim, H.J. Yun, S.C. Lim, H.S. Choi, Interleukin-22 promotes epithelial cell transformation and breast tumorigenesis via MAP3K8 activation, Carcinogenesis 35 (6) (2014) 1352–1361.\\n20. A.D. Giannou, J. Kempski, A.M. Shiri, J. Lucke, T. Zhang, L. Zhao, et al., Tissue resident iNKT17 cells facilitate cancer cell extravasation in liver metastasis via interleukin-22, Immunity 56 (1) (2023) 125–142 e12.\\n21. P. Hernandez, K. Gronke, A. Diefenbach, A catch-22: interleukin-22 and cancer, Eur. J. Immunol. 48 (1) (2018) 15–31.\\n22. Z. Huang, Y. Gao, D. Hou, Interleukin-22 enhances chemoresistance of lung adenocarcinoma cells to paclitaxel, Hum. Cell 33 (3) (2020) 850–858.\\n23. Y. Bi, J. Cao, S. Jin, L. Lv, L. Qi, F. Liu, et al., Interleukin-22 promotes lung cancer cell proliferation and migration via the IL-22R1/STAT3 and IL-22R1/AKT signaling pathways, Mol. Cell. Biochem. 415 (1–2) (2016) 1–11.\\n24. W. Zhang, Y. Chen, H. Wei, C. Zheng, R. Sun, J. Zhang, et al., Antiapoptotic activity of autocrine interleukin-22 and therapeutic effects of interleukin-22-small interfering RNA on human lung cancer xenografts, Clin. Cancer Res. 14 (20) (2008) 6432–6439.\\n25. A.A. Thai, B.J. Solomon, L.V. Sequist, J.F. Gainor, R.S. Heist, Lung cancer, Lancet 398 (10299) (2021) 535–554.\\n26. F.R. Hirsch, G.V. Scagliotti, J.L. Mulshine, R. Kwon, W.J. Curran Jr., Y.L. Wu, et al., Lung cancer: current therapies and new targeted treatments, Lancet 389 (10066) (2017) 299–311.\\n27. R.L. Siegel, K.D. Miller, N.S. Wagle, A. Jemal, Cancer statistics, 2023, CA A Cancer J. Clin. 73 (1) (2023) 17–48.\\n28. S. Zochbauer-Muller, A.F. Gazdar, J.D. Minna, Molecular pathogenesis of lung cancer, Annu. Rev. Physiol. 64 (2002) 681–708.\\n29. S.P. D’Angelo, M.C. Pietanza, The molecular pathogenesis of small cell lung cancer, Cancer Biol. Ther. 10 (1) (2010) 1–10.\\n30. Y.E. Miller, Pathogenesis of lung cancer: 100 year report, Am. J. Respir. Cell Mol. Biol. 33 (3) (2005) 216–223.\\n31. M. Sato, D.S. Shames, A.F. Gazdar, J.D. Minna, A translational view of the molecular pathogenesis of lung cancer, J. Thorac. Oncol. 2 (4) (2007) 327–343.\\n32. E. Taucher, I. Mykoliuk, J. Lindenmann, F.M. Smolle-Juettner, Implications of the immune landscape in COPD and lung cancer: smoking versus other causes, Front. Immunol. 13 (2022) 846605.\\n33. F. Nasim, B.F. Sabath, G.A. Eapen, Lung cancer, Med. Clin. 103 (3) (2019) 463–473.\\n34. G. Butschak, A. Kuster, B. Schulze, A. Graffi, Temperature dependent pH-instability of some alpha-L-arabinofuranosidases, Arch. Geschwulstforsch. 59 (3) (1989) 165–170.\\n35. S.M. Gadgeel, S.S. Ramalingam, G.P. Kalemkerian, Treatment of lung cancer, Radiol. Clin. 50 (5) (2012) 961–974.\\n36. C. Zappa, S.A. Mousa, Non-small cell lung cancer: current treatment and future advances, Transl. Lung Cancer Res. 5 (3) (2016) 288–300.\\n37. N. Duma, R. Santana-Davila, J.R. Molina, Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment, Mayo Clin. Proc. 94 (8) (2019) 1623–1640.\\n38. S. Wang, S. Zimmermann, K. Parikh, A.S. Mansfield, A.A. Adjei, Current diagnosis and management of small-cell lung cancer, Mayo Clin. Proc. 94 (8) (2019) 1599–1622.\\n39. M. Wang, R.S. Herbst, C. Boshoff, Toward personalized treatment approaches for non-small-cell lung cancer, Nat. Med. 27 (8) (2021) 1345–1356.\\n40. L.V. Sequist, J.C. Yang, N. Yamamoto, K. O’Byrne, V. Hirsh, T. Mok, et al., Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations, J. Clin. Oncol. 31 (27) (2013) 3327–3334.\\n41. J. He, C. Su, W. Liang, S. Xu, L. Wu, X. Fu, et al., Icotinib versus chemotherapy as adjuvant treatment for stage II-IIIA EGFR-mutant non-small-cell lung cancer (EVIDENCE): a randomised, open-label, phase 3 trial, Lancet Respir. Med. 9 (9) (2021) 1021–1029.\\n42. L. Gandhi, D. Rodriguez-Abreu, S. Gadgeel, E. Esteban, E. Felip, F. De Angelis, et al., Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer, N. Engl. J. Med. 378 (22) (2018) 2078–2092.\\n43. Y. Yang, Z. Wang, J. Fang, Q. Yu, B. Han, S. Cang, et al., Efficacy and safety of sintilimab plus pemetrexed and platinum as first-line treatment for locally advanced or metastatic nonsquamous NSCLC: a randomized, double-blind, phase 3 study (oncology program by InnovENT anti-PD-1-11), J. Thorac. Oncol. 15 (10) (2020) 1636–1646.\\n44. S. Dong, X. Guo, F. Han, Z. He, Y. Wang, Emerging role of natural products in cancer immunotherapy, Acta Pharm. Sin. B 12 (3) (2022) 1163–1185.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='abd73e77-6637-453f-9f4a-53a09e2aefa6', embedding=None, metadata={'title': 'title', 'author': 'tes author', 'category': 'tes kategori', 'year': 2010, 'publisher': 'tes publisher', 'page_number': 12}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\n# References\\n\\n1. Y. Yang, N. Li, T.M. Wang, L. Di, Natural products with activity against lung cancer: a review focusing on the tumor microenvironment, Int. J. Mol. Sci. 22 (19) (2021).\\n2. L. Xiang, Y. Gao, S. Chen, J. Sun, J. Wu, X. Meng, Therapeutic potential of Scutellaria baicalensis Georgi in lung cancer therapy, Phytomedicine 95 (2022) 153727.\\n3. Z. Chen, K.A. Vallega, H. Chen, J. Zhou, S.S. Ramalingam, S.Y. Sun, The natural product berberine synergizes with osimertinib preferentially against MET-amplified osimertinib-resistant lung cancer via direct MET inhibition, Pharmacol. Res. 175 (2022) 105998.\\n4. Z. Li, Z. Feiyue, L. Gaofeng, Traditional Chinese medicine and lung cancer–From theory to practice, Biomed. Pharmacother. 137 (2021) 111381.\\n5. J. Qu, Q. Mei, L. Chen, J. Zhou, Chimeric antigen receptor (CAR)-T-cell therapy in non-small-cell lung cancer (NSCLC): current status and future perspectives, Cancer Immunol. Immunother. 70 (3) (2021) 619–631.\\n6. S. Srivastava, S.N. Furlan, C.A. Jaeger-Ruckstuhl, M. Sarvothama, C. Berger, K.S. Smythe, et al., Immunogenic chemotherapy enhances recruitment of CAR-T cells to lung tumors and improves antitumor efficacy when combined with checkpoint blockade, Cancer Cell 39 (2) (2021) 193–208 e10.\\n7. H. Li, E.B. Harrison, H. Li, K. Hirabayashi, J. Chen, Q.X. Li, et al., Targeting brain lesions of non-small cell lung cancer by enhancing CCL2-mediated CAR-T cell migration, Nat. Commun. 13 (1) (2022) 2154.\\n8. D. Denk, F.R. Greten, Inflammation: the incubator of the tumor microenvironment, Trends Cancer 8 (11) (2022) 901–914.\\n9. L. Dumoutier, J. Louahed, J.C. Renauld, Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9, J. Immunol. 164 (4) (2000) 1814–1819.\\n10. W. Ouyang, A. O’Garra, IL-10 family cytokines IL-10 and IL-22: from basic science to clinical translation, Immunity 50 (4) (2019) 871–891.\\n11. S.Z. Hasnain, J. Begun, Interleukin-22: friend or foe? Immunol. Cell Biol. 97 (4) (2019) 355–357.\\n12. S. Mossner, M. Kuchner, N. Fazel Modares, B. Knebel, H. Al-Hasani, D.M. Floss, et al., Synthetic interleukin 22 (IL-22) signaling reveals biological activity of homodimeric IL-10 receptor 2 and functional cross-talk with the IL-6 receptor gp130, J. Biol. Chem. 295 (35) (2020) 12378–12397.\\n13. D. Lee, H. Jo, C. Go, Y. Jang, N. Chu, S. Bae, et al., The roles of IL-22 and its receptor in the regulation of inflammatory responses in the brain, Int. J. Mol. Sci. 23 (2) (2022).\\n14. S. Huber, N. Gagliani, L.A. Zenewicz, F.J. Huber, L. Bosurgi, B. Hu, et al., IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine, Nature 491 (7423) (2012) 259–263.\\n15. L.A. Zenewicz, IL-22 binding protein (IL-22BP) in the regulation of IL-22 biology, Front. Immunol. 12 (2021) 766586.\\n16. H.X. Wei, B. Wang, B. Li, IL-10 and IL-22 in mucosal immunity: driving protection and pathology, Front. Immunol. 11 (2020) 1315.\\n17. C. Voigt, P. May, A. Gottschlich, A. Markota, D. Wenk, I. Gerlach, et al., Cancer cells induce interleukin-22 production from memory CD4(+) T cells via interleukin-1 to promote tumor growth, Proc. Natl. Acad. Sci. U. S. A. 114 (49) (2017) 12994–12999.\\n18. A.G. McLoed, T.P. Sherrill, D.S. Cheng, W. Han, J.A. Saxon, L.A. Gleaves, et al., Neutrophil-derived IL-1beta impairs the efficacy of NF-kappaB inhibitors against lung cancer, Cell Rep. 16 (1) (2016) 120–132.\\n19. A.M. Baird, J. Leonard, K.M. Naicker, L. Kilmartin, K.J. O’Byrne, S.G. Gray, IL-23 is pro-proliferative, epigenetically regulated and modulated by chemotherapy in non-small cell lung cancer, Lung Cancer 79 (1) (2013) 83–90.\\n20. Y. Niu, L. Ye, W. Peng, Z. Wang, X. Wei, X. Wang, et al., IL-26 promotes the pathogenesis of malignant pleural effusion by enhancing CD4(+) IL-22(+) T-cell differentiation and inhibiting CD8(+) T-cell cytotoxicity, J. Leukoc. Biol. 110 (1) (2021) 39–52.\\n21. B. Pang, C. Hu, N. Xing, L. Xu, S. Zhang, X. Yu, Elevated Notch1 enhances interleukin-22 production by CD4(+) T cells via aryl hydrocarbon receptor in patients with lung adenocarcinoma, Biosci. Rep. 38 (6) (2018).\\n22. J.S. Lim, A. Ibaseta, M.M. Fischer, B. Cancilla, G. O’Young, S. Cristea, et al., Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer, Nature 545 (7654) (2017) 360–364.\\n23. Y. Matsuda, S. Ikeda, F. Abe, Y. Takahashi, A. Kitadate, N. Takahashi, et al., Downregulation of miR-26 promotes invasion and metastasis via targeting interleukin-22 in cutaneous T-cell lymphoma, Cancer Sci. 113 (4) (2022) 1208–1219.\\n24. Y. He, H. Liu, L. Jiang, B. Rui, J. Mei, H. Xiao, miR-26 induces apoptosis and inhibits autophagy in non-small cell lung cancer cells by suppressing TGF-beta1-JNK signaling pathway, Front. Pharmacol. 9 (2018) 1509.\\n25. H. Lindahl, T. Olsson, Interleukin-22 influences the Th1/Th17 Axis, Front. Immunol. 12 (2021) 618110.\\n26. E. Klimatcheva, T. Pandina, C. Reilly, S. Torno, H. Bussler, M. Scrivens, et al., CXCL13 antibody for the treatment of autoimmune disorders, BMC Immunol. 16 (1) (2015) 6.\\n27. F. Barone, S. Nayar, J. Campos, T. Cloake, D.R. Withers, K.M. Toellner, et al., IL-22 regulates lymphoid chemokine production and assembly of tertiary lymphoid organs, Proc. Natl. Acad. Sci. U. S. A 112 (35) (2015) 11024–11029.\\n28. D. Briukhovetska, J. Suarez-Gosalvez, C. Voigt, A. Markota, A.D. Giannou, M. Schubel, et al., T cell-derived interleukin-22 drives the expression of CD155 by cancer cells to suppress NK cell function and promote metastasis, Immunity 56 (1) (2023) 143–161 e11.\\n29. M. Kasprzak, M. Rudzinska, D. Kmiecik, R. Przybylski, A. Olejnik, Acyl moiety and temperature affects thermo-oxidative degradation of steryl esters. Cytotoxicity of the degradation products, Food Chem. Toxicol. 136 (2020) 111074.\\n30. R. Molfetta, B. Zitti, M. Lecce, N.D. Milito, H. Stabile, C. Fionda, et al., CD155: a multi-functional molecule in tumor progression, Int. J. Mol. Sci. 21 (3) (2020).\\n31. J. Gao, Q. Zheng, N. Xin, W. Wang, C. Zhao, CD155, an onco-immunologic molecule in human tumors, Cancer Sci. 108 (10) (2017) 1934–1938.\\n32. J.M. Leyva-Castillo, J. Yoon, R.S. Geha, IL-22 promotes allergic airway inflammation in epicutaneously sensitized mice, J. Allergy Clin. Immunol. 143 (2) (2019) 619–630 e7.\\n33. M.R. Starkey, M.W. Plank, P. Casolari, A. Papi, S. Pavlidis, Y. Guo, et al., IL-22 and its receptors are increased in human and experimental COPD and contribute to pathogenesis, Eur. Respir. J. 54 (1) (2019).\\n34. X. Xu, I.D. Weiss, H.H. Zhang, S.P. Singh, T.A. Wynn, M.S. Wilson, et al., Conventional NK cells can produce IL-22 and promote host defense in Klebsiella pneumoniae pneumonia, J. Immunol. 192 (4) (2014) 1778–1786.\\n35. P. Treerat, O. Prince, A. Cruz-Lagunas, M. Munoz-Torrico, M.A. Salazar-Lezama, M. Selman, et al., Novel role for IL-22 in protection during chronic Mycobacterium tuberculosis HN878 infection, Mucosal Immunol. 10 (4) (2017) 1069–1081.\\n36. B. Kone, M. Perez-Cruz, R. Porte, F. Hennegrave, C. Carnoy, P. Gosset, et al., Boosting the IL-22 response using flagellin prevents bacterial infection in cigarette smoke-exposed mice, Clin. Exp. Immunol. 201 (2) (2020) 171–186.\\n37. M.A. Gessner, J.L. Werner, L.M. Lilly, M.P. Nelson, A.E. Metz, C.W. Dunaway, et al., Dectin-1-dependent interleukin-22 contributes to early innate lung defense against Aspergillus fumigatus, Infect. Immun. 80 (1) (2012) 410–417.\\n38. S. Ivanov, J. Renneson, J. Fontaine, A. Barthelemy, C. Paget, E.M. Fernandez, et al., Interleukin-22 reduces lung inflammation during influenza A virus infection and protects against secondary bacterial infection, J. Virol. 87 (12) (2013) 6911–6924.\\n39. H. Guo, D.J. Topham, Interleukin-22 (IL-22) production by pulmonary Natural Killer cells and the potential role of IL-22 during primary influenza virus infection, J. Virol. 84 (15) (2010) 7750–7759.\\n40. Z. Qu, W. Dou, K. Zhang, L. Duan, D. Zhou, S. Yin, IL-22 inhibits bleomycin-induced pulmonary fibrosis in association with inhibition of IL-17A in mice, Arthritis Res. Ther. 24 (1) (2022) 280.\\n41. F. Liu, X. Pan, L. Zhou, J. Zhou, B. Chen, J. Shi, et al., Genetic polymorphisms and plasma levels of interleukin-22 contribute to the development of nonsmall cell lung cancer, DNA Cell Biol. 33 (10) (2014) 705–714.\\n42. H. Li, Q. Zhang, Q. Wu, Y. Cui, H. Zhu, M. Fang, et al., Interleukin-22 secreted by cancer-associated fibroblasts regulates the proliferation and metastasis of lung cancer cells via the PI3K-Akt-mTOR signaling pathway, Am J Transl Res 11 (7) (2019) 4077–4088.\\n43. A. Tufman, R.M. Huber, S. Volk, F. Aigner, M. Edelmann, F. Gamarra, et al., Interleukin-22 is elevated in lavage from patients with lung cancer and other pulmonary diseases, BMC Cancer 16 (2016) 409.\\n44. Z.J. Ye, Q. Zhou, W. Yin, M.L. Yuan, W.B. Yang, F. Xiang, et al., Interleukin 22-producing CD4+ T cells in malignant pleural effusion, Cancer Lett. 326 (1) (2012) 23–32.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='0c6c6457-634e-4ede-8fc3-15077e7a39e9', embedding=None, metadata={'title': 'title', 'author': 'tes author', 'category': 'tes kategori', 'year': 2010, 'publisher': 'tes publisher', 'page_number': 13}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\n# References\\n\\n1. Y. Niu, Q. Zhou, Th17 cells and their related cytokines: vital players in progression of malignant pleural effusion, Cell. Mol. Life Sci. 79 (4) (2022) 194.\\n2. R. Khandia, A. Munjal, Interplay between inflammation and cancer, Adv Protein Chem Struct Biol 119 (2020) 199–245.\\n3. R. Singh, M.K. Mishra, H. Aggarwal, Inflammation, immunity, and cancer, Mediat. Inflamm. 2017 (2017) 6027305.\\n4. A. Fishbein, B.D. Hammock, C.N. Serhan, D. Panigrahy, Carcinogenesis: failure of resolution of inflammation? Pharmacol. Ther. 218 (2021) 107670.\\n5. D. Hanahan, L.M. Coussens, Accessories to the crime: functions of cells recruited to the tumor microenvironment, Cancer Cell 21 (3) (2012) 309–322.\\n6. N. Khosravi, M.S. Caetano, A.M. Cumpian, N. Unver, C. De la Garza Ramos, O. Noble, et al., IL22 promotes Kras-mutant lung cancer by induction of a protumor immune response and protection of stemness properties, Cancer Immunol. Res. 6 (7) (2018) 788–797.\\n7. N.J. Protopsaltis, W. Liang, E. Nudleman, N. Ferrara, Interleukin-22 promotes tumor angiogenesis, Angiogenesis 22 (2) (2019) 311–323.\\n8. Y. Yao, G. Yang, G. Lu, J. Ye, L. Cui, Z. Zeng, et al., Th22 cells/IL-22 serves as a protumor regulator to drive poor prognosis through the JAK-STAT3/MAPK/AKT signaling pathway in non-small-cell lung cancer, J Immunol Res 2022 (2022) 8071234.\\n9. J. Wang, K. Hu, X. Cai, B. Yang, Q. He, J. Wang, et al., Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis, Acta Pharm. Sin. B 12 (1) (2022) 18–32.\\n10. J. Yang, J. Nie, X. Ma, Y. Wei, Y. Peng, X. Wei, Targeting PI3K in cancer: mechanisms and advances in clinical trials, Mol. Cancer 18 (1) (2019) 26.\\n11. M.K. Ediriweera, K.H. Tennekoon, S.R. Samarakoon, Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: biological and therapeutic significance, Semin. Cancer Biol. 59 (2019) 147–160.\\n12. D. Miricescu, A. Totan, S. Stanescu, II, S.C. Badoiu, C. Stefani, M. Greabu, PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects, Int. J. Mol. Sci. 22 (1) (2020).\\n13. Y. Hou, K. Wang, W. Wan, Y. Cheng, X. Pu, X. Ye, Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3K/AKT/mTOR pathway after stroke in rats, Genes Dis 5 (3) (2018) 245–255.\\n14. C. Feng, H. Wan, Y. Zhang, L. Yu, C. Shao, Y. He, et al., Neuroprotective effect of Danhong injection on cerebral ischemia-reperfusion injury in rats by activation of the PI3K-Akt pathway, Front. Pharmacol. 11 (2020) 298.\\n15. B.Y. Shorning, M.S. Dass, M.J. Smalley, H.B. Pearson, The PI3K-AKT-mTOR pathway and prostate cancer: at the crossroads of AR, MAPK, and WNT signaling, Int. J. Mol. Sci. 21 (12) (2020).\\n16. R. Liu, Y. Chen, G. Liu, C. Li, Y. Song, Z. Cao, et al., PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers, Cell Death Dis. 11 (9) (2020) 797.\\n17. M.J. Sanaei, S. Razi, A. Pourbagheri-Sigaroodi, D. Bashash, The PI3K/Akt/mTOR pathway in lung cancer; oncogenic alterations, therapeutic opportunities, challenges, and a glance at the application of nanoparticles, Transl Oncol 18 (2022) 101364.\\n18. A.M. Gustafson, R. Soldi, C. Anderlin, M.B. Scholand, J. Qian, X. Zhang, et al., Airway PI3K pathway activation is an early and reversible event in lung cancer development, Sci. Transl. Med. 2 (26) (2010) 26ra5.\\n19. J. Li, J. Wang, D. Xie, Q. Pei, X. Wan, H.R. Xing, et al., Characteristics of the PI3K/AKT and MAPK/ERK pathways involved in the maintenance of self-renewal in lung cancer stem-like cells, Int. J. Biol. Sci. 17 (5) (2021) 1191–1202.\\n20. Y.X. Meng, R. Zhao, L.J. Huo, Interleukin-22 alleviates alcohol-associated hepatic fibrosis, inhibits autophagy, and suppresses the PI3K/AKT/mTOR pathway in mice, Alcohol Clin. Exp. Res. 47 (3) (2023) 448–458.\\n21. X. Hu, J. Li, M. Fu, X. Zhao, W. Wang, The JAK/STAT signaling pathway: from bench to clinic, Signal Transduct. Targeted Ther. 6 (1) (2021) 402.\\n22. C. Baldini, F.R. Moriconi, S. Galimberti, P. Libby, R. De Caterina, The JAK-STAT pathway: an emerging target for cardiovascular disease in rheumatoid arthritis and myeloproliferative neoplasms, Eur. Heart J. 42 (42) (2021) 4389–4400.\\n23. L. Hu, R. Liu, L. Zhang, Advance in bone destruction participated by JAK/STAT in rheumatoid arthritis and therapeutic effect of JAK/STAT inhibitors, Int. Immunopharm. 111 (2022) 109095.\\n24. L.K. Meyer, K.C. Verbist, S. Albeituni, B.P. Scull, R.C. Bassett, A.N. Stroh, et al., JAK/STAT pathway inhibition sensitizes CD8 T cells to dexamethasone-induced apoptosis in hyperinflammation, Blood 136 (6) (2020) 657–668.\\n25. L. Song, J. Turkson, J.G. Karras, R. Jove, E.B. Haura, Activation of Stat3 by receptor tyrosine kinases and cytokines regulates survival in human non-small cell carcinoma cells, Oncogene 22 (27) (2003) 4150–4165.\\n26. Y. Li, H. Du, Y. Qin, J. Roberts, O.W. Cummings, C. Yan, Activation of the signal transducers and activators of the transcription 3 pathway in alveolar epithelial cells induces inflammation and adenocarcinomas in mouse lung, Cancer Res. 67 (18) (2007) 8494–8503.\\n27. S. Ihara, H. Kida, H. Arase, L.P. Tripathi, Y.A. Chen, T. Kimura, et al., Inhibitory roles of signal transducer and activator of transcription 3 in antitumor immunity during carcinogen-induced lung tumorigenesis, Cancer Res. 72 (12) (2012) 2990–2999.\\n28. J. Mohrherr, I.Z. Uras, H.P. Moll, E. Casanova, STAT3: versatile functions in non-small cell lung cancer, Cancers 12 (5) (2020).\\n29. Y. Cheng, F. Sun, L. Wang, M. Gao, Y. Xie, Y. Sun, et al., Virus-induced p38 MAPK activation facilitates viral infection, Theranostics 10 (26) (2020) 12223–12240.\\n30. Y. Xu, Q. Sun, F. Yuan, H. Dong, H. Zhang, R. Geng, et al., RND2 attenuates apoptosis and autophagy in glioblastoma cells by targeting the p38 MAPK signalling pathway, J. Exp. Clin. Cancer Res. : CR 39 (1) (2020) 174.\\n31. D. He, H. Wu, J. Xiang, X. Ruan, P. Peng, Y. Ruan, et al., Gut stem cell aging is driven by mTORC1 via a p38 MAPK-p53 pathway, Nat. Commun. 11 (1) (2020) 37.\\n32. O. Dreesen, A.H. Brivanlou, Signaling pathways in cancer and embryonic stem cells, Stem Cell Rev. 3 (1) (2007) 7–17.\\n33. X.M. Hou, T. Zhang, Z. Da, X.A. Wu, CHPF promotes lung adenocarcinoma proliferation and anti-apoptosis via the MAPK pathway, Pathol. Res. Pract. 215 (5) (2019) 988–994.\\n34. Y.C. Wang, D.W. Wu, T.C. Wu, L. Wang, C.Y. Chen, H. Lee, Dioscin overcome TKI resistance in EGFR-mutated lung adenocarcinoma cells via down-regulation of tyrosine phosphatase SHP2 expression, Int. J. Biol. Sci. 14 (1) (2018) 47–56.\\n35. Y. Guo, M. Jiang, X. Zhao, M. Gu, Z. Wang, S. Xu, et al., Cyclophilin A promotes non-small cell lung cancer metastasis via p38 MAPK, Thorac Cancer 9 (1) (2018) 120–128.\\n36. A. Po, M. Silvano, E. Miele, C. Capalbo, A. Eramo, V. Salvati, et al., Noncanonical GLI1 signaling promotes stemness features and in vivo growth in lung adenocarcinoma, Oncogene 36 (32) (2017) 4641–4652.\\n37. J.H. Leung, B. Ng, W.W. Lim, Interleukin-11: a potential biomarker and molecular therapeutic target in non-small cell lung cancer, Cells 11 (14) (2022).\\n38. H. Wang, F. Zhou, C. Zhao, L. Cheng, C. Zhou, M. Qiao, et al., Interleukin-10 is a promising marker for immune-related adverse events in patients with non-small cell lung cancer receiving immunotherapy, Front. Immunol. 13 (2022) 840313.\\n39. C.H. Chang, C.F. Hsiao, Y.M. Yeh, G.C. Chang, Y.H. Tsai, Y.M. Chen, et al., Circulating interleukin-6 level is a prognostic marker for survival in advanced nonsmall cell lung cancer patients treated with chemotherapy, Int. J. Cancer 132 (9) (2013) 1977–1985.\\n40. C. Liu, L. Yang, H. Xu, S. Zheng, Z. Wang, S. Wang, et al., Systematic analysis of IL-6 as a predictive biomarker and desensitizer of immunotherapy responses in patients with non-small cell lung cancer, BMC Med. 20 (1) (2022) 187.\\n41. B. Yuan, M.J. Clowers, W.V. Velasco, S. Peng, Q. Peng, Y. Shi, et al., Targeting IL-1beta as an immunopreventive and therapeutic modality for K-ras-mutant lung cancer, JCI Insight 7 (11) (2022).\\n42. M.F. Sanmamed, J.L. Perez-Gracia, K.A. Schalper, J.P. Fusco, A. Gonzalez, M.E. Rodriguez-Ruiz, et al., Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients, Ann. Oncol. 28 (8) (2017) 1988–1995.\\n43. M. Joerger, S.P. Finn, S. Cuffe, A.T. Byrne, S.G. Gray, The IL-17-Th1/Th17 pathway: an attractive target for lung cancer therapy? Expert Opin. Ther. Targets 20 (11) (2016) 1339–1356.\\n44. M.S. Kim, E. Kim, J.S. Heo, D.J. Bae, J.U. Lee, T.H. Lee, et al., Circulating IL-33 level is associated with the progression of lung cancer, Lung Cancer 90 (2) (2015) 346–351.\\n45. P.M. Ridker, J.G. MacFadyen, T. Thuren, B.M. Everett, P. Libby, R.J. Glynn, et al., Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial, Lancet 390 (10105) (2017) 1833–1842.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n'),\n", + " Document(id_='5382af97-d1ed-4bb8-8958-0b4588650fe5', embedding=None, metadata={'title': 'title', 'author': 'tes author', 'category': 'tes kategori', 'year': 2010, 'publisher': 'tes publisher', 'page_number': 14}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='# L. Xu et al.\\n\\n# Heliyon 10 (2024) e35901\\n\\n# References\\n\\n1. А. Guillon, F. Gueugnon, K. Mavridis, E. Dalloneau, Y. Jouan, P. Diot, et al., Interleukin-22 receptor is overexpressed in nonsmall cell lung cancer and portends a poor prognosis, Eur. Respir. J. 47 (4) (2016) 1277–1280.\\n2. X. Wang, J. Xu, J. Chen, S. Jin, J. Yao, T. Yu, et al., IL-22 confers EGFR-TKI resistance in NSCLC via the АKT and ERK signaling pathways, Front. Oncol. 9 (2019) 1167.\\n3. N. Zabaleta, L. Torella, N.D. Weber, G. Gonzalez-Аseguinolaza, mRNА and gene editing: late breaking therapies in liver diseases, Hepatology 76 (3) (2022) 869–887.\\n4. D.S. Chae, Y.J. Park, S.W. Kim, Аnti-arthritogenic property of interleukin 10-expressing human amniotic MSCs generated by gene editing in collagen-induced arthritis, Int. J. Mol. Sci. 23 (14) (2022).\\n5. E. Vermersch, C. Jouve, J.S. Hulot, CRISPR/Cas9 gene-editing strategies in cardiovascular cells, Cardiovasc. Res. 116 (5) (2020) 894–907.\\n6. Q. Wang, X. Liu, J. Zhou, C. Yang, G. Wang, Y. Tan, et al., The CRISPR-Cas13a gene-editing system induces collateral cleavage of RNА in glioma cells, Аdv. Sci. 6 (20) (2019) 1901299.\\n7. Y. Lu, J. Xue, T. Deng, X. Zhou, K. Yu, L. Deng, et al., Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer, Nat. Med. 26 (5) (2020) 732–740.\\n8. S.M. Hoy, Patisiran: first global approval, Drugs 78 (15) (2018) 1625–1631.\\n9. H. Wood, FDА approves patisiran to treat hereditary transthyretin amyloidosis, Nat. Rev. Neurol. 14 (10) (2018) 570.\\n10. А. Mandal, N. Kumbhojkar, C. Reilly, V. Dharamdasani, А. Ukidve, D.E. Ingber, et al., Treatment of psoriasis with NFKBIZ siRNА using topical ionic liquid formulations, Sci. Аdv. 6 (30) (2020) eabb6049.\\n11. T. Fabre, M.F. Molina, G. Soucy, J.P. Goulet, B. Willems, J.P. Villeneuve, et al., Type 3 cytokines IL-17А and IL-22 drive TGF-beta-dependent liver fibrosis, Sci Immunol. 3 (28) (2018).\\n12. C. Su, X. Ren, F. Yang, B. Li, H. Wu, H. Li, et al., Ultrasound-sensitive siRNА-loaded nanobubbles fabrication and antagonism in drug resistance for NSCLC, Drug Deliv. 29 (1) (2022) 99–110.\\n13. M.E. Аikins, C. Xu, J.J. Moon, Engineered nanoparticles for cancer vaccination and immunotherapy, Аcc. Chem. Res. 53 (10) (2020) 2094–2105.\\n14. S. Li, S. Xu, X. Liang, Y. Xue, J. Mei, Y. Ma, et al., Nanotechnology: breaking the current treatment limits of lung cancer, Аdv. Healthcare Mater. 10 (12) (2021) e2100078.\\n15. T. Zhong, X. Liu, H. Li, J. Zhang, Co-delivery of sorafenib and crizotinib encapsulated with polymeric nanoparticles for the treatment of in vivo lung cancer animal model, Drug Deliv. 28 (1) (2021) 2108–2118.\\n16. M. Zhang, CTt Hagan, H. Foley, X. Tian, F. Yang, K.M. Аu, et al., Co-delivery of etoposide and cisplatin in dual-drug loaded nanoparticles synergistically improves chemoradiotherapy in non-small cell lung cancer models, Аcta Biomater. 124 (2021) 327–335.', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n')]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "metadata = {\n", + " \"title\": \"title\",\n", + " \"author\": \"tes author\",\n", + " \"category\": \"tes kategori\",\n", + " \"year\": 2010,\n", + " \"publisher\": \"tes publisher\"\n", + "}\n", + "\n", + "def add_metadata(documents, metadata):\n", + " \"\"\"Add metadata to each document and include page number.\"\"\"\n", + " for page_number, document in enumerate(documents, start=1):\n", + " # Ensure the document has a metadata attribute\n", + " if not hasattr(document, \"metadata\") or document.metadata is None:\n", + " document.metadata = {}\n", + " \n", + " # Update metadata with page number\n", + " document.metadata[\"page_number\"] = page_number\n", + " document.metadata.update(metadata)\n", + " \n", + " \n", + " print(f\"Metadata added to page {page_number}\")\n", + " # self.logger.log_action(f\"Metadata added to document {document.id_}\", action_type=\"METADATA\")\n", + " \n", + " return documents\n", + "\n", + "add_metadata(documents, metadata)\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "fullstack", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/research/test_mongodb.ipynb b/research/test_mongodb.ipynb index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..7ad204662ca5faf48bb73918d4aca9ed06eb6e7a 100644 --- a/research/test_mongodb.ipynb +++ b/research/test_mongodb.ipynb @@ -0,0 +1,22 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "plaintext" + } + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/script/document_uploader.py b/script/document_uploader.py index 23c8f741e0594c127c27ecd4ac90618622e8102a..487da96101e305afca77bcc63b4f6ad78a816f1d 100644 --- a/script/document_uploader.py +++ b/script/document_uploader.py @@ -1,14 +1,13 @@ from llama_index.core.ingestion import IngestionPipeline -from llama_index.core.extractors import PydanticProgramExtractor from llama_index.embeddings.openai import OpenAIEmbedding from config import PINECONE_CONFIG from pinecone.grpc import PineconeGRPC as Pinecone from service.reader import Reader from script.get_metadata import Metadata -from fastapi import UploadFile, HTTPException,status +from fastapi import UploadFile,status +from fastapi.responses import JSONResponse from llama_index.core.node_parser import ( - SentenceSplitter, SemanticSplitterNodeParser, ) @@ -30,6 +29,7 @@ class Uploader: async def ingest_documents(self, file: UploadFile): """Load documents from the storage path.""" documents = await self.reader.read_from_uploadfile(file) + print("Banyak document : ", len(documents)) print("document successfully ingested") return documents @@ -45,16 +45,14 @@ class Uploader: ) return result["matches"] except Exception as e: - raise HTTPException( + return JSONResponse( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, - detail=f"Error check existing metadata {str(e)}", + content=f"Error check existing metadata {str(e)}", ) async def process_documents(self): # Ingest documents - print("test") documents = await self.ingest_documents(self.file) - print("documents") # topic_extractor = extract_topic(self.reference, self.content_table) @@ -62,38 +60,37 @@ class Uploader: # Get metadata documents_with_metadata = self.metadata.apply_metadata(documents) - print("documents_with_metadata") # document_filtered = self.filter_document(documents_with_metadata) # Set up the ingestion pipeline - # pipeline = IngestionPipeline( - # transformations=[ - # SemanticSplitterNodeParser( - # buffer_size=1, - # breakpoint_percentile_threshold=95, - # embed_model=embed_model, - # ), - # # topic_extractor, - # ] - # ) - - splitter = SemanticSplitterNodeParser( - buffer_size=1, breakpoint_percentile_threshold=95, embed_model=embed_model + pipeline = IngestionPipeline( + transformations=[ + SemanticSplitterNodeParser( + buffer_size=1, + breakpoint_percentile_threshold=95, + embed_model=embed_model, + ), + # topic_extractor, + ] ) + + # splitter = SemanticSplitterNodeParser( + # buffer_size=1, breakpoint_percentile_threshold=95, embed_model=embed_model + # ) # Run the pipeline try: - # nodes_with_metadata = pipeline.run(documents=documents_with_metadata) - nodes_with_metadata = splitter.get_nodes_from_documents(documents_with_metadata) - print("Pipeline processing completed updated.") + nodes_with_metadata = pipeline.run(documents=documents_with_metadata) + return nodes_with_metadata + except Exception as e: - # Log the error and raise HTTPException for FastAPI + # Log the error and return JSONResponse for FastAPI logging.error(f"An error occurred in making pipeline: {e}") - raise HTTPException( + return JSONResponse( status_code=500, - detail="An internal server error occurred making pipeline.", + content="An internal server error occurred making pipeline.", ) def filter_document(self, documents): diff --git a/script/get_metadata.py b/script/get_metadata.py index f63440028d5f1f73da8db86c72ebeb5cb0beed51..17eb885a8488de63430b3ab742f230460efaaab8 100644 --- a/script/get_metadata.py +++ b/script/get_metadata.py @@ -1,6 +1,4 @@ # Get reference - - class Metadata: def __init__(self, reference): self.reference = reference @@ -15,9 +13,6 @@ class Metadata: # Update metadata with page number document.metadata["page"] = page_number document.metadata.update(metadata) - - print(f"Metadata added to page {page_number}") - # self.logger.log_action(f"Metadata added to document {document.id_}", action_type="METADATA") return documents @@ -31,11 +26,10 @@ class Metadata: "publisher": self.reference["publisher"], "reference": f"{self.reference['author']}. ({self.reference['year']}). *{self.reference['title']}*. {self.reference['publisher']}." # APA style reference } - print("metadata is generated") + return metadata def apply_metadata(self, documents): """Apply generated metadata to documents.""" metadata = self._generate_metadata() - print("metadata is applied") return self.add_metadata(documents, metadata) \ No newline at end of file diff --git a/script/vector_db.py b/script/vector_db.py index 6f0c2e81b9a01eb14822caa571e9f3117a799b19..f4c672219deab624945363d3f684c3d4ab66c68e 100644 --- a/script/vector_db.py +++ b/script/vector_db.py @@ -1,14 +1,13 @@ from llama_index.core import VectorStoreIndex from llama_index.core import StorageContext from pinecone import Pinecone, ServerlessSpec -from llama_index.llms.openai import OpenAI from llama_index.vector_stores.pinecone import PineconeVectorStore from fastapi import HTTPException, status +from fastapi.responses import JSONResponse from config import PINECONE_CONFIG from math import ceil import numpy as np -import os -import json +import logging class IndexManager: @@ -51,18 +50,14 @@ class IndexManager: storage_context = self._initialize_vector_store() self.vector_index = VectorStoreIndex(nodes, storage_context=storage_context) self.vector_index.set_index_id("vector") - - print(f"Vector Index ID: {self.vector_index.index_id}") - print("Vector Index created successfully.") - - return json.dumps({"status": "success", "message": "Vector Index loaded successfully."}) - + except HTTPException as http_exc: - raise http_exc # Re-raise HTTPExceptions to ensure FastAPI handles them + raise http_exc # Re-return JSONResponses to ensure FastAPI handles them + except Exception as e: - raise HTTPException( + return JSONResponse( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, - detail=f"Error loading existing indexes: {str(e)}" + content=f"Error loading existing indexes: {str(e)}" ) def get_ids_from_query(self, input_vector, title): @@ -98,14 +93,8 @@ class IndexManager: num_vectors = self.pinecone_index.describe_index_stats( )["total_vector_count"] - print("Length of ids list is shorter than the number of total vectors...") input_vector = np.random.rand(num_dimensions).tolist() - print("creating random vector...") ids = self.get_ids_from_query(input_vector, title) - print("getting ids from a vector query...") - - print("updating ids set...") - print(f"Collected {len(ids)} ids out of {num_vectors}.") return ids @@ -122,14 +111,13 @@ class IndexManager: # Fetch a batch of IDs batch_ids = all_ids[i * batch_size: (i + 1) * batch_size] self.pinecone_index.delete(ids=batch_ids) - print(f"delete from id {i * batch_size} to {(i + 1) * batch_size} successful") + logging.info(f"delete from id {i * batch_size} to {(i + 1) * batch_size} successful") except Exception as e: - print(e) - raise HTTPException(status_code=500, detail="An error occurred while delete metadata") + return JSONResponse(status_code=500, content="An error occurred while delete metadata") def update_vector_database(self, old_reference, new_reference): - reference = new_reference.model_dump() + reference = new_reference all_ids = self.get_all_ids_from_index(old_reference['title']) all_ids = list(all_ids) @@ -139,7 +127,6 @@ class IndexManager: id=id, set_metadata=reference ) - def load_existing_indexes(self): """Load existing indexes from Pinecone.""" @@ -149,9 +136,10 @@ class IndexManager: vector_store = PineconeVectorStore(pinecone_index=pinecone_index) retriever = VectorStoreIndex.from_vector_store(vector_store) - - print("Existing Vector Index loaded successfully.") + return retriever except Exception as e: - print(f"Error loading existing indexes: {e}") - raise \ No newline at end of file + return JSONResponse( + status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, + content=f"Error loading existing indexes: {str(e)}" + ) diff --git a/service/aws_loader.py b/service/aws_loader.py index c7ce6dd06a9e72c0b3200b87f7e274f1842b926a..bbc119a07fce27cf29676d33d85ee794bb41922a 100644 --- a/service/aws_loader.py +++ b/service/aws_loader.py @@ -4,7 +4,8 @@ import tempfile import fitz from io import BytesIO -from fastapi import HTTPException +from fastapi.responses import JSONResponse +import logging class Loader: @@ -17,25 +18,6 @@ class Loader: aws_secret_access_key=os.getenv("AWS_SECRET_ACCESS_KEY"), region_name="us-west-2", ) - - # def upload_to_s3(self, file, object_name, folder_name="summarizer"): - # try: - # # If folder_name is provided, prepend it to the object_name - # if folder_name: - # object_name = f"{folder_name}/{object_name}" - - # # Create an in-memory file-like object - # with BytesIO() as file_stream: - # # Write the contents of the uploaded file to the stream - # file_stream.write(file.file.read()) - # file_stream.seek(0) # Move to the beginning of the stream - - # # Upload file to S3 - # self.s3_client.upload_fileobj(file_stream, self.bucket_name, object_name) - - # print(f"File '{object_name}' successfully uploaded to bucket '{self.bucket_name}'.") - # except Exception as e: - # raise HTTPException(status_code=400, detail=f"Error uploading to AWS: {e}") def upload_to_s3(self, file, object_name, folder_name="summarizer"): try: @@ -45,56 +27,89 @@ class Loader: # Open the PDF with PyMuPDF (fitz) pdf_document = fitz.open(stream=file.file.read(), filetype="pdf") - + print("Jumlah halaman : ", pdf_document.page_count) # Loop through each page of the PDF for page_num in range(pdf_document.page_count): + try: + # Convert the page to bytes (as a separate PDF) + page_stream = BytesIO() + single_page_pdf = fitz.open() # Create a new PDF + single_page_pdf.insert_pdf(pdf_document, from_page=page_num, to_page=page_num) + single_page_pdf.save(page_stream) + single_page_pdf.close() + + # Reset the stream position to the start + page_stream.seek(0) - # Convert the page to bytes (as a separate PDF) - page_stream = BytesIO() - single_page_pdf = fitz.open() # Create a new PDF - single_page_pdf.insert_pdf(pdf_document, from_page=page_num, to_page=page_num) - single_page_pdf.save(page_stream) - single_page_pdf.close() + # Define the object name for each page (e.g., 'summarizer/object_name/page_1.pdf') + page_object_name = f"{object_name}/{page_num + 1}.pdf" - # Reset the stream position to the start - page_stream.seek(0) + # Upload each page to S3 + self.s3_client.upload_fileobj(page_stream, self.bucket_name, page_object_name) + + print(f"Page {page_num + 1} of '{object_name}' successfully uploaded as '{page_object_name}' to bucket '{self.bucket_name}'.") + + except Exception as page_error: + # Log the error but continue with the next page + logging.error(f"Error uploading page {page_num + 1}: {page_error}") + continue + + except Exception as e: + return JSONResponse(status_code=500, content=f"Error uploading to AWS: {e}") + + def upload_image_to_s3(self, file, custom_name, folder_name="summarizer"): + try: + # If folder_name is provided, prepend it to the custom_name + if folder_name: + object_name = f"{folder_name}/{custom_name}" + else: + object_name = custom_name - # Define the object name for each page (e.g., 'summarizer/object_name/page_1.pdf') - page_object_name = f"{object_name}/{page_num + 1}.pdf" + # Read the file into a bytes buffer + image_stream = BytesIO() + image_stream.write(file.file.read()) + image_stream.seek(0) # Reset the stream position to the start - # Upload each page to S3 - self.s3_client.upload_fileobj(page_stream, self.bucket_name, page_object_name) + # Upload the image to S3 + self.s3_client.upload_fileobj(image_stream, self.bucket_name, object_name) - print(f"Page {page_num + 1} of '{object_name}' successfully uploaded as '{page_object_name}' to bucket '{self.bucket_name}'.") + print(f"Image '{object_name}' successfully uploaded to bucket '{self.bucket_name}'.") except Exception as e: - raise HTTPException(status_code=400, detail=f"Error uploading to AWS: {e}") + return JSONResponse(status_code=500, content=f"Error uploading image to AWS: {e}") + + def change_name_of_book(self, current_object_name, new_object_name, folder_name="summarizer"): + try: + if folder_name: + current_object_name = f"{folder_name}/{current_object_name}" + new_object_name = f"{folder_name}/{new_object_name}" - def get_file_aws(self, object_name, local_file_name=None): - """Downloads a PDF file from S3 and reads it using PyMuPDF.""" - if local_file_name is None: - local_file_name = "downloaded_pdf_file.pdf" # Default file name + # Copy the current object to a new object with the new name + copy_source = {'Bucket': self.bucket_name, 'Key': current_object_name} + self.s3_client.copy(copy_source, self.bucket_name, new_object_name) + # Delete the old object + self.s3_client.delete_object(Bucket=self.bucket_name, Key=current_object_name) + + print(f"Renamed '{current_object_name}' to '{new_object_name}'.") + + except Exception as e: + return JSONResponse(status_code=500, content=f"Error renaming book: {e}") + + def change_name_of_image(self, current_object_name, new_object_name, folder_name="summarizer"): try: - # Create a temporary directory to store the file - temp_dir = tempfile.mkdtemp() - file_path = os.path.join(temp_dir, local_file_name) - # Download the file from S3 - with open(file_path, "wb") as temp_file: - self.s3_client.download_fileobj( - self.bucket_name, object_name, temp_file - ) - # Open and read the PDF using PyMuPDF - doc = fitz.open(file_path) - # Example: Print the number of pages - print(f"Number of pages: {doc.page_count}") - # Do something with the PDF, like read text - for page in doc: - print(page.get_text()) - # Close the document - doc.close() - # Clean up the downloaded file if needed - os.remove(file_path) - + if folder_name: + current_object_name = f"{folder_name}/{current_object_name}" + new_object_name = f"{folder_name}/{new_object_name}" + + # Copy the current object to a new object with the new name + copy_source = {'Bucket': self.bucket_name, 'Key': current_object_name} + self.s3_client.copy(copy_source, self.bucket_name, new_object_name) + + # Delete the old object + self.s3_client.delete_object(Bucket=self.bucket_name, Key=current_object_name) + + print(f"Renamed image '{current_object_name}' to '{new_object_name}' in bucket '{self.bucket_name}'.") + except Exception as e: - raise HTTPException(status_code=400, detail=f"Error get file file in aws: {e}") + return JSONResponse(status_code=500, content=f"Error renaming image: {e}") diff --git a/service/dto.py b/service/dto.py index 8312542a7fca16fd0cda28801a8bf710b0163c24..0fb12abd00a8b8093a66da5ee7be24469d74f2f8 100644 --- a/service/dto.py +++ b/service/dto.py @@ -1,48 +1,139 @@ -from pydantic import BaseModel, Field +from pydantic import BaseModel, Field, field_validator from typing import List, Optional, Dict, Any from llama_index.core.llms import MessageRole +from datetime import datetime +import re + + +class PasswordValidator: + @staticmethod + def validate(password: str) -> str: + if len(password) < 8 or len(password) > 32: + raise ValueError("Password must be between 8 and 32 characters long") + if not re.search(r"[A-Z]", password): + raise ValueError("Password must contain at least one uppercase letter") + if not re.search(r"[a-z]", password): + raise ValueError("Password must contain at least one lowercase letter") + if not re.search(r"\d", password): + raise ValueError("Password must contain at least one digit") + if not re.search(r'[!@#$%^&*(),.?":{}|<>]', password): + raise ValueError("Password must contain at least one special character") + return password + + +class CreateUserRequest(BaseModel): + name: str + username: str + email: str + password: str + role_id: int = 2 + + @field_validator("password") + def validate_password(cls, password): + return PasswordValidator.validate(password) + + +class RoleCreate(BaseModel): + name: str + + +class RoleUpdate(BaseModel): + name: str + + +class LoginRequest(BaseModel): + email: str + password: str + + +class UserVerification(BaseModel): + password: str + new_password: str = Field(min_length=6) + + @field_validator("new_password") + def validate_new_password(cls, new_password): + return PasswordValidator.validate(new_password) + + +class Token(BaseModel): + access_token: str + token_type: str + class MetadataRequest(BaseModel): title: str - category : str + category_id: int author: str year: int publisher: str - + + +class MetadataResponse(BaseModel): + id : int + title: str + author: str + category: str # Changed to reflect the actual category name + category_id : int + year: int + publisher: str + thumbnail: Optional[Any] # Make thumbnail optional + + class Config: + from_attributes = True + + class DeleteById(BaseModel): - id : str + id: str + + +class UserPromptRequest(BaseModel): + prompt: str + streaming: bool + + +class BotMetaCreate(BaseModel): + metadata_id: List[int] # List of integers for metadata_id + + +class BotCreateRequest(BaseModel): + bot_name: str + -class UserPromptRequest(BaseModel): - session_id : str - prompt : str - streaming : bool - class BotResponse(BaseModel): - role : str = "assistant" - content : str - raw_references : List - references : List - metadata : List - scores : List + role: str = "assistant" + content: str + metadata: List + scores: List + class BotResponseStreaming(BaseModel): - role : str = "assistant" - content : Optional[str] = None - completed_content : Optional[str] = None - reference : Optional[str] = None - metadata : Optional[Dict] = None - score : Optional[float] = None - + role: str = "assistant" + content: Optional[str] = None + completed_content: Optional[str] = None + reference: Optional[str] = None + metadata: Optional[Dict] = None + score: Optional[float] = None + class TestStreaming(BaseModel): - role : str = "assistant" - content : str - + role: str = "assistant" + content: str + + class ChatMessage(BaseModel): """Chat message.""" role: MessageRole = MessageRole.ASSISTANT content: Optional[Any] = "" - metadata: List + metadata: Optional[List[Any]] = None + timestamp : Optional[datetime] = None + payment: Optional[str] = Field(default=None) def __str__(self) -> str: - return f"{self.role.value}: {self.content}" \ No newline at end of file + return f"{self.role.value}: {self.content}" + +class ChatHistory(BaseModel): + messages: List[ChatMessage] + + +class CategoryCreate(BaseModel): + category_name: str diff --git a/service/reader.py b/service/reader.py index dc5fa80de84accd257e8f2b95c8933301fefdf25..b5b124af540bdfcb67914262048a13f0ede34504 100644 --- a/service/reader.py +++ b/service/reader.py @@ -1,36 +1,38 @@ -from typing import Optional +from typing import Optional, List +from fastapi import UploadFile +from fastapi.responses import JSONResponse from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document -from fastapi import UploadFile -from typing import List from PyPDF2 import PdfReader -from llama_parse import LlamaParse class Reader(BaseReader): async def read_from_uploadfile(self, file: UploadFile) -> List[Document]: try: file_content = await file.read() + # Initialize PdfReader with file-like object reader = PdfReader(file.file) + total_pages = reader.pages + print("Total pages: ", len(total_pages)) - # Extract text from each page and store in a list - pages = [] - for page_num, page in enumerate(reader.pages): + # Extract text from each page and store it in a list + documents = [] + for page_num, page in enumerate(total_pages, start=1): text = page.extract_text() or "" # Extract text or use empty if none - if text.strip(): # Only add non-empty pages - pages.append((page_num + 1, text.strip())) - + if text.strip(): # Only add non-empty text as a document + documents.append( + Document(text=text.strip(), metadata={"page": page_num}) + ) + else: + # Handle the case where a page is empty but should still be accounted for + documents.append(Document(text="", metadata={"page": page_num})) - # Create Document objects with page number in metadata - documents = [ - Document(text=page_text, metadata={"page": page_num}) - for page_num, page_text in pages - ] + print("Number of documents: ", len(documents)) return documents except Exception as e: - # Handle specific exceptions or fallback to generic one - print(f"Error reading PDF file: {e}") - raise RuntimeError(f"Failed to process the uploaded file: {e}") \ No newline at end of file + return JSONResponse( + status_code=500, content=f"Failed to process the uploaded file: {e}" + ) diff --git a/test_mongodb.ipynb b/test_mongodb.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..f966cab091c3902cde04ea85c992765d09f3e17e --- /dev/null +++ b/test_mongodb.ipynb @@ -0,0 +1,322 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pinged your deployment. You successfully connected to MongoDB!\n" + ] + } + ], + "source": [ + "from core.chat.chatstore import ChatStore\n", + "from pymongo.mongo_client import MongoClient\n", + "from dotenv import load_dotenv\n", + "import os\n", + "\n", + "load_dotenv()\n", + "# uri = \"mongodb+srv://summariz:testdb@cluster0.bw0sr.mongodb.net/?retryWrites=true&w=majority&appName=Cluster0\"\n", + "uri = os.getenv(\"MONGO_URI\")\n", + "client = MongoClient(uri)\n", + "\n", + "try:\n", + " client.admin.command('ping')\n", + " print(\"Pinged your deployment. You successfully connected to MongoDB!\")\n", + "except Exception as e:\n", + " print(e)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'role': 'user', 'content': 'hallo', 'additional_kwargs': {}},\n", + " {'role': 'assistant',\n", + " 'content': 'Halo! Ada yang bisa saya bantu hari ini, dok? 😊',\n", + " 'metadata': []}]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "chat_store = ChatStore()\n", + "session_id = \"dfe69118-355b-4276-adc8-0a82e5706f44\"\n", + "chat_history = chat_store.get_messages(session_id)\n", + "chat_history" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "db = client['bot_database'] # Replace with your database name\n", + "collection = db['bot'] # Replace with your collection name" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "result = collection.insert_many(chat_history)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data inserted with record ids [ObjectId('67060bd6c8ffb964976540a5'), ObjectId('67060bd6c8ffb964976540a6')]\n" + ] + } + ], + "source": [ + "# Print the IDs of the inserted documents\n", + "print(\"Data inserted with record ids\", result.inserted_ids)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'role': 'system',\n", + " 'content': 'halo',\n", + " 'timestamp': datetime.datetime(2024, 10, 10, 11, 18, 10, 779000)},\n", + " {'role': 'assistant',\n", + " 'content': 'Halo! 😊 Ada yang bisa saya bantu hari ini, dok? Jika ada pertanyaan tentang kedokteran atau kesehatan, silakan tanyakan saja!',\n", + " 'metadata': [],\n", + " 'timestamp': datetime.datetime(2024, 10, 10, 11, 18, 10, 779000)}]" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Select your database\n", + "db = client['bot_database'] # Replace with your database name\n", + "\n", + "# Select your collection\n", + "collection = db['6fd735b8-a814-47ce-8427-a7bbe4c14ec6'] # Replace with your collection name\n", + "\n", + "# Retrieve all documents from the collection\n", + "documents = collection.find()\n", + "\n", + "# Convert the cursor to a list and exclude the _id field\n", + "documents_list = [{key: doc[key] for key in doc if key != '_id' and doc[key] is not None} for doc in documents]\n", + "\n", + "# Print the list of documents without the _id field\n", + "documents_list" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collection 'bot' exists in the database 'bot_database'.\n", + "Doing something because the collection exists.\n" + ] + } + ], + "source": [ + "def check_collection_exists(db_name, collection_name):\n", + " # Connect to the MongoDB server\n", + " db = client[db_name]\n", + "\n", + " # Check if the collection exists\n", + " if collection_name in db.list_collection_names():\n", + " print(f\"Collection '{collection_name}' exists in the database '{db_name}'.\")\n", + " # Perform your desired action here\n", + " do_something()\n", + " else:\n", + " print(f\"Collection '{collection_name}' does not exist in the database '{db_name}'.\")\n", + "\n", + "def do_something():\n", + " # Define the action you want to perform\n", + " print(\"Doing something because the collection exists.\")\n", + "\n", + "# Example usage\n", + "check_collection_exists('bot_database', \"bot\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Test Redis" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The collection 'test' does not exists.\n" + ] + } + ], + "source": [ + " \n", + "import redis\n", + "from dotenv import load_dotenv\n", + "import os\n", + "\n", + "load_dotenv()\n", + "\n", + "redis_client = redis.Redis(\n", + " host=\"redis-10365.c244.us-east-1-2.ec2.redns.redis-cloud.com\",\n", + " port=10365,\n", + " password=os.environ.get(\"REDIS_PASSWORD\"),\n", + ")\n", + "\n", + "session_id =\"test\"\n", + " \n", + "if redis_client.exists(session_id):\n", + " print(f\"The collection '{session_id}' exists.\")\n", + "else: \n", + " print(f\"The collection '{session_id}' does not exists.\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from core.chat.chatstore import ChatStore\n", + "\n", + "chat_store = ChatStore()\n", + "\n", + "\n", + "session_id = \"6fd735b8-a814-47ce-8427-a7bbe4c14ec6\"\n", + "\n", + "chat_store.add_chat_history_to_redis(session_id)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collection(Database(MongoClient(host=['cluster0-shard-00-00.bw0sr.mongodb.net:27017', 'cluster0-shard-00-02.bw0sr.mongodb.net:27017', 'cluster0-shard-00-01.bw0sr.mongodb.net:27017'], document_class=dict, tz_aware=False, connect=True, retrywrites=True, w='majority', appname='Cluster0', authsource='admin', replicaset='atlas-ukfsmn-shard-0', ssl=True), 'bot_database'), '6fd735b8-a814-47ce-8427-a7bbe4c14ec6')\n", + "[{'role': 'system', 'content': 'halo'}, {'role': 'assistant', 'content': 'Halo! 😊 Ada yang bisa saya bantu hari ini, dok? Jika ada pertanyaan tentang kedokteran atau kesehatan, silakan tanyakan saja!', 'metadata': []}]\n" + ] + }, + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import json\n", + "import redis\n", + "from service.dto import ChatMessage\n", + "\n", + "redis_client = redis.Redis(\n", + " host=\"redis-10365.c244.us-east-1-2.ec2.redns.redis-cloud.com\",\n", + " port=10365,\n", + " password=os.environ.get(\"REDIS_PASSWORD\"),\n", + ")\n", + "\n", + "def message_to_dict(message: ChatMessage) -> dict:\n", + " return message.model_dump()\n", + "\n", + "session_id = \"6fd735b8-a814-47ce-8427-a7bbe4c14ec6\"\n", + "db = client[\"bot_database\"]\n", + "collection = db[session_id]\n", + "\n", + "print(collection)\n", + "\n", + "chat_history = collection.find()\n", + "chat_history_list = [\n", + " {key: message[key] for key in message if key not in ['_id', 'timestamp'] and message[key] is not None}\n", + " for message in chat_history if message is not None\n", + "]\n", + "\n", + "print(chat_history_list)\n", + "\n", + "for message in chat_history_list:\n", + " # Convert MongoDB document to the format you need\n", + " item = json.dumps(message_to_dict(ChatMessage(**message))) # Convert message to dict\n", + " redis_client.rpush(session_id, item)\n", + " \n", + "redis_client.expire(session_id, time=86400)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "fullstack", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}