import os import shutil import asyncio from urllib.parse import quote from dotenv import load_dotenv from io import BufferedIOBase from typing import List, Optional, Union from pathlib import Path from botocore.exceptions import ClientError from botocore.config import Config from boto3.session import Session from pydantic import PrivateAttr from llama_index.core.async_utils import run_jobs from llama_parse import LlamaParse from llama_parse.utils import ( nest_asyncio_err, nest_asyncio_msg, ) from llama_index.core.schema import Document load_dotenv() FileInput = Union[str, bytes, BufferedIOBase] class S3ImageSaver: def __init__(self, bucket_name, access_key=None, secret_key=None, region_name=None): self.bucket_name = bucket_name self.region_name = region_name self.session = Session( aws_access_key_id=access_key, aws_secret_access_key=secret_key, region_name=self.region_name, ) self.s3_client = self.session.client( "s3", config=Config(signature_version="s3v4", region_name=self.region_name) ) def save_image(self, image_path, title): """Saves an image to the S3 bucket.""" try: print("---Saving Images---") title_encoded = quote(title) s3_key = f"images/{title}/{os.path.basename(image_path)}" with open(image_path, "rb") as file: self.s3_client.upload_fileobj(file, self.bucket_name, s3_key) s3_url = f"https://{self.bucket_name}.s3.{self.region_name}.amazonaws.com/images/{title_encoded}/{os.path.basename(image_path)}" print(f"Image saved to S3 bucket: {s3_url}") return s3_url except ClientError as e: print(f"Error saving image to S3: {e}") return None class LlamaParseWithS3(LlamaParse): _s3_image_saver: S3ImageSaver = PrivateAttr() def __init__(self, *args, s3_image_saver=None, **kwargs): super().__init__(*args, **kwargs) self._s3_image_saver = s3_image_saver or S3ImageSaver( bucket_name=os.getenv("S3_BUCKET_NAME"), access_key=os.getenv("AWS_ACCESS_KEY_ID"), secret_key=os.getenv("AWS_SECRET_ACCESS_KEY"), region_name="us-west-2", ) async def aget_images( self, json_result: List[dict], download_path: str ) -> List[dict]: """Download images from the parsed result.""" headers = {"Authorization": f"Bearer {self.api_key}"} # make the download path if not os.path.exists(download_path): os.makedirs(download_path) try: images = [] for result in json_result: job_id = result["job_id"] for page in result["pages"]: if self.verbose: print(f"> Image for page {page['page']}: {page['images']}") for image in page["images"]: image_name = image["name"] # get the full path image_path = os.path.join(download_path, f"{image_name}") # get a valid image path if not image_path.endswith(".png"): if not image_path.endswith(".jpg"): image_path += ".png" image["path"] = image_path image["job_id"] = job_id image["original_file_path"] = result.get("file_path", None) image["page_number"] = page["page"] with open(image_path, "wb") as f: image_url = f"{self.base_url}/api/parsing/job/{job_id}/result/image/{image_name}" async with self.client_context() as client: res = await client.get( image_url, headers=headers, timeout=self.max_timeout ) res.raise_for_status() f.write(res.content) images.append(image) return images except Exception as e: print("Error while downloading images from the parsed result:", e) if self.ignore_errors: return [] else: raise e async def aget_images_s3(self, json_result: List[dict], title) -> List[dict]: images = await self.aget_images( json_result, download_path="tmp/" ) # Download to temporary location # Process each image and upload to S3 for image in images: image_path = image["path"] try: s3_url = self._s3_image_saver.save_image(image_path, title) if s3_url: image["image_link"] = s3_url except Exception as e: print(f"Error saving image to S3: {image_path} - {e}") # After processing all images, delete the tmp folder folder_path = "tmp/" try: shutil.rmtree(folder_path) # Deletes the folder and all its contents print(f"Folder {folder_path} and all its contents were deleted successfully.") except Exception as e: print(f"Error deleting folder {folder_path}: {e}") return images def get_images(self, json_result: List[dict], title) -> List[dict]: """Download images from the parsed result and save them to S3.""" try: return asyncio.run(self.aget_images_s3(json_result, title)) except RuntimeError as e: if nest_asyncio_err in str(e): raise RuntimeError(nest_asyncio_msg) else: raise e def get_single_job_id(json_result): # Check if the list is not empty and has at least one result if json_result: json_id = json_result[0].get("job_id") return json_id return None # Return None if the list is empty # The code if we know the job id # async def _aget_json( # self, job_id, file_path: FileInput, extra_info: Optional[dict] = None # ) -> List[dict]: # """Load data from the input path.""" # try: # if self.verbose: # print("Started parsing the file under job_id %s" % job_id) # result = await self._get_job_result(job_id, "json") # result["job_id"] = job_id # if not isinstance(file_path, (bytes, BufferedIOBase)): # result["file_path"] = str(file_path) # return [result] # except Exception as e: # file_repr = file_path if isinstance(file_path, str) else "" # print(f"Error while parsing the file '{file_repr}':", e) # if self.ignore_errors: # return [] # else: # raise e async def aget_json( self, file_path: Union[List[FileInput], FileInput], extra_info: Optional[dict] = None, ) -> List[dict]: """Load data from the input path.""" if isinstance(file_path, (str, Path, bytes, BufferedIOBase)): return await self._aget_json(file_path, extra_info=extra_info) # The code when job id known # return await self._aget_json( # job_id="cda0870a-b896-4140-84ea-1565e1aa1565", # file_path=file_path, # extra_info=extra_info, # ) elif isinstance(file_path, list): jobs = [self._aget_json(f, extra_info=extra_info) for f in file_path] try: results = await run_jobs( jobs, workers=self.num_workers, desc="Parsing files", show_progress=self.show_progress, ) # return flattened results return [item for sublist in results for item in sublist] except RuntimeError as e: if nest_asyncio_err in str(e): raise RuntimeError(nest_asyncio_msg) else: raise e else: raise ValueError( "The input file_path must be a string or a list of strings." ) async def _aload_data( self, job_id, extra_info: Optional[dict] = None, verbose: bool = False, ) -> List[Document]: """Load data from the input path.""" try: result = await self._get_job_result( job_id, self.result_type.value, verbose=verbose ) docs = [ Document( text=result[self.result_type.value], metadata=extra_info or {}, ) ] if self.split_by_page: return self._get_sub_docs(docs) else: return docs except Exception as e: print(f"Error while parsing the file :", e) if self.ignore_errors: return [] else: raise e async def aload_data( self, job_id, extra_info: Optional[dict] = None, ) -> List[Document]: """Load data from the input path.""" try: return await self._aload_data( job_id, extra_info=extra_info, verbose=self.verbose ) except RuntimeError as e: if nest_asyncio_err in str(e): raise RuntimeError(nest_asyncio_msg) else: raise e def load_data( self, job_id, extra_info: Optional[dict] = None, ) -> List[Document]: """Load data from the input path.""" try: return asyncio.run(self.aload_data(job_id, extra_info)) except RuntimeError as e: if nest_asyncio_err in str(e): raise RuntimeError(nest_asyncio_msg) else: raise e