MultivexAI commited on
Commit
5de9d83
·
verified ·
1 Parent(s): d0307a5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -8
app.py CHANGED
@@ -3,7 +3,7 @@ import torch
3
  import torch.nn as nn
4
  import os
5
 
6
- # Define the model architecture
7
  class AddModel(nn.Module):
8
  def __init__(self):
9
  super(AddModel, self).__init__()
@@ -19,31 +19,28 @@ class AddModel(nn.Module):
19
  x = self.fc3(x)
20
  return x
21
 
22
- # Load the model from a specified path
23
  def load_model(model_path):
24
  model = AddModel()
25
  model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
26
  model.eval() # Set the model to evaluation mode
27
  return model
28
 
29
- # Function to make predictions
30
  def predict_sum(model, x1, x2):
31
  with torch.no_grad():
32
  input_tensor = torch.tensor([[x1, x2]], dtype=torch.float32)
33
  prediction = model(input_tensor)
34
  return prediction.item()
35
 
36
- # Streamlit app
37
  def main():
38
  st.title("Sum Predictor using Neural Network")
39
-
40
- # Specify the path to your model
41
- model_path = "./models/best_model.pth" # Update with your model path
42
  if os.path.exists(model_path):
43
  model = load_model(model_path)
44
  st.success("Model loaded successfully.")
45
 
46
- # User input for prediction
47
  x1 = st.number_input("Enter the first number:", value=0.0)
48
  x2 = st.number_input("Enter the second number:", value=0.0)
49
 
 
3
  import torch.nn as nn
4
  import os
5
 
6
+ # the model architecture
7
  class AddModel(nn.Module):
8
  def __init__(self):
9
  super(AddModel, self).__init__()
 
19
  x = self.fc3(x)
20
  return x
21
 
22
+ # load the model from a specified path
23
  def load_model(model_path):
24
  model = AddModel()
25
  model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
26
  model.eval() # Set the model to evaluation mode
27
  return model
28
 
29
+ #predictions
30
  def predict_sum(model, x1, x2):
31
  with torch.no_grad():
32
  input_tensor = torch.tensor([[x1, x2]], dtype=torch.float32)
33
  prediction = model(input_tensor)
34
  return prediction.item()
35
 
 
36
  def main():
37
  st.title("Sum Predictor using Neural Network")
38
+
39
+ model_path = "./models/MA1T.pth"
 
40
  if os.path.exists(model_path):
41
  model = load_model(model_path)
42
  st.success("Model loaded successfully.")
43
 
 
44
  x1 = st.number_input("Enter the first number:", value=0.0)
45
  x2 = st.number_input("Enter the second number:", value=0.0)
46