Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import torch
|
|
3 |
import torch.nn as nn
|
4 |
import os
|
5 |
|
6 |
-
#
|
7 |
class AddModel(nn.Module):
|
8 |
def __init__(self):
|
9 |
super(AddModel, self).__init__()
|
@@ -19,31 +19,28 @@ class AddModel(nn.Module):
|
|
19 |
x = self.fc3(x)
|
20 |
return x
|
21 |
|
22 |
-
#
|
23 |
def load_model(model_path):
|
24 |
model = AddModel()
|
25 |
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
26 |
model.eval() # Set the model to evaluation mode
|
27 |
return model
|
28 |
|
29 |
-
#
|
30 |
def predict_sum(model, x1, x2):
|
31 |
with torch.no_grad():
|
32 |
input_tensor = torch.tensor([[x1, x2]], dtype=torch.float32)
|
33 |
prediction = model(input_tensor)
|
34 |
return prediction.item()
|
35 |
|
36 |
-
# Streamlit app
|
37 |
def main():
|
38 |
st.title("Sum Predictor using Neural Network")
|
39 |
-
|
40 |
-
|
41 |
-
model_path = "./models/best_model.pth" # Update with your model path
|
42 |
if os.path.exists(model_path):
|
43 |
model = load_model(model_path)
|
44 |
st.success("Model loaded successfully.")
|
45 |
|
46 |
-
# User input for prediction
|
47 |
x1 = st.number_input("Enter the first number:", value=0.0)
|
48 |
x2 = st.number_input("Enter the second number:", value=0.0)
|
49 |
|
|
|
3 |
import torch.nn as nn
|
4 |
import os
|
5 |
|
6 |
+
# the model architecture
|
7 |
class AddModel(nn.Module):
|
8 |
def __init__(self):
|
9 |
super(AddModel, self).__init__()
|
|
|
19 |
x = self.fc3(x)
|
20 |
return x
|
21 |
|
22 |
+
# load the model from a specified path
|
23 |
def load_model(model_path):
|
24 |
model = AddModel()
|
25 |
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
26 |
model.eval() # Set the model to evaluation mode
|
27 |
return model
|
28 |
|
29 |
+
#predictions
|
30 |
def predict_sum(model, x1, x2):
|
31 |
with torch.no_grad():
|
32 |
input_tensor = torch.tensor([[x1, x2]], dtype=torch.float32)
|
33 |
prediction = model(input_tensor)
|
34 |
return prediction.item()
|
35 |
|
|
|
36 |
def main():
|
37 |
st.title("Sum Predictor using Neural Network")
|
38 |
+
|
39 |
+
model_path = "./models/MA1T.pth"
|
|
|
40 |
if os.path.exists(model_path):
|
41 |
model = load_model(model_path)
|
42 |
st.success("Model loaded successfully.")
|
43 |
|
|
|
44 |
x1 = st.number_input("Enter the first number:", value=0.0)
|
45 |
x2 = st.number_input("Enter the second number:", value=0.0)
|
46 |
|