import os import re import json import pandas as pd import gradio as gr import torch from PIL import Image from PIL import ImageFile import logging # Configurar el logging para escribir en un archivo log logging.basicConfig( filename="output.log", level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S" ) # Images torch.hub.download_url_to_file('https://i.pinimg.com/originals/7f/5e/96/7f5e9657c08aae4bcd8bc8b0dcff720e.jpg', 'ejemplo1.jpg') torch.hub.download_url_to_file('https://i.pinimg.com/originals/c2/ce/e0/c2cee05624d5477ffcf2d34ca77b47d1.jpg', 'ejemplo2.jpg') # Model model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt', force_reload=True, autoshape=True, trust_repo=True) def to_json(results): detail = [] results_df = to_dataframe(results) for index, row in results_df.iterrows(): item = { "quantity": row['Cantidad'], "description": row['Especie'] } detail.append(item) data = { "image": results.files[0], "size": f"{results.s[2]}x{results.s[3]}", "detail": detail } return data, results_df def to_dataframe(results): labels_map = { 'Aedes': "Aedes", 'Mosquito': "Mosquito", 'Mosca': "Mosca", } labels = list(labels_map.keys()) columns_name = {'class': 'Cantidad', 'name': 'Especie'} results_df = results.pandas().xyxy[0][['class','name']].groupby('name').count().reset_index().rename(columns=columns_name) results_df = pd.merge(pd.DataFrame(labels, columns=['Especie']), results_df, how='left', on='Especie').fillna(0) results_df['Cantidad'] = results_df['Cantidad'].astype(int) results_df['Especie'] = results_df['Especie'].map(labels_map) return results_df def yolo(size, iou, conf, im): try: '''Wrapper fn for gradio''' g = (int(size) / max(im.size)) # gain im = im.resize(tuple(int(x * g) for x in im.size), Image.LANCZOS) # resize with antialiasing model.iou = iou model.conf = conf results2 = model(im) # inference results2.render() # updates results.imgs with boxes and labels lista, lista2 = to_json(results2) logging.info(f"Imagen procesada satisfactoriamente: {lista}") return Image.fromarray(results2.ims[0]), lista2, lista except Exception as err: logging.error(f"Error durante la predicción: {err}") return None, None, None #------------ Interface------------- in1 = gr.inputs.Radio(['640', '1280'], label="Tamaño de la imagen", default='640', type='value') in2 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, default=0.25, label='NMS IoU threshold') in3 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, default=0.50, label='Umbral o threshold') in4 = gr.inputs.Image(type='pil', label="Original Image") out2 = gr.outputs.Image(type="pil", label="YOLOv5") out3 = gr.outputs.Dataframe(label="Cantidad_especie", headers=['Cantidad','Especie'], type="pandas") out4 = gr.outputs.JSON(label="JSON") #-------------- Text----- title = 'Trampas Barceló' description = '