Spaces:
Sleeping
Sleeping
File size: 1,956 Bytes
e060178 c13893c c93ffe3 c13893c c93ffe3 c13893c e060178 c93ffe3 e060178 1fd9847 e060178 c93ffe3 1fd9847 e060178 c93ffe3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import streamlit as st
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import RetrievalQA
from transformers import AutoModelForCausalLM, AutoTokenizer
import tempfile
import os
st.set_page_config(page_title="Document QA Bot")
if "vector_store" not in st.session_state:
st.session_state.vector_store = None
def process_text(text):
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = splitter.create_documents([text])
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
return FAISS.from_documents(chunks, embeddings)
def process_pdf(file):
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
tmp_file.write(file.getvalue())
loader = PyPDFLoader(tmp_file.name)
pages = loader.load()
os.unlink(tmp_file.name)
return process_text('\n'.join(page.page_content for page in pages))
st.title("Document QA Bot")
uploaded_file = st.file_uploader("Upload Document", type=["txt", "pdf"])
if uploaded_file:
with st.spinner("Processing document..."):
if uploaded_file.type == "text/plain":
text = uploaded_file.getvalue().decode()
st.session_state.vector_store = process_text(text)
else:
st.session_state.vector_store = process_pdf(uploaded_file)
st.success("Document processed!")
if st.session_state.vector_store:
if question := st.chat_input("Ask a question about the document:"):
results = st.session_state.vector_store.similarity_search(question)
context = "\n".join(doc.page_content for doc in results)
st.chat_message("user").write(question)
st.chat_message("assistant").write(context) |