import streamlit as st from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.document_loaders import PyPDFLoader from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from langchain.chains import RetrievalQA from transformers import AutoModelForCausalLM, AutoTokenizer import tempfile import os st.set_page_config(page_title="Document QA Bot") if "vector_store" not in st.session_state: st.session_state.vector_store = None def process_text(text): splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) chunks = splitter.create_documents([text]) embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") return FAISS.from_documents(chunks, embeddings) def process_pdf(file): with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file: tmp_file.write(file.getvalue()) loader = PyPDFLoader(tmp_file.name) pages = loader.load() os.unlink(tmp_file.name) return process_text('\n'.join(page.page_content for page in pages)) st.title("Document QA Bot") uploaded_file = st.file_uploader("Upload Document", type=["txt", "pdf"]) if uploaded_file: with st.spinner("Processing document..."): if uploaded_file.type == "text/plain": text = uploaded_file.getvalue().decode() st.session_state.vector_store = process_text(text) else: st.session_state.vector_store = process_pdf(uploaded_file) st.success("Document processed!") if st.session_state.vector_store: if question := st.chat_input("Ask a question about the document:"): results = st.session_state.vector_store.similarity_search(question) context = "\n".join(doc.page_content for doc in results) st.chat_message("user").write(question) st.chat_message("assistant").write(context)