import gradio as gr import os import requests from llama_cpp import Llama llm_name = "MuntasirHossain/Meta-Llama-3-8B-OpenOrca-GGUF" llm_path = os.path.basename(llm_name) # download gguf model def download_llms(llm_name): """Download GGUF model""" download_url = "" print("Downloading " + llm_name) download_url = "https://huggingface.co/MuntasirHossain/Meta-Llama-3-8B-OpenOrca-GGUF/resolve/main/Q4_K_M.gguf" if not os.path.exists("model"): os.makedirs("model") llm_filename = os.path.basename(download_url) llm_temp_file_path = os.path.join("model", llm_filename) if os.path.exists(llm_temp_file_path): print("Model already available") else: response = requests.get(download_url, stream=True) if response.status_code == 200: with open(llm_temp_file_path, 'wb') as f: for chunk in response.iter_content(chunk_size=1024): if chunk: f.write(chunk) print("Download completed") else: print(f"Model download completed {response.status_code}") # define model pipeline with llama-cpp def initialize_llm(llm_model): model_path = "" if llm_model == llm_name: model_path = "model/Q4_K_M.gguf" download_llms(llm_model) llm = Llama( model_path=model_path, n_ctx=1024, # input text context length, 0 = from model verbose=False ) return llm llm = initialize_llm(llm_name) # format prompt as per the ChatML template. The model was fine-tuned with this chat template def format_prompt(input_text, history): system_prompt = """You are a helpful AI assistant. You are truthful in your response for real-world matters but you are also creative for imaginative/fictional tasks.""" prompt = "" if history: for previous_prompt, response in history: prompt += f"<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{previous_prompt}<|im_end|>\n<|im_start|>assistant\n{response}<|im_end|>" prompt += f"<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{input_text}<|im_end|>\n<|im_start|>assistant" return prompt # generate llm response def generate(prompt, history, max_new_tokens=512): # temperature=0.95, top_p=0.9 if not history: history = [] # temperature = float(temperature) # top_p = float(top_p) kwargs = dict( # temperature=temperature, max_tokens=max_new_tokens, # top_p=top_p, stop=["<|im_end|>"] ) formatted_prompt = format_prompt(prompt, history) # generate a streaming response response = llm(formatted_prompt, **kwargs, stream=True) output = "" for chunk in response: output += chunk['choices'][0]['text'] yield output return output # # generate response without streaming # response = llm(formatted_prompt, **kwargs) # return response['choices'][0]['text'] chatbot = gr.Chatbot(height=500) with gr.Blocks(theme=gr.themes.Default(primary_hue="sky")) as demo: gr.HTML("

Fine-tuned Meta-Llama-3-8B Chatbot

") gr.Markdown("This AI agent is using the MuntasirHossain/Meta-Llama-3-8B-OpenOrca-GGUF model for text-generation.") gr.ChatInterface( generate, chatbot=chatbot, retry_btn=None, undo_btn=None, clear_btn="Clear", # description="This AI agent is using the MuntasirHossain/Meta-Llama-3-8B-OpenOrca-GGUF model for text-generation.", # additional_inputs=additional_inputs, examples=[["What is a large language model?"], ["What is the meaning of life?"], ["Write a short story about a fictional planet named 'Orca'."]] ) demo.queue().launch()