Spaces:
Runtime error
Runtime error
File size: 6,244 Bytes
d82e76f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
num_rows = 20000
df = pd.read_csv('/emails.csv', on_bad_lines='skip', nrows=num_rows)
def get_message(Series: pd.Series):
result = pd.Series(index=Series.index)
for row, message in enumerate(Series):
message_words = message.split('\n')
del message_words[:15]
result.iloc[row] = ''.join(message_words).strip()
return result
def get_date(Series: pd.Series):
result = pd.Series(index=Series.index)
for row, message in enumerate(Series):
message_words = message.split('\n')
del message_words[0]
del message_words[1:]
result.iloc[row] = ''.join(message_words).strip()
result.iloc[row] = result.iloc[row].replace('Date: ', '')
print('Done parsing, converting to datetime format..')
return pd.to_datetime(result)
def get_sender_and_receiver(Series: pd.Series):
sender = pd.Series(index = Series.index)
recipient1 = pd.Series(index = Series.index)
recipient2 = pd.Series(index = Series.index)
recipient3 = pd.Series(index = Series.index)
for row,message in enumerate(Series):
message_words = message.split('\n')
sender[row] = message_words[2].replace('From: ', '')
recipient1[row] = message_words[3].replace('To: ', '')
recipient2[row] = message_words[10].replace('X-cc: ', '')
recipient3[row] = message_words[11].replace('X-bcc: ', '')
return sender, recipient1, recipient2, recipient3
def get_subject(Series: pd.Series):
result = pd.Series(index = Series.index)
for row, message in enumerate(Series):
message_words = message.split('\n')
message_words = message_words[4]
result[row] = message_words.replace('Subject: ', '')
return result
def get_folder(Series: pd.Series):
result = pd.Series(index = Series.index)
for row, message in enumerate(Series):
message_words = message.split('\n')
message_words = message_words[12]
result[row] = message_words.replace('X-Folder: ', '')
return result
df['text'] = get_message(df.message)
df['sender'], df['recipient1'], df['recipient2'], df['recipient3'] = get_sender_and_receiver(df.message)
df['Subject'] = get_subject(df.message)
df['folder'] = get_folder(df.message)
df['date'] = get_date(df.message)
df = df.drop(['message', 'file'], axis = 1)
df.head(100)
import chromadb
chroma_client = chromadb.Client()
collection = chroma_client.create_collection(name="emails")
df.loc[4, 'text']
for i in df.index:
collection.add(
documents = df.loc[i, 'text'],
metadatas = [{"sender": df.loc[i, 'sender'],
"recipient1": df.loc[i, 'recipient1'],
"recipient2": df.loc[i, 'recipient2'],
"recipient3": df.loc[i, 'recipient3'],
"subject": df.loc[i, 'Subject'],
"folder": df.loc[i, 'folder'],
"date": str(df.loc[i, 'date'])
}],
ids = str(i)
)
collection.get(
ids=["140"]
)
results = collection.query(
query_texts = ["this is a document"],
n_results = 2,
include = ['distances', 'metadatas', 'documents']
)
results
from chromadb.utils import embedding_functions
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="paraphrase-MiniLM-L3-v2")
collection_minilm = chroma_client.create_collection(name="emails_minilm", embedding_function=sentence_transformer_ef)
for i in df.index:
print(i)
collection_minilm.add(
documents = df.loc[i, 'text'],
metadatas = [{"sender": df.loc[i, 'sender'],
"recipient1": df.loc[i, 'recipient1'],
"recipient2": df.loc[i, 'recipient2'],
"recipient3": df.loc[i, 'recipient3'],
"subject": df.loc[i, 'Subject'],
"folder": df.loc[i, 'folder'],
"date": str(df.loc[i, 'date'])
}],
ids = str(i)
)
results = collection_minilm.query(
query_texts = ["this is a document"],
n_results = 2,
include = ['distances', 'metadatas', 'documents']
)
results
import gradio as gr
def query_chromadb(question,numberOfResults):
results = collection_minilm.query(
n_results = numberOfResults,
)
return results['documents'][0]
iface = gr.Interface(
fn=query_chromadb,
inputs=["text","number"],
outputs="text",
title="Email Dataset Interface",
description="Insert the question or the key word to find the topic correlated in the dataset"
)
iface.launch(share=True)
import ast
def create_output(dictionary, number):
dictionary_ids = str(dictionary['ids'])
dictionary_ids_clean = dictionary_ids.strip("[]")
dictionary_ids_clean = dictionary_ids_clean.replace("'", "")
dictionary_ids_list = dictionary_ids_clean.split(", ")
string_results = "";
for n in range(number):
t = collection_minilm.get(
ids=[dictionary_ids_list[n]]
)
id = str(t["ids"])
doc = str(t["documents"])
metadata = str(t["metadatas"])
dictionary_metadata = ast.literal_eval(metadata.strip("[]"))
string_results_old = string_results
string_temp = """---------------
SUBJECT: """ + dictionary_metadata['subject'] + """"
MESSAGE: """ + "\n" + doc + """
---------------"""
string_results = string_results_old + string_temp
return string_results
def query_chromadb_advanced(question,numberOfResults):
results = collection_minilm.query(
query_texts = question,
n_results = numberOfResults,
)
return create_output(results, numberOfResults)
result_advance = query_chromadb_advanced("bank", 4)
print(result_advance)
iface = gr.Interface(
fn=query_chromadb_advanced,
inputs=["text","number"],
outputs="text",
title="Email Dataset Interface",
description="Insert the question or the key word to find the topic correlated in the dataset"
)
iface.launch(share=True) |