Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import clip
|
3 |
+
from PIL import Image
|
4 |
+
from torchvision import transforms, models
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
+
import pandas as pd
|
7 |
+
import random
|
8 |
+
import urllib.parse
|
9 |
+
import torch.nn as nn
|
10 |
+
from sklearn.metrics import classification_report
|
11 |
+
from torch.optim.lr_scheduler import ReduceLROnPlateau
|
12 |
+
import gradio as gr
|
13 |
+
|
14 |
+
# Device setup
|
15 |
+
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
|
16 |
+
print(f"Using device: {device}")
|
17 |
+
|
18 |
+
# Data transformation
|
19 |
+
data_transforms = transforms.Compose([
|
20 |
+
transforms.Resize((224, 224)),
|
21 |
+
transforms.ToTensor(),
|
22 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
23 |
+
])
|
24 |
+
|
25 |
+
# Load datasets for enriched prompts
|
26 |
+
dataset_desc = pd.read_csv("dataset_desc.csv", delimiter=';', usecols=['Artists', 'Style', 'Description'])
|
27 |
+
dataset_desc.columns = dataset_desc.columns.str.lower()
|
28 |
+
style_desc = pd.read_csv("style_desc.csv", delimiter=';') # CSV containing style-specific descriptions
|
29 |
+
style_desc.columns = style_desc.columns.str.lower()
|
30 |
+
|
31 |
+
# Function to enrich prompts with custom data
|
32 |
+
def enrich_prompt(artist, style):
|
33 |
+
artist_info = dataset_desc.loc[dataset_desc['artists'] == artist, 'description'].values
|
34 |
+
style_info = style_desc.loc[style_desc['style'] == style, 'description'].values
|
35 |
+
|
36 |
+
artist_details = artist_info[0] if len(artist_info) > 0 else "Details about the artist are not available."
|
37 |
+
style_details = style_info[0] if len(style_info) > 0 else "Details about the style are not available."
|
38 |
+
|
39 |
+
return f"{artist_details} This work exemplifies {style_details}."
|
40 |
+
|
41 |
+
# Custom dataset for ResNet18
|
42 |
+
class ArtDataset:
|
43 |
+
def __init__(self, csv_file):
|
44 |
+
self.annotations = pd.read_csv(csv_file)
|
45 |
+
self.train_data = self.annotations[self.annotations['subset'] == 'train']
|
46 |
+
self.test_data = self.annotations[self.annotations['subset'] == 'test']
|
47 |
+
self.label_map_style = {style: idx for idx, style in enumerate(self.annotations['genre'].unique())}
|
48 |
+
self.label_map_artist = {artist: idx for idx, artist in enumerate(self.annotations['artist'].unique())}
|
49 |
+
|
50 |
+
def get_style_and_artist_mappings(self):
|
51 |
+
return self.label_map_style, self.label_map_artist
|
52 |
+
|
53 |
+
def get_train_test_split(self):
|
54 |
+
return self.train_data, self.test_data
|
55 |
+
|
56 |
+
# DualOutputResNet model with Dropout
|
57 |
+
class DualOutputResNet(nn.Module):
|
58 |
+
def __init__(self, num_styles, num_artists, dropout_rate=0.5):
|
59 |
+
super(DualOutputResNet, self).__init__()
|
60 |
+
self.backbone = models.resnet18(weights=models.ResNet18_Weights.IMAGENET1K_V1)
|
61 |
+
num_features = self.backbone.fc.in_features
|
62 |
+
self.backbone.fc = nn.Identity()
|
63 |
+
self.dropout = nn.Dropout(dropout_rate)
|
64 |
+
self.fc_style = nn.Linear(num_features, num_styles)
|
65 |
+
self.fc_artist = nn.Linear(num_features, num_artists)
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
features = self.backbone(x)
|
69 |
+
features = self.dropout(features)
|
70 |
+
style_output = self.fc_style(features)
|
71 |
+
artist_output = self.fc_artist(features)
|
72 |
+
return style_output, artist_output
|
73 |
+
|
74 |
+
# Load dataset
|
75 |
+
csv_file = "cleaned_classes.csv"
|
76 |
+
dataset = ArtDataset(csv_file)
|
77 |
+
label_map_style, label_map_artist = dataset.get_style_and_artist_mappings()
|
78 |
+
train_data, test_data = dataset.get_train_test_split()
|
79 |
+
num_styles = len(label_map_style)
|
80 |
+
num_artists = len(label_map_artist)
|
81 |
+
|
82 |
+
# Model setup
|
83 |
+
model_resnet = DualOutputResNet(num_styles, num_artists).to(device)
|
84 |
+
optimizer = torch.optim.Adam(model_resnet.parameters(), lr=0.001, weight_decay=1e-5)
|
85 |
+
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=3, verbose=True)
|
86 |
+
|
87 |
+
# Load GPT-Neo and CLIP
|
88 |
+
model_clip, preprocess_clip = clip.load("ViT-B/32", device=device)
|
89 |
+
model_clip.eval()
|
90 |
+
|
91 |
+
model_name = "EleutherAI/gpt-neo-1.3B"
|
92 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
93 |
+
model_gptneo = AutoModelForCausalLM.from_pretrained(model_name).to(device)
|
94 |
+
|
95 |
+
# Generate prediction using ResNet and CLIP
|
96 |
+
def predict(image_path):
|
97 |
+
image = Image.open(image_path).convert("RGB")
|
98 |
+
image_tensor = data_transforms(image).unsqueeze(0).to(device)
|
99 |
+
|
100 |
+
# Predict with ResNet
|
101 |
+
style_logits, artist_logits = model_resnet(image_tensor)
|
102 |
+
style_idx = torch.argmax(style_logits, dim=1).item()
|
103 |
+
artist_idx = torch.argmax(artist_logits, dim=1).item()
|
104 |
+
|
105 |
+
predicted_style = list(label_map_style.keys())[list(label_map_style.values()).index(style_idx)]
|
106 |
+
predicted_artist = list(label_map_artist.keys())[list(label_map_artist.values()).index(artist_idx)]
|
107 |
+
|
108 |
+
# Enrich prompt with additional information
|
109 |
+
prompt = enrich_prompt(predicted_artist, predicted_style)
|
110 |
+
|
111 |
+
# Generate text description using GPT-Neo
|
112 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
113 |
+
output = model_gptneo.generate(input_ids, max_length=350, num_return_sequences=1)
|
114 |
+
description = tokenizer.decode(output[0], skip_special_tokens=True)
|
115 |
+
|
116 |
+
return predicted_style, predicted_artist, description
|
117 |
+
|
118 |
+
# Gradio interface
|
119 |
+
def gradio_interface(image):
|
120 |
+
predicted_style, predicted_artist, description = predict(image)
|
121 |
+
return f"Predicted Style: {predicted_style}\nPredicted Artist: {predicted_artist}\n\nDescription:\n{description}"
|
122 |
+
|
123 |
+
iface = gr.Interface(
|
124 |
+
fn=gradio_interface,
|
125 |
+
inputs=gr.Image(type="filepath"),
|
126 |
+
outputs="text",
|
127 |
+
title="AI Artwork Analysis",
|
128 |
+
description="Upload an image to predict its artistic style and creator, and generate a detailed description."
|
129 |
+
)
|
130 |
+
|
131 |
+
if __name__ == "__main__":
|
132 |
+
iface.launch()
|