Spaces:
Sleeping
Sleeping
Create artworksApp.py
Browse files- artworksApp.py +157 -0
artworksApp.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import clip
|
4 |
+
from PIL import Image
|
5 |
+
from torchvision import transforms, models
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
+
import pandas as pd
|
8 |
+
from torch.utils.data import Dataset
|
9 |
+
import torch.nn as nn
|
10 |
+
import urllib.parse
|
11 |
+
import re
|
12 |
+
|
13 |
+
# Set device
|
14 |
+
if torch.backends.mps.is_available():
|
15 |
+
device = torch.device("mps")
|
16 |
+
print("Utilizzo del dispositivo MPS")
|
17 |
+
else:
|
18 |
+
device = torch.device("cpu")
|
19 |
+
print("Utilizzo del dispositivo CPU")
|
20 |
+
|
21 |
+
# Dataset class
|
22 |
+
class ArtDataset(Dataset):
|
23 |
+
def __init__(self, csv_file, transform=None):
|
24 |
+
self.annotations = pd.read_csv(csv_file)
|
25 |
+
self.transform = transform
|
26 |
+
self.label_map_style = {style: idx for idx, style in enumerate(self.annotations['genre'].unique())}
|
27 |
+
self.label_map_artist = {artist: idx for idx, artist in enumerate(self.annotations['artist'].unique())}
|
28 |
+
|
29 |
+
def __len__(self):
|
30 |
+
return len(self.annotations)
|
31 |
+
|
32 |
+
def __getitem__(self, idx):
|
33 |
+
img_path = self.annotations.iloc[idx]['filename']
|
34 |
+
safe_img_path = urllib.parse.quote(img_path, safe="/:")
|
35 |
+
try:
|
36 |
+
image = Image.open(safe_img_path).convert("RGB")
|
37 |
+
style_label = self.label_map_style[self.annotations.iloc[idx]['genre']]
|
38 |
+
artist_label = self.label_map_artist[self.annotations.iloc[idx]['artist']]
|
39 |
+
if self.transform:
|
40 |
+
image = self.transform(image)
|
41 |
+
return image, (style_label, artist_label)
|
42 |
+
except (FileNotFoundError, OSError):
|
43 |
+
return None, (None, None)
|
44 |
+
|
45 |
+
# Image transformations
|
46 |
+
data_transforms = transforms.Compose([
|
47 |
+
transforms.Resize((224, 224)),
|
48 |
+
transforms.ToTensor(),
|
49 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
50 |
+
])
|
51 |
+
|
52 |
+
# Load dataset
|
53 |
+
csv_file = "classes.csv"
|
54 |
+
dataset = ArtDataset(csv_file=csv_file, transform=data_transforms)
|
55 |
+
|
56 |
+
# Define model
|
57 |
+
class DualOutputResNet(nn.Module):
|
58 |
+
def __init__(self, num_styles, num_artists):
|
59 |
+
super(DualOutputResNet, self).__init__()
|
60 |
+
self.backbone = models.resnet18(weights=models.ResNet18_Weights.IMAGENET1K_V1)
|
61 |
+
num_features = self.backbone.fc.in_features
|
62 |
+
self.backbone.fc = nn.Identity()
|
63 |
+
self.fc_style = nn.Linear(num_features, num_styles)
|
64 |
+
self.fc_artist = nn.Linear(num_features, num_artists)
|
65 |
+
|
66 |
+
def forward(self, x):
|
67 |
+
features = self.backbone(x)
|
68 |
+
style_output = self.fc_style(features)
|
69 |
+
artist_output = self.fc_artist(features)
|
70 |
+
return style_output, artist_output
|
71 |
+
|
72 |
+
# Load pre-trained model
|
73 |
+
num_styles = len(dataset.label_map_style)
|
74 |
+
num_artists = len(dataset.label_map_artist)
|
75 |
+
model = DualOutputResNet(num_styles, num_artists).to(device)
|
76 |
+
model.load_state_dict(torch.load("dual_output_resnet.pth", map_location=device))
|
77 |
+
model.eval()
|
78 |
+
|
79 |
+
# Load CLIP model
|
80 |
+
model_clip, preprocess_clip = clip.load("ViT-B/32", device=device)
|
81 |
+
model_clip.eval()
|
82 |
+
|
83 |
+
# Load GPT-Neo model
|
84 |
+
model_name = "EleutherAI/gpt-neo-1.3B"
|
85 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
86 |
+
model_gptneo = AutoModelForCausalLM.from_pretrained(model_name).to(device)
|
87 |
+
|
88 |
+
# Function to enrich prompt
|
89 |
+
def enrich_prompt(artist, style):
|
90 |
+
artist_info = dataset_desc.loc[dataset_desc['artists'].str.lower() == artist.lower(), 'description'].values
|
91 |
+
style_info = style_desc.loc[style_desc['style'].str.lower() == style.lower(), 'description'].values
|
92 |
+
|
93 |
+
if len(style_info) == 0:
|
94 |
+
style_keywords = style.lower().split()
|
95 |
+
for keyword in style_keywords:
|
96 |
+
safe_keyword = re.escape(keyword)
|
97 |
+
partial_matches = style_desc[style_desc['style'].str.lower().str.contains(safe_keyword, na=False, regex=True)]
|
98 |
+
if not partial_matches.empty:
|
99 |
+
style_info = partial_matches['description'].values
|
100 |
+
break
|
101 |
+
|
102 |
+
artist_details = artist_info[0] if len(artist_info) > 0 else ""
|
103 |
+
style_details = style_info[0] if len(style_info) > 0 else ""
|
104 |
+
|
105 |
+
return f"{artist_details} This work exemplifies {style_details}."
|
106 |
+
|
107 |
+
# Function to generate description
|
108 |
+
def generate_description(image_path):
|
109 |
+
image = Image.open(image_path).convert("RGB")
|
110 |
+
image_resnet = data_transforms(image).unsqueeze(0).to(device)
|
111 |
+
|
112 |
+
# Predict style and artist
|
113 |
+
with torch.no_grad():
|
114 |
+
outputs_style, outputs_artist = model(image_resnet)
|
115 |
+
_, predicted_style_idx = torch.max(outputs_style, 1)
|
116 |
+
_, predicted_artist_idx = torch.max(outputs_artist, 1)
|
117 |
+
|
118 |
+
idx_to_style = {v: k for k, v in dataset.label_map_style.items()}
|
119 |
+
idx_to_artist = {v: k for k, v in dataset.label_map_artist.items()}
|
120 |
+
predicted_style = idx_to_style[predicted_style_idx.item()]
|
121 |
+
predicted_artist = idx_to_artist[predicted_artist_idx.item()]
|
122 |
+
|
123 |
+
# Enrich prompt
|
124 |
+
enriched_prompt = enrich_prompt(predicted_artist, predicted_style)
|
125 |
+
full_prompt = (
|
126 |
+
f"This is an artwork created by {predicted_artist} in the style of {predicted_style}. {enriched_prompt} "
|
127 |
+
"Describe its distinctive features, considering both the artist's techniques and the artistic style."
|
128 |
+
)
|
129 |
+
|
130 |
+
input_ids = tokenizer.encode(full_prompt, return_tensors="pt").to(device)
|
131 |
+
output = model_gptneo.generate(
|
132 |
+
input_ids=input_ids,
|
133 |
+
max_length=350,
|
134 |
+
num_return_sequences=1,
|
135 |
+
temperature=0.7,
|
136 |
+
top_p=0.9,
|
137 |
+
repetition_penalty=1.2
|
138 |
+
)
|
139 |
+
|
140 |
+
description_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
141 |
+
return predicted_style, predicted_artist, description_text
|
142 |
+
|
143 |
+
# Gradio interface
|
144 |
+
def predict(image):
|
145 |
+
style, artist, description = generate_description(image)
|
146 |
+
return f"**Predicted Style**: {style}\n\n**Predicted Artist**: {artist}\n\n**Description**:\n{description}"
|
147 |
+
|
148 |
+
iface = gr.Interface(
|
149 |
+
fn=predict,
|
150 |
+
inputs=gr.Image(type="file"),
|
151 |
+
outputs="text",
|
152 |
+
title="AI-Powered Artwork Recognition and Description",
|
153 |
+
description="Upload an image of artwork to predict its style and artist, and generate a description."
|
154 |
+
)
|
155 |
+
|
156 |
+
if __name__ == "__main__":
|
157 |
+
iface.launch()
|