File size: 1,317 Bytes
56899b5
 
264ad82
 
b309292
1aea5eb
e74df3c
eb7f955
e74df3c
5fcc362
 
 
 
e74df3c
5fcc362
 
 
eb7f955
5fcc362
 
 
eb7f955
5fcc362
 
eb7f955
5fcc362
 
eb7f955
 
 
 
 
5fcc362
eb7f955
5fcc362
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import subprocess

subprocess.run(["pip", "install", "datasets"])
subprocess.run(["pip", "install", "transformers"])
subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"])

import gradio as gr
from transformers import WhisperProcessor, WhisperForConditionalGeneration

# Load model and processor
processor = WhisperProcessor.from_pretrained("openai/whisper-large")
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large")
model.config.forced_decoder_ids = None

# Function to perform ASR on audio data
def transcribe_audio(audio_data):
    # Process audio data using the Whisper processor
    input_features = processor(audio_data, return_tensors="pt").input_features 

    # Generate token ids
    predicted_ids = model.generate(input_features)
    
    # Decode token ids to text
    transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
    
    return transcription[0]

# Custom preprocessing function
def preprocess_audio(audio_data):
    # Apply any custom preprocessing to the audio data here if needed
    return audio_data

# Create Gradio interface
audio_input = gr.Audio(preprocess=preprocess_audio)
gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch()