import subprocess subprocess.run(["pip", "install", "datasets"]) subprocess.run(["pip", "install", "transformers"]) subprocess.run(["pip", "install", "torch==1.9.1+cpu", "torchvision==0.10.1+cpu", "torchaudio==0.9.1+cpu", "-f", "https://download.pytorch.org/whl/torch_stable.html"]) from transformers import WhisperProcessor, WhisperForConditionalGeneration from datasets import load_dataset import gradio as gr # Load model and processor processor = WhisperProcessor.from_pretrained("openai/whisper-large") model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large") model.config.forced_decoder_ids = None # Function to perform ASR on audio data def transcribe_audio(audio_data): # Process audio data using the Whisper processor input_features = processor(audio_data, return_tensors="pt").input_features # Generate token ids predicted_ids = model.generate(input_features) # Decode token ids to text transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) return transcription[0] # Create Gradio interface audio_input = gr.Audio(preprocessing_fn=None) gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch()