Spaces:
Sleeping
Sleeping
import streamlit as st | |
from speechbrain.pretrained import Tacotron2, HIFIGAN | |
from scipy.io.wavfile import write | |
# Load the TTS and vocoder models | |
def load_models(): | |
tacotron2 = Tacotron2.from_hparams(source="speechbrain/tts-tacotron2-ljspeech", savedir="tmpdir_tts") | |
hifi_gan = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir="tmpdir_vocoder") | |
return tacotron2, hifi_gan | |
# Load models | |
st.write("Loading models... Please wait ⏳") | |
tacotron2, hifi_gan = load_models() | |
st.success("Models loaded successfully!") | |
# TTS function | |
def text_to_speech(text): | |
# Generate mel spectrogram | |
mel_output, mel_length, alignment = tacotron2.encode_text(text) | |
# Decode mel spectrogram to waveform | |
waveforms = hifi_gan.decode_batch(mel_output) | |
# Convert waveform to numpy and normalize to int16 range | |
waveform = waveforms.squeeze(1).cpu().numpy() | |
waveform = waveform / max(abs(waveform)) # Normalize to range [-1, 1] | |
waveform = (waveform * 32767).astype("int16") # Scale to int16 range | |
# Save waveform as audio file | |
audio_path = "output.wav" | |
write(audio_path, 22050, waveform) | |
return audio_path | |
# Streamlit UI | |
st.title("🗣️ Text-to-Speech App") | |
text = st.text_input("Enter text to convert to speech:") | |
if st.button("Generate Speech"): | |
if text.strip(): | |
st.write("Generating speech...") | |
try: | |
audio_file = text_to_speech(text) | |
st.audio(audio_file, format="audio/wav") | |
except Exception as e: | |
st.error(f"Error during TTS generation: {e}") | |
else: | |
st.warning("Please enter some text.") | |