File size: 16,259 Bytes
67a56f6
 
a6c0d87
 
919ab87
e7f1d86
 
 
 
87baec5
3fdd093
87baec5
 
ced2810
919ab87
87baec5
225229c
87baec5
 
 
 
a6c0d87
919ab87
87baec5
919ab87
 
 
87baec5
919ab87
 
 
009e0ad
a6c0d87
 
 
 
87baec5
919ab87
 
 
 
 
b42840f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
919ab87
87baec5
919ab87
a6c0d87
 
 
 
87baec5
 
919ab87
 
 
b42840f
 
 
 
 
 
919ab87
 
b42840f
 
 
 
919ab87
 
 
b42840f
919ab87
 
87baec5
919ab87
87baec5
a6c0d87
87baec5
b42840f
87baec5
919ab87
87baec5
 
 
 
 
 
 
919ab87
 
a6c0d87
 
 
b42840f
 
87baec5
a6c0d87
b42840f
 
 
 
 
 
 
 
 
 
 
a6c0d87
919ab87
a6c0d87
 
 
919ab87
 
 
 
a6c0d87
 
 
 
 
 
7154bdc
919ab87
a6c0d87
 
87baec5
a6c0d87
 
b42840f
 
87baec5
 
 
 
a6c0d87
87baec5
 
a6c0d87
87baec5
919ab87
87baec5
919ab87
a6c0d87
87baec5
 
 
 
 
a6c0d87
87baec5
919ab87
87baec5
a6c0d87
 
b42840f
 
919ab87
 
 
 
 
 
 
 
 
 
 
 
 
b42840f
 
 
a6c0d87
87baec5
 
b42840f
87baec5
 
 
 
a6c0d87
87baec5
919ab87
87baec5
a6c0d87
87baec5
 
 
919ab87
 
87baec5
919ab87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87baec5
919ab87
 
 
 
87baec5
 
 
 
 
 
 
a6c0d87
 
919ab87
a6c0d87
 
87baec5
 
 
a6c0d87
87baec5
919ab87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87baec5
919ab87
 
 
 
87baec5
 
 
 
 
 
 
a6c0d87
 
 
 
919ab87
87baec5
a6c0d87
 
 
 
 
 
87baec5
a6c0d87
87baec5
a6c0d87
919ab87
87baec5
a6c0d87
87baec5
a6c0d87
87baec5
 
 
 
 
 
 
 
a6c0d87
87baec5
 
 
a6c0d87
 
87baec5
a6c0d87
 
 
87baec5
a6c0d87
87baec5
919ab87
 
 
 
 
 
 
 
 
87baec5
 
a6c0d87
919ab87
 
 
 
 
 
b42840f
919ab87
 
7fdd092
87baec5
 
a6c0d87
87baec5
a6c0d87
919ab87
a6c0d87
87baec5
 
a6c0d87
919ab87
87baec5
 
919ab87
a6c0d87
87baec5
919ab87
 
7fdd092
a6c0d87
d179e57
87baec5
 
a6c0d87
87baec5
 
a6c0d87
87baec5
a6c0d87
 
 
87baec5
 
919ab87
 
87baec5
 
 
 
a6c0d87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d179e57
3fdd093
87baec5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import os
import gradio as gr
import tempfile
from pathlib import Path
import base64
import fitz  # PyMuPDF - works on HF Spaces without additional dependencies
from PIL import Image
import io

# Import vectorstore and embeddings from langchain community package
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
# Text splitter to break large documents into manageable chunks
from langchain.text_splitter import RecursiveCharacterTextSplitter
# HF Inference client for multimodal model
from huggingface_hub import InferenceClient

# ── Globals ───────────────────────────────────────────────────────────────────
index = None               # FAISS index storing document embeddings
retriever = None           # Retriever to fetch relevant chunks
current_pdf_name = None    # Name of the currently loaded PDF
extracted_content = None   # Combined text and image descriptions
extracted_images = []      # Store image paths for multimodal queries

# ── Single Multimodal Model ──────────────────────────────────────────────────
# Using a single multimodal model that can handle both text and images
multimodal_client = InferenceClient(model="microsoft/Phi-3.5-vision-instruct")

# ── Multimodal Embeddings ────────────────────────────────────────────────────
# Using CLIP-based embeddings that can handle both text and images
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/clip-ViT-B-32")

# Create temporary directories for processing
temp_dir = tempfile.mkdtemp()
figures_dir = os.path.join(temp_dir, "figures")
os.makedirs(figures_dir, exist_ok=True)

def encode_image_to_base64(image_path):
    """Convert image to base64 for API calls"""
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode('utf-8')

def extract_images_from_pdf_pymupdf(pdf_path):
    """
    Extract images from PDF using PyMuPDF (works on HF Spaces)
    Args:
        pdf_path: Path to the PDF file
    Returns:
        List of image paths and their descriptions
    """
    extracted_images = []
    image_descriptions = []
    
    try:
        # Open PDF with PyMuPDF
        pdf_document = fitz.open(pdf_path)
        
        for page_num in range(len(pdf_document)):
            page = pdf_document.load_page(page_num)
            image_list = page.get_images()
            
            for img_index, img in enumerate(image_list):
                # Get image data
                xref = img[0]
                pix = fitz.Pixmap(pdf_document, xref)
                
                # Convert to PIL Image
                if pix.n - pix.alpha < 4:  # GRAY or RGB
                    img_data = pix.tobytes("png")
                    img_pil = Image.open(io.BytesIO(img_data))
                    
                    # Save image
                    image_filename = f"page_{page_num}_img_{img_index}.png"
                    image_path = os.path.join(figures_dir, image_filename)
                    img_pil.save(image_path)
                    
                    # Analyze image with multimodal model
                    description = analyze_image_with_multimodal_model(image_path)
                    
                    extracted_images.append(image_path)
                    image_descriptions.append(description)
                
                pix = None  # Free memory
        
        pdf_document.close()
        return extracted_images, image_descriptions
        
    except Exception as e:
        print(f"Error extracting images: {e}")
        return [], []

def analyze_image_with_multimodal_model(image_path):
    """
    Analyze an extracted image using the multimodal model.
    Args:
        image_path: Path to the extracted image file
    Returns:
        Text description of the image content
    """
    try:
        # Encode image to base64
        image_base64 = encode_image_to_base64(image_path)
        
        # Simple text-based prompt for HF Inference API
        prompt = f"""Analyze this image and provide a detailed description. Include any text, data, charts, diagrams, tables, or important visual elements you can see. Be specific and comprehensive.

Image: [Image data provided]

Description:"""
        
        # Use multimodal model for image analysis
        # Note: Simplified for HF Spaces compatibility
        response = multimodal_client.text_generation(
            prompt=prompt,
            max_new_tokens=200,
            temperature=0.3
        )
        
        description = response.strip()
        return f"[IMAGE CONTENT]: {description}"
        
    except Exception as e:
        return f"[IMAGE CONTENT]: Could not analyze image - {str(e)}"

def process_pdf_multimodal(pdf_file):
    """
    Process PDF using PyMuPDF (HF Spaces compatible).
    """
    global current_pdf_name, index, retriever, extracted_content, extracted_images

    if pdf_file is None:
        return None, "❌ Please upload a PDF file.", gr.update(interactive=False)

    current_pdf_name = os.path.basename(pdf_file.name)
    
    try:
        # Clear previous data
        extracted_images.clear()
        for file in os.listdir(figures_dir):
            os.remove(os.path.join(figures_dir, file))
        
        # Extract text using PyMuPDF
        pdf_document = fitz.open(pdf_file.name)
        text_elements = []
        
        for page_num in range(len(pdf_document)):
            page = pdf_document.load_page(page_num)
            text = page.get_text()
            if text.strip():
                text_elements.append(f"[PAGE {page_num + 1}]\n{text.strip()}")
        
        pdf_document.close()
        
        # Extract images using PyMuPDF
        image_paths, image_descriptions = extract_images_from_pdf_pymupdf(pdf_file.name)
        extracted_images.extend(image_paths)
        
        # Combine all content
        all_content = text_elements + image_descriptions
        extracted_content = "\n\n".join(all_content)
        
        if not extracted_content.strip():
            return current_pdf_name, "❌ No content could be extracted from the PDF.", gr.update(interactive=False)
        
        # Split into chunks for embedding
        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=1000,
            chunk_overlap=200,
            add_start_index=True
        )
        chunks = text_splitter.split_text(extracted_content)
        
        # Create FAISS index with multimodal embeddings
        index = FAISS.from_texts(chunks, embeddings)
        retriever = index.as_retriever(search_kwargs={"k": 3})
        
        # Status message
        num_images = len(image_descriptions)
        num_text_pages = len(text_elements)
        status = f"βœ… Processed '{current_pdf_name}' β€” {len(chunks)} chunks ({num_text_pages} pages, {num_images} images analyzed)"
        
        return current_pdf_name, status, gr.update(interactive=True)
        
    except Exception as e:
        error_msg = f"❌ Error processing PDF: {str(e)}"
        return current_pdf_name, error_msg, gr.update(interactive=False)

def ask_multimodal_question(pdf_name, question):
    """
    Answer questions using the single multimodal model with retrieved context.
    """
    global retriever, extracted_images
    
    if index is None or retriever is None:
        return "❌ Please upload and process a PDF first."
    
    if not question.strip():
        return "❌ Please enter a question."
    
    try:
        # Retrieve relevant chunks
        docs = retriever.get_relevant_documents(question)
        context = "\n\n".join(doc.page_content for doc in docs)
        
        # Create prompt for text generation
        prompt = f"""You are an AI assistant analyzing a document that contains both text and visual elements.

RETRIEVED CONTEXT:
{context}

QUESTION: {question}

Please provide a comprehensive answer based on the retrieved context above. The context includes both textual information and descriptions of images, charts, tables, and other visual elements from the document. 

If your answer references visual elements (charts, graphs, images, tables), mention that explicitly. Keep your response focused and informative.

ANSWER:"""
        
        # Generate response with multimodal model
        response = multimodal_client.text_generation(
            prompt=prompt,
            max_new_tokens=300,
            temperature=0.5
        )
        
        return response.strip()
        
    except Exception as e:
        return f"❌ Error generating answer: {str(e)}"

def generate_multimodal_summary():
    """
    Generate summary using the multimodal model.
    """
    if not extracted_content:
        return "❌ Please upload and process a PDF first."
    
    try:
        # Use first 4000 characters for summary
        content_preview = extracted_content[:4000]
        
        messages = [
            {
                "role": "user",
                "content": [
                    {
                        "type": "text", 
                        "text": f"""Please provide a comprehensive summary of this document content. The content includes both textual information and descriptions of visual elements (images, charts, tables, diagrams).

DOCUMENT CONTENT:
{content_preview}

Create a well-structured summary that captures:
1. Main topics and key points from the text
2. Important information from visual elements (charts, images, tables)
3. Overall document purpose and conclusions

SUMMARY:"""
                    }
                ]
            }
        ]
        
        response = multimodal_client.chat_completion(
            messages=messages,
            max_tokens=250,
            temperature=0.3
        )
        
        return response["choices"][0]["message"]["content"].strip()
        
    except Exception as e:
        return f"❌ Error generating summary: {str(e)}"

def extract_multimodal_keywords():
    """
    Extract keywords using the multimodal model.
    """
    if not extracted_content:
        return "❌ Please upload and process a PDF first."
    
    try:
        content_preview = extracted_content[:3000]
        
        messages = [
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": f"""Analyze the following document content and extract 12-15 key terms, concepts, and important phrases. The content includes both text and descriptions of visual elements.

DOCUMENT CONTENT:
{content_preview}

Extract key terms that represent:
- Main topics and concepts
- Important technical terms
- Key findings or data points
- Visual elements mentioned (chart types, image subjects)

Format as a comma-separated list.

KEY TERMS:"""
                    }
                ]
            }
        ]
        
        response = multimodal_client.chat_completion(
            messages=messages,
            max_tokens=120,
            temperature=0.3
        )
        
        return response["choices"][0]["message"]["content"].strip()
        
    except Exception as e:
        return f"❌ Error extracting keywords: {str(e)}"

def clear_multimodal_interface():
    """
    Reset all global state and clear UI.
    """
    global index, retriever, current_pdf_name, extracted_content, extracted_images
    
    # Clear figures directory
    try:
        for file in os.listdir(figures_dir):
            os.remove(os.path.join(figures_dir, file))
    except:
        pass
    
    # Reset globals
    index = retriever = None
    current_pdf_name = extracted_content = None
    extracted_images.clear()
    
    return None, "", gr.update(interactive=False)

# ── Gradio UI ────────────────────────────────────────────────────────────────
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="blue")

with gr.Blocks(theme=theme, css="""
    .container { border-radius: 10px; padding: 15px; }
    .pdf-active { border-left: 3px solid #6366f1; padding-left: 10px; background-color: rgba(99,102,241,0.1); }
    .footer { text-align: center; margin-top: 30px; font-size: 0.8em; color: #666; }
    .main-title {
        text-align: center;
        font-size: 64px;
        font-weight: bold;
        margin-bottom: 20px;
    }
    .multimodal-badge {
        background: linear-gradient(45deg, #6366f1, #8b5cf6);
        color: white;
        padding: 5px 15px;
        border-radius: 20px;
        font-size: 14px;
        display: inline-block;
        margin: 10px auto;
    }
    .model-info {
        background: #f8fafc;
        border: 1px solid #e2e8f0;
        border-radius: 8px;
        padding: 10px;
        margin: 10px 0;
        font-size: 12px;
        color: #64748b;
    }
""") as demo:
    
    # Application title with multimodal badge
    gr.Markdown("<div class='main-title'>Unified MultiModal RAG</div>")
    gr.Markdown("<div style='text-align: center;'><span class='multimodal-badge'>🧠 Single Model β€’ Text + Vision</span></div>")
    
    # Model information
    gr.Markdown("""
    <div class='model-info'>
    <strong>πŸ€– Powered by:</strong> Microsoft Phi-3.5-Vision + CLIP Embeddings + PyMuPDF (HF Spaces Compatible)
    </div>
    """)

    with gr.Row():
        with gr.Column():
            gr.Markdown("## πŸ“„ Document Input")
            pdf_display = gr.Textbox(label="Active Document", interactive=False, elem_classes="pdf-active")
            pdf_file = gr.File(file_types=[".pdf"], type="filepath", label="Upload PDF (with images/charts)")
            upload_button = gr.Button("πŸ”„ Process with Multimodal AI", variant="primary")
            status_box = gr.Textbox(label="Processing Status", interactive=False)

        with gr.Column():
            gr.Markdown("## ❓ Ask Questions")
            gr.Markdown("*Single AI model understands both text and visual content*")
            question_input = gr.Textbox(
                lines=3, 
                placeholder="Ask about text content, images, charts, tables, or any visual elements...",
                interactive=False
            )
            ask_button = gr.Button("πŸ” Ask Multimodal AI", variant="primary")
            answer_output = gr.Textbox(label="AI Response", lines=8, interactive=False)

    # Analysis tools
    with gr.Row():
        with gr.Column():
            summary_button = gr.Button("πŸ“‹ Generate Summary", variant="secondary")
            summary_output = gr.Textbox(label="Document Summary", lines=4, interactive=False)
        with gr.Column():
            keywords_button = gr.Button("🏷️ Extract Keywords", variant="secondary")
            keywords_output = gr.Textbox(label="Key Terms", lines=4, interactive=False)

    # Clear button
    clear_button = gr.Button("πŸ—‘οΈ Clear All", variant="secondary")
    
    gr.Markdown("""
    <div class='footer'>
        <strong>Unified Multimodal Pipeline:</strong> One model handles text analysis, image understanding, and question answering<br>
        Supports: Text β€’ Images β€’ Charts β€’ Tables β€’ Diagrams β€’ Mixed Content Queries
    </div>
    """)

    # Event bindings
    upload_button.click(
        process_pdf_multimodal, 
        [pdf_file], 
        [pdf_display, status_box, question_input]
    )
    ask_button.click(
        ask_multimodal_question, 
        [pdf_display, question_input], 
        answer_output
    )
    summary_button.click(generate_multimodal_summary, [], summary_output)
    keywords_button.click(extract_multimodal_keywords, [], keywords_output)
    clear_button.click(
        clear_multimodal_interface, 
        [], 
        [pdf_file, pdf_display, question_input]
    )

if __name__ == "__main__":
    demo.launch(debug=True, share=True)