Spaces:
Running
Running
File size: 11,357 Bytes
fd644c0 67a56f6 a6c0d87 919ab87 fd644c0 e7f1d86 fd644c0 3fdd093 fd644c0 ced2810 225229c 87baec5 fd644c0 87baec5 919ab87 009e0ad fd644c0 a6c0d87 87baec5 919ab87 b42840f fd644c0 b42840f fd644c0 b42840f fd644c0 b42840f fd644c0 b42840f 919ab87 87baec5 fd644c0 919ab87 fd644c0 87baec5 fd644c0 87baec5 a6c0d87 919ab87 87baec5 fd644c0 87baec5 fd644c0 b42840f 87baec5 fd644c0 b42840f fd644c0 a6c0d87 fd644c0 a6c0d87 fd644c0 a6c0d87 fd644c0 87baec5 fd644c0 87baec5 fd644c0 87baec5 a6c0d87 fd644c0 87baec5 919ab87 fd644c0 87baec5 fd644c0 87baec5 fd644c0 87baec5 a6c0d87 87baec5 fd644c0 919ab87 fd644c0 919ab87 fd644c0 87baec5 fd644c0 87baec5 fd644c0 87baec5 a6c0d87 87baec5 fd644c0 919ab87 fd644c0 919ab87 fd644c0 87baec5 fd644c0 87baec5 fd644c0 87baec5 a6c0d87 919ab87 fd644c0 87baec5 a6c0d87 919ab87 a6c0d87 87baec5 a6c0d87 87baec5 fd644c0 87baec5 919ab87 fd644c0 919ab87 b42840f 919ab87 7fdd092 87baec5 a6c0d87 87baec5 a6c0d87 919ab87 a6c0d87 87baec5 a6c0d87 fd644c0 919ab87 7fdd092 d179e57 87baec5 a6c0d87 87baec5 a6c0d87 87baec5 a6c0d87 87baec5 fd644c0 87baec5 fd644c0 a6c0d87 fd644c0 d179e57 3fdd093 fd644c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
# app.py
import os
import tempfile
from pathlib import Path
import base64
import fitz # PyMuPDF
from PIL import Image
import io
import gradio as gr
from huggingface_hub import InferenceClient
# Import vectorstore and embeddings from updated packages
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
# ββ Globals βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
index = None
retriever = None
current_pdf_name = None
extracted_content = None
extracted_images = []
# ββ Single Multimodal Model ββββββββββββββββββββββββββββββββββββββββββββββββββ
multimodal_client = InferenceClient(model="microsoft/Phi-3.5-vision-instruct")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/clip-ViT-B-32")
# Create temp dirs
temp_dir = tempfile.mkdtemp()
figures_dir = os.path.join(temp_dir, "figures")
os.makedirs(figures_dir, exist_ok=True)
def encode_image_to_base64(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def extract_images_from_pdf_pymupdf(pdf_path):
extracted_images = []
image_descriptions = []
try:
pdf_document = fitz.open(pdf_path)
for page_num in range(len(pdf_document)):
page = pdf_document.load_page(page_num)
for img_index, img in enumerate(page.get_images()):
xref = img[0]
pix = fitz.Pixmap(pdf_document, xref)
if pix.n - pix.alpha < 4:
img_data = pix.tobytes("png")
img_pil = Image.open(io.BytesIO(img_data))
image_filename = f"page_{page_num}_img_{img_index}.png"
image_path = os.path.join(figures_dir, image_filename)
img_pil.save(image_path)
desc = analyze_image_with_multimodal_model(image_path)
extracted_images.append(image_path)
image_descriptions.append(desc)
pix = None
pdf_document.close()
return extracted_images, image_descriptions
except Exception as e:
print(f"Error extracting images: {e}")
return [], []
def analyze_image_with_multimodal_model(image_path):
try:
b64 = encode_image_to_base64(image_path)
prompt = (
"Analyze this image and provide a detailed description. Include any text, data, "
"charts, diagrams, tables, or important visual elements you can see.\n"
"Image: [Image data provided]\nDescription:"
)
resp = multimodal_client.text_generation(
prompt=prompt, max_new_tokens=200, temperature=0.3
)
return "[IMAGE CONTENT]: " + resp.strip()
except Exception as e:
return f"[IMAGE CONTENT]: Could not analyze image - {e}"
def process_pdf_multimodal(pdf_file):
global current_pdf_name, index, retriever, extracted_content, extracted_images
if pdf_file is None:
return None, "β Please upload a PDF file.", gr.update(interactive=False)
current_pdf_name = os.path.basename(pdf_file.name)
extracted_images.clear()
for f in os.listdir(figures_dir):
os.remove(os.path.join(figures_dir, f))
try:
# Text extraction
pdf_document = fitz.open(pdf_file.name)
text_elements = []
for i in range(len(pdf_document)):
p = pdf_document.load_page(i)
t = p.get_text().strip()
if t:
text_elements.append(f"[PAGE {i+1}]\n{t}")
pdf_document.close()
# Image extraction & analysis
imgs, img_descs = extract_images_from_pdf_pymupdf(pdf_file.name)
extracted_images.extend(imgs)
# Combine content and split
all_content = text_elements + img_descs
extracted_content = "\n\n".join(all_content)
if not extracted_content:
return current_pdf_name, "β No content extracted.", gr.update(interactive=False)
splitter = RecursiveCharacterTextSplitter(
chunk_size=1000, chunk_overlap=200, add_start_index=True
)
chunks = splitter.split_text(extracted_content)
index = FAISS.from_texts(chunks, embeddings)
retriever = index.as_retriever(search_kwargs={"k": 3})
status = (
f"β
Processed '{current_pdf_name}' β "
f"{len(chunks)} chunks "
f"({len(text_elements)} pages, {len(img_descs)} images analyzed)"
)
return current_pdf_name, status, gr.update(interactive=True)
except Exception as e:
return current_pdf_name, f"β Error processing PDF: {e}", gr.update(interactive=False)
def ask_multimodal_question(pdf_name, question):
global retriever
if not retriever:
return "β Please upload and process a PDF first."
if not question.strip():
return "β Please enter a question."
try:
docs = retriever.invoke(question)
context = "\n\n".join(d.page_content for d in docs)
prompt = (
"You are an AI assistant analyzing a document that contains both text and visual elements.\n\n"
f"RETRIEVED CONTEXT:\n{context}\n\n"
f"QUESTION: {question}\n"
"Please provide a comprehensive answer based on the retrieved context above. "
"If you reference visual elements, mention them explicitly.\nANSWER:"
)
resp = multimodal_client.text_generation(
prompt=prompt, max_new_tokens=300, temperature=0.5
)
return resp.strip()
except Exception as e:
return f"β Error generating answer: {e}"
def generate_multimodal_summary():
if not extracted_content:
return "β Please upload and process a PDF first."
try:
preview = extracted_content[:4000]
messages = [
{"role":"user","content":[{"type":"text","text":
"Please provide a comprehensive summary of this document content. The content includes both textual "
f"information and descriptions of visual elements.\n\nDOCUMENT CONTENT:\n{preview}\n\nSUMMARY:"
}]}
]
resp = multimodal_client.chat_completion(
messages=messages, max_tokens=250, temperature=0.3
)
return resp["choices"][0]["message"]["content"].strip()
except Exception as e:
return f"β Error generating summary: {e}"
def extract_multimodal_keywords():
if not extracted_content:
return "β Please upload and process a PDF first."
try:
preview = extracted_content[:3000]
messages = [
{"role":"user","content":[{"type":"text","text":
"Analyze the following document content and extract 12-15 key terms, concepts, and important phrases. "
f"DOCUMENT CONTENT:\n{preview}\n\nKEY TERMS:"
}]}
]
resp = multimodal_client.chat_completion(
messages=messages, max_tokens=120, temperature=0.3
)
return resp["choices"][0]["message"]["content"].strip()
except Exception as e:
return f"β Error extracting keywords: {e}"
def clear_multimodal_interface():
global index, retriever, current_pdf_name, extracted_content, extracted_images
for f in os.listdir(figures_dir):
try: os.remove(os.path.join(figures_dir, f))
except: pass
index = retriever = None
current_pdf_name = extracted_content = None
extracted_images.clear()
return None, "", gr.update(interactive=False)
# ββ Gradio UI ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="blue")
with gr.Blocks(theme=theme, css="""
.container { border-radius: 10px; padding: 15px; }
.pdf-active { border-left: 3px solid #6366f1; padding-left: 10px; background-color: rgba(99,102,241,0.1); }
.footer { text-align: center; margin-top: 30px; font-size: 0.8em; color: #666; }
.main-title { text-align: center; font-size: 64px; font-weight: bold; margin-bottom: 20px; }
.multimodal-badge { background: linear-gradient(45deg, #6366f1, #8b5cf6); color: white; padding: 5px 15px; border-radius: 20px; font-size: 14px; display: inline-block; margin: 10px auto; }
.model-info { background: #f8fafc; border: 1px solid #e2e8f0; border-radius: 8px; padding: 10px; margin: 10px 0; font-size: 12px; color: #64748b; }
""") as demo:
gr.Markdown("<div class='main-title'>Unified MultiModal RAG</div>")
gr.Markdown("<div style='text-align:center;'><span class='multimodal-badge'>π§ Single Model β’ Text + Vision</span></div>")
gr.Markdown("""
<div class='model-info'>
<strong>π€ Powered by:</strong> Microsoft Phi-3.5-Vision + CLIP Embeddings + PyMuPDF (HF Spaces Compatible)
</div>
""")
with gr.Row():
with gr.Column():
gr.Markdown("## π Document Input")
pdf_display = gr.Textbox(label="Active Document", interactive=False, elem_classes="pdf-active")
pdf_file = gr.File(file_types=[".pdf"], type="filepath", label="Upload PDF (with images/charts)")
upload_button = gr.Button("π Process with Multimodal AI", variant="primary")
status_box = gr.Textbox(label="Processing Status", interactive=False)
with gr.Column():
gr.Markdown("## β Ask Questions")
question_input = gr.Textbox(lines=3, placeholder="Ask about text or visual content...", interactive=False)
ask_button = gr.Button("π Ask Multimodal AI", variant="primary")
answer_output = gr.Textbox(label="AI Response", lines=8, interactive=False)
with gr.Row():
with gr.Column():
summary_button = gr.Button("π Generate Summary", variant="secondary")
summary_output = gr.Textbox(label="Document Summary", lines=4, interactive=False)
with gr.Column():
keywords_button = gr.Button("π·οΈ Extract Keywords", variant="secondary")
keywords_output = gr.Textbox(label="Key Terms", lines=4, interactive=False)
clear_button = gr.Button("ποΈ Clear All", variant="secondary")
gr.Markdown("""
<div class='footer'>
<strong>Unified Multimodal Pipeline:</strong> One model handles text, images, charts, tables, diagrams, and mixed content queries
</div>
""")
upload_button.click(process_pdf_multimodal, [pdf_file], [pdf_display, status_box, question_input])
ask_button.click(ask_multimodal_question, [pdf_display, question_input], answer_output)
summary_button.click(generate_multimodal_summary, [], summary_output)
keywords_button.click(extract_multimodal_keywords, [], keywords_output)
clear_button.click(clear_multimodal_interface, [], [pdf_file, pdf_display, question_input])
if __name__ == "__main__":
demo.launch(debug=True)
|