Spaces:
Running
Running
File size: 26,563 Bytes
5884a33 67a56f6 5884a33 a6c0d87 5884a33 919ab87 5884a33 e7f1d86 5884a33 e7f1d86 65f0698 5884a33 65f0698 225229c 5884a33 87baec5 5884a33 009e0ad 5884a33 87baec5 5884a33 7f824f1 5884a33 919ab87 5884a33 7f824f1 5884a33 b42840f 5884a33 b42840f 5884a33 7f824f1 5884a33 b42840f 5884a33 87baec5 5884a33 7f824f1 5884a33 87baec5 5884a33 7f824f1 5884a33 87baec5 5884a33 87baec5 5884a33 fd644c0 5884a33 87baec5 5884a33 fd644c0 5884a33 fd644c0 5884a33 7f824f1 5884a33 87baec5 5884a33 919ab87 5884a33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 |
import os
import gradio as gr
import tempfile
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.vectorstores import InMemoryVectorStore
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from unstructured.partition.pdf import partition_pdf
from unstructured.partition.utils.constants import PartitionStrategy
from huggingface_hub import InferenceClient
import base64
from PIL import Image
import io
import requests
from getpass import getpass
import PyPDF2
import fitz # PyMuPDF
import pytesseract
# # Step 2: Set up Hugging Face Token
# print("π Setting up Hugging Face Token...")
# print("Please enter your Hugging Face token (get it from: https://huggingface.co/settings/tokens)")
# HF_TOKEN = getpass("Hugging Face Token: ")
# # Set environment variable
# os.environ["HUGGINGFACE_HUB_TOKEN"] = HF_TOKEN
# Step 3: Initialize Hugging Face components
print("π Initializing models...")
# Initialize embeddings model (runs locally for better performance)
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={'device': 'cpu'}
)
# Initialize vector store
vector_store = InMemoryVectorStore(embeddings)
# Initialize Hugging Face Inference clients with proper multimodal support
def initialize_multimodal_clients():
"""Initialize clients with proper multimodal capabilities"""
# Vision-Language Models (can understand images AND text together)
multimodal_models = [
"microsoft/git-large-coco", # Best for image+text understanding
"Salesforce/blip2-opt-2.7b", # Strong multimodal model
"microsoft/git-base-coco", # Lighter alternative
"Salesforce/blip-image-captioning-large" # Good image understanding
]
# Text-only models for when no images are involved
text_models = [
"google/flan-t5-base", # Excellent for Q&A
"microsoft/DialoGPT-medium", # Conversational
"facebook/blenderbot-400M-distill", # Another option
]
vision_client = None
text_client = None
# Try to initialize multimodal/vision client
for model_name in multimodal_models:
try:
vision_client = InferenceClient(model=model_name, token=HF_TOKEN)
print(f"β
Multimodal client initialized: {model_name}")
break
except Exception as e:
print(f"β οΈ Failed to initialize {model_name}: {e}")
continue
# Try to initialize text client
for model_name in text_models:
try:
text_client = InferenceClient(model=model_name, token=HF_TOKEN)
print(f"β
Text client initialized: {model_name}")
break
except Exception as e:
print(f"β οΈ Failed to initialize {model_name}: {e}")
continue
return vision_client, text_client
vision_client, text_client = initialize_multimodal_clients()
template = """
You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.
Question: {question}
Context: {context}
Answer:
"""
def extract_text_with_multiple_methods(pdf_path):
"""Try multiple methods to extract text from PDF"""
extracted_text = ""
methods_tried = []
# Method 1: PyPDF2
try:
print("π Trying PyPDF2...")
with open(pdf_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
text_parts = []
for page_num, page in enumerate(pdf_reader.pages):
page_text = page.extract_text()
if page_text.strip():
text_parts.append(f"Page {page_num + 1}:\n{page_text}")
if text_parts:
extracted_text = "\n\n".join(text_parts)
methods_tried.append("PyPDF2")
print(f"β
PyPDF2 extracted {len(extracted_text)} characters")
except Exception as e:
print(f"β οΈ PyPDF2 failed: {e}")
# Method 2: PyMuPDF (fitz) - often better for complex PDFs
if not extracted_text.strip():
try:
print("π Trying PyMuPDF...")
doc = fitz.open(pdf_path)
text_parts = []
for page_num in range(len(doc)):
page = doc.load_page(page_num)
page_text = page.get_text()
if page_text.strip():
text_parts.append(f"Page {page_num + 1}:\n{page_text}")
if text_parts:
extracted_text = "\n\n".join(text_parts)
methods_tried.append("PyMuPDF")
print(f"β
PyMuPDF extracted {len(extracted_text)} characters")
doc.close()
except Exception as e:
print(f"β οΈ PyMuPDF failed: {e}")
# Method 3: OCR with PyMuPDF for image-based PDFs
if not extracted_text.strip():
try:
print("π Trying OCR with PyMuPDF...")
doc = fitz.open(pdf_path)
text_parts = []
for page_num in range(min(len(doc), 5)): # Limit to first 5 pages for OCR
page = doc.load_page(page_num)
# Convert page to image
pix = page.get_pixmap()
img_data = pix.tobytes("png")
img = Image.open(io.BytesIO(img_data))
# Apply OCR
ocr_text = pytesseract.image_to_string(img)
if ocr_text.strip():
text_parts.append(f"Page {page_num + 1} (OCR):\n{ocr_text}")
if text_parts:
extracted_text = "\n\n".join(text_parts)
methods_tried.append("OCR")
print(f"β
OCR extracted {len(extracted_text)} characters")
doc.close()
except Exception as e:
print(f"β οΈ OCR failed: {e}")
return extracted_text, methods_tried
def upload_and_process_pdf(pdf_file):
"""Process uploaded PDF file with enhanced error handling"""
if pdf_file is None:
return "Please upload a PDF file first."
try:
# Create temporary directories
with tempfile.TemporaryDirectory() as temp_dir:
figures_dir = os.path.join(temp_dir, "figures")
os.makedirs(figures_dir, exist_ok=True)
# Save uploaded file temporarily
temp_pdf_path = os.path.join(temp_dir, "uploaded.pdf")
with open(temp_pdf_path, "wb") as f:
f.write(pdf_file)
# Check file size and validity
file_size = os.path.getsize(temp_pdf_path)
print(f"π Processing PDF: {file_size} bytes")
if file_size == 0:
return "β The uploaded file is empty. Please check your PDF file."
if file_size > 50 * 1024 * 1024: # 50MB limit
return "β File too large (>50MB). Please upload a smaller PDF."
# Try multiple extraction methods
text, methods = extract_text_with_multiple_methods(temp_pdf_path)
# Process with unstructured as backup/additional method
unstructured_text = ""
try:
print("π Trying unstructured...")
elements = partition_pdf(
temp_pdf_path,
strategy=PartitionStrategy.FAST,
extract_image_block_types=["Image", "Table"],
extract_image_block_output_dir=figures_dir,
infer_table_structure=True
)
# Extract text elements
text_elements = []
for element in elements:
if hasattr(element, 'text') and element.text and element.category not in ["Image", "Table"]:
text_elements.append(element.text)
if text_elements:
unstructured_text = "\n\n".join(text_elements)
print(f"β
Unstructured extracted {len(unstructured_text)} characters")
# Combine with existing text if available
if text.strip():
text = f"{text}\n\n--- Additional Content ---\n\n{unstructured_text}"
else:
text = unstructured_text
methods.append("unstructured")
except Exception as unstructured_error:
print(f"β οΈ Unstructured processing failed: {unstructured_error}")
# Process images
image_text = ""
image_count = 0
if os.path.exists(figures_dir):
for file in os.listdir(figures_dir):
if file.lower().endswith(('.png', '.jpg', '.jpeg')):
try:
extracted_image_text = extract_text_from_image(os.path.join(figures_dir, file))
image_text += f"\n\n{extracted_image_text}"
image_count += 1
except Exception as e:
print(f"β οΈ Error processing image {file}: {e}")
# Also try to extract images directly from PDF using PyMuPDF
try:
doc = fitz.open(temp_pdf_path)
for page_num in range(min(len(doc), 10)): # Process first 10 pages
page = doc.load_page(page_num)
image_list = page.get_images(full=True)
for img_index, img in enumerate(image_list[:3]): # Max 3 images per page
try:
xref = img[0]
pix = fitz.Pixmap(doc, xref)
if pix.n - pix.alpha < 4: # GRAY or RGB
img_data = pix.tobytes("png")
img_path = os.path.join(figures_dir, f"page_{page_num}_img_{img_index}.png")
with open(img_path, "wb") as img_file:
img_file.write(img_data)
extracted_image_text = extract_text_from_image(img_path)
image_text += f"\n\n{extracted_image_text}"
image_count += 1
pix = None
except Exception as img_error:
print(f"β οΈ Error extracting image: {img_error}")
continue
doc.close()
except Exception as e:
print(f"β οΈ Error extracting images from PDF: {e}")
# Combine all text
full_text = text
if image_text.strip():
full_text += f"\n\n--- Image Content ---\n{image_text}"
if not full_text.strip():
return (f"β οΈ No text could be extracted from the PDF using any method. "
f"This might be a scanned PDF without OCR text, or the file might be corrupted. "
f"Methods tried: {', '.join(['PyPDF2', 'PyMuPDF', 'OCR', 'unstructured']) if not methods else ', '.join(methods)}")
# Split and index the text
chunked_texts = split_text(full_text)
if not chunked_texts:
return "β οΈ Text was extracted but could not be split into chunks."
# Clear existing vector store and add new documents
global vector_store
vector_store = InMemoryVectorStore(embeddings)
index_docs(chunked_texts)
success_msg = (f"β
PDF processed successfully!\n"
f"π Statistics:\n"
f"- Text chunks: {len(chunked_texts)}\n"
f"- Images processed: {image_count}\n"
f"- Methods used: {', '.join(methods)}\n"
f"- Total characters: {len(full_text)}")
return success_msg
except Exception as e:
return f"β Error processing PDF: {str(e)}\n\nTroubleshooting tips:\n- Ensure the PDF is not password protected\n- Try a different PDF file\n- Check if the file is corrupted"
def load_pdf(file_path, figures_directory):
"""Legacy function - now handled by upload_and_process_pdf"""
return extract_text_with_multiple_methods(file_path)[0]
def extract_text_from_image(image_path):
"""Extract text description from image using Hugging Face Vision model"""
try:
# First try OCR for any text in the image
ocr_text = ""
try:
img = Image.open(image_path)
ocr_text = pytesseract.image_to_string(img)
if ocr_text.strip():
ocr_text = f"Text in image: {ocr_text.strip()}"
except Exception as ocr_error:
print(f"β οΈ OCR failed for image: {ocr_error}")
# Then use vision model for description
vision_description = ""
if vision_client:
try:
with open(image_path, "rb") as img_file:
image_data = img_file.read()
response = vision_client.image_to_text(image_data)
if isinstance(response, list) and len(response) > 0:
vision_description = response[0].get('generated_text', '')
elif isinstance(response, dict):
vision_description = response.get('generated_text', '')
else:
vision_description = str(response)
except Exception as vision_error:
print(f"β οΈ Vision model failed: {vision_error}")
# Combine OCR and vision results
combined_result = []
if ocr_text:
combined_result.append(ocr_text)
if vision_description:
combined_result.append(f"Image description: {vision_description}")
if combined_result:
return "\n".join(combined_result)
else:
return "Image content: Visual element present but could not be processed"
except Exception as e:
print(f"β οΈ Error extracting text from image: {e}")
return "Image content: Visual element present but could not be processed"
def split_text(text):
"""Split text into chunks"""
if not text or not text.strip():
return []
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
add_start_index=True
)
return text_splitter.split_text(text)
def index_docs(texts):
"""Index documents in vector store"""
if texts:
vector_store.add_texts(texts)
print(f"π Indexed {len(texts)} text chunks")
def retrieve_docs(query, k=4):
"""Retrieve relevant documents"""
try:
return vector_store.similarity_search(query, k=k)
except Exception as e:
print(f"β οΈ Error retrieving documents: {e}")
return []
def answer_question_hf(question):
"""Answer question using Hugging Face multimodal models"""
try:
# Retrieve relevant documents
related_documents = retrieve_docs(question)
if not related_documents:
return "β No relevant documents found. Please upload and process a PDF first."
# Prepare context
context = "\n\n".join([doc.page_content for doc in related_documents])
# Limit context length for better performance
if len(context) > 1500:
context = context[:1500] + "..."
# Check if we have image content in the context
has_image_content = "Image content:" in context or "Image description:" in context
if has_image_content and vision_client:
# Use multimodal approach for questions involving images
try:
# For multimodal models, we can send both text and image context
multimodal_prompt = f"""
Based on the document content below (including text and image descriptions), answer this question: {question}
Document content:
{context}
Please provide a clear, concise answer in 2-3 sentences.
"""
response = vision_client.text_generation(
multimodal_prompt,
max_new_tokens=150,
temperature=0.7,
do_sample=True,
return_full_text=False,
stop=["Question:", "Document content:", "\n\n\n"]
)
if isinstance(response, dict):
answer = response.get('generated_text', '')
elif isinstance(response, str):
answer = response
else:
answer = str(response)
if answer.strip():
return f"πΌοΈ {answer.strip()}"
except Exception as multimodal_error:
print(f"β οΈ Multimodal model failed: {multimodal_error}")
# Fall back to text-only approach
if text_client:
try:
text_prompt = f"""
Question: {question}
Based on the following information from the document, provide a clear and concise answer:
{context}
Answer:"""
response = text_client.text_generation(
text_prompt,
max_new_tokens=150,
temperature=0.7,
do_sample=True,
return_full_text=False,
stop=["Question:", "Answer:", "\n\n\n"]
)
if isinstance(response, dict):
answer = response.get('generated_text', '')
elif isinstance(response, str):
answer = response
else:
answer = str(response)
# Clean up the answer
answer = answer.strip()
if answer:
return f"π {answer}"
except Exception as text_error:
print(f"β οΈ Text model failed: {text_error}")
# Last resort: Return extracted context
if context:
return f"π Based on the document, here's the relevant information:\n\n{context[:500]}{'...' if len(context) > 500 else ''}"
else:
return "β Unable to find relevant information in the document."
except Exception as e:
return f"β Error generating answer: {str(e)}"
def create_colab_interface():
"""Create Gradio interface optimized for Colab"""
with gr.Blocks(
title="Enhanced Multimodal RAG with Hugging Face",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
}
"""
) as iface:
gr.HTML("""
<div style="text-align: center; padding: 20px;">
<h1>π Enhanced Multimodal RAG with Hugging Face</h1>
<p>Upload a PDF document and ask questions about its content, including images and tables!</p>
<p><em>Now with improved PDF processing and multiple extraction methods</em></p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
# PDF Upload Section
gr.Markdown("### π€ Upload Document")
pdf_input = gr.File(
label="Upload PDF Document",
file_types=[".pdf"],
type="binary",
height=100
)
upload_btn = gr.Button("π Process PDF", variant="primary", size="lg")
upload_status = gr.Textbox(
label="Processing Status",
interactive=False,
lines=6,
placeholder="Upload a PDF and click 'Process PDF' to begin..."
)
with gr.Column(scale=2):
# Chat Interface
gr.Markdown("### π¬ Chat Interface")
chatbot = gr.Chatbot(
label="Chat with your document",
height=400,
show_label=False
)
with gr.Row():
question_input = gr.Textbox(
label="Ask a question",
placeholder="What is this document about?",
lines=1,
scale=4
)
ask_btn = gr.Button("Ask", variant="secondary", scale=1)
# Example questions
gr.Markdown("### π‘ Example Questions")
example_questions = [
"What is the main topic of this document?",
"Can you summarize the key points?",
"What information is shown in the images or tables?",
"What are the conclusions or recommendations?"
]
with gr.Row():
for i, eq in enumerate(example_questions):
example_btn = gr.Button(eq, size="sm")
example_btn.click(
lambda x=eq: x,
outputs=[question_input]
)
# Event handlers
def process_pdf_and_update(pdf_file):
if pdf_file is None:
return "Please select a PDF file first."
return upload_and_process_pdf(pdf_file)
def ask_and_update_chat(question, chat_history):
if not question.strip():
return chat_history, ""
# Get answer
answer = answer_question_hf(question)
# Update chat history
if chat_history is None:
chat_history = []
chat_history.append([question, answer])
return chat_history, ""
def clear_chat():
return []
# Connect events
upload_btn.click(
fn=process_pdf_and_update,
inputs=[pdf_input],
outputs=[upload_status]
)
ask_btn.click(
fn=ask_and_update_chat,
inputs=[question_input, chatbot],
outputs=[chatbot, question_input]
)
question_input.submit(
fn=ask_and_update_chat,
inputs=[question_input, chatbot],
outputs=[chatbot, question_input]
)
# Clear chat button
clear_btn = gr.Button("ποΈ Clear Chat", variant="stop", size="sm")
clear_btn.click(
fn=clear_chat,
outputs=[chatbot]
)
# Enhanced Instructions
gr.Markdown("""
---
### π Instructions:
1. **Get HF Token**: Visit [Hugging Face Settings](https://huggingface.co/settings/tokens) to get your token
2. **Upload PDF**: Click "Choose File" and select your PDF document
3. **Process Document**: Click "Process PDF" and wait for confirmation
4. **Ask Questions**: Type questions or use example prompts
### β¨ Enhanced Features:
- π **Multiple Text Extraction Methods**: PyPDF2, PyMuPDF, OCR, and Unstructured
- πΌοΈ **Advanced Image Processing**: Direct PDF image extraction + vision models
- π **Robust PDF Handling**: Works with scanned PDFs, complex layouts, and image-heavy documents
- π¬ **Interactive Chat**: Conversation history with multimodal understanding
- β‘ **Error Recovery**: Graceful fallbacks when one extraction method fails
- π **Processing Statistics**: Detailed feedback on what was extracted
### π§ Models Used:
- **π Multimodal**: Microsoft GIT-Large (understands images + text together)
- **π Text Generation**: Google FLAN-T5-Base (optimized for Q&A)
- **ποΈ Vision**: Salesforce BLIP (image captioning and understanding)
- **π Embeddings**: Sentence Transformers all-MiniLM-L6-v2
- **π OCR**: Tesseract for text recognition in images
### π― Multimodal Capabilities:
- **Text + Images**: Can answer questions about both text content and visual elements
- **Image Understanding**: Describes charts, diagrams, photos in your PDFs
- **OCR Integration**: Extracts text from images within PDFs
- **Context Awareness**: Combines text and visual information for comprehensive answers
- **Fallback Strategy**: Uses multiple methods to ensure successful text extraction
### π οΈ Troubleshooting:
- **No text extracted**: Try different PDF files, ensure not password-protected
- **Large files**: Keep PDFs under 50MB for optimal performance
- **Scanned PDFs**: OCR will automatically process image-based text
- **Complex layouts**: Multiple extraction methods handle various PDF formats
""")
return iface
# Step 4: Launch the application
print("β
Setup complete! Launching Enhanced Gradio interface...")
# Create and launch interface
iface = create_colab_interface()
# Launch with public link for Colab
iface.launch(
debug=True,
share=True, # Creates public link
server_name="0.0.0.0",
server_port=7860,
show_error=True
)
print("π Enhanced Application launched successfully!")
print("π± Use the public link above to access your app from anywhere!") |